

ON CHARACTER BIPROJECTIVITY OF BANACH ALGEBRAS

Abdolrasoul POURABBAS¹, Amir SAHAMI²

In this paper, we continue our work [13] in the study of ϕ -biprojective Banach algebra A , with respect to a character ϕ of A . For a locally compact group G , we show that a Segal algebra $S(G)$ is ϕ -biprojective if and only if G is compact.

We also introduce and study character biprojectivity of Banach algebras. We show that the measure algebra $M(G)$ is character biprojective if and only if G is a finite group. For a commutative character biprojective Banach algebra A , we prove that the character space $\Delta(A)$ is discrete. Finally we show that some triangular Banach algebras are never ϕ -biprojective.

Keywords: ϕ -biprojective, Character biprojective, Abstract Segal algebras.

1. Introduction and preliminaries

Let A be a Banach algebra and X a Banach A -bimodule. Then a bounded linear map $D: A \rightarrow X$ is called a derivation if

$$D(ab) = D(a).b - a.D(b) \quad (a, b \in A).$$

The set of all derivation from A into X is denoted by $Z^1(A, X)$. For every $x \in X$, we define an inner derivation $ad_x: A \rightarrow X$ by

$$ad_x(a) = a.x - x.a \quad (a \in A)$$

The set of all inner derivations from A into X is denoted by $B^1(A, X)$. Clearly, $B^1(A, X)$ is a subspace of $Z^1(A, X)$. We define the first Hochschild cohomology $\mathcal{H}^1(A, X)$, as the quotient $Z^1(A, X)/B^1(A, X)$ [12]. A Banach algebra A is called amenable (contractible) if the first Hochschild cohomology group $\mathcal{H}^1(A, X^)$ ($\mathcal{H}^1(A, X)$) vanishes for every Banach A -bimodule X [7]. An alternative approach to Hochschild cohomology is Banach homology with the most important concepts, like biflatness and biprojectivity. Indeed a Banach*

¹ Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran. arpabbas@aut.ac.ir

² Department of Mathematics, Ilam University, P.O.Box 69315-516, Ilam, Iran. amir.sahami@aut.ac.ir

algebra A is called *biflat (biprojective)*, if there exists a bounded A -bimodule morphism $\rho: A \rightarrow (A \otimes_p A)^{**}$ ($\rho: A \rightarrow (A \otimes_p A)$) such that $\pi_A^{**} \circ \rho(a) = a$ ($\pi_A \circ \rho(a) = a$), respectively, see [12] or [6]. Note that A is an amenable (contractible) Banach algebra if and only if A is biflat (biprojective) and has a bounded approximate identity (identity), respectively.

Kaniuth et al. in [8] generalized the notion of amenability to a notion of left ϕ -amenability, where ϕ is a Banach algebra character. In fact a Banach algebra A is called left ϕ -amenable, if there exists $m \in A^{**}$ such that $am = \phi(a)m$, and $m(\phi) = 1$ for every $a \in A$, where $\phi: A \rightarrow \mathbb{C}$ is a character on A . They also showed that A is left ϕ -amenable if and only if $\mathcal{H}^{-1}(A, X^*)$ vanishes for every Banach A -bimodule X with $a \cdot x = \phi(a)x$ for every $a \in A$ and $x \in X$.

A Banach algebra A is called left character amenable, if A is left ϕ -amenable for every $\phi \in \Delta(A) \cup \{0\}$, where $\Delta(A)$ is the character space of A , that is, all non-zero multiplicative linear functional on A . see [14]. Nasr Isfahani et al. [9] showed that A is left ϕ -contractible if and only if there exists an element $m \in A$ such that $am = \phi(a)m$, and $m(\phi) = 1$.

An analogue of the Kaniuth et al. formula for Banach homology have been defined and studied by authors in [13] and the notions like ϕ -biflatness and ϕ -biprojectivity have been introduced. In fact a Banach algebra A is called ϕ -biflat (ϕ -biprojective) if there exists a bounded A -bimodule morphism $\rho: A \rightarrow (A \otimes_p A)^{**}$ ($\rho: A \rightarrow (A \otimes_p A)$ such that $\tilde{\phi} \circ \pi_A^{**} \circ \rho = \phi$ ($\phi \circ \pi_A \circ \rho = \phi$), respectively, where $\tilde{\phi}$ is an extension of ϕ to A^{**} which is defined by $\tilde{\phi}(F) = F(\phi)$ for every $F \in A^{**}$. They showed that for a locally compact group G , $L^1(G)$ is ϕ -biflat if and only if G is amenable. Also they showed that the Fourier algebra $A(G)$ is ϕ -biprojective if and only if G is discrete.

In this paper we continue to study the ϕ -biprojectivity of certain Banach algebras. We investigate the ϕ -biprojectivity of $L^1(G)$, where G is a locally compact group. More generally we show that every Segal algebra $S(G)$ with respect to $L^1(G)$ is ϕ -biprojective if and only if G is compact. We introduce the notion of character biprojectivity of Banach algebras and we show that the measure algebra $M(G)$ is character biprojective if and only if G is finite. It will be shown that every commutative character biprojective Banach algebra has a discrete character space. We give some examples which show the differences between these concepts and the classical ones. Finally, we investigate ϕ -biprojectivity of triangular Banach algebras.

2. ϕ -biprojectivity of abstract Segal algebras

In this section we find some conditions under which ϕ -biprojectivity implies left ϕ -contractibility. Then we study ϕ -biprojectivity of Segal algebras.

Proposition 2.1. *Let A be a ϕ -biprojective Banach algebra and let $L \subseteq \ker \phi$ be a closed ideal of A such that $\overline{AL} = L$. Then there exists a non-zero left A -module morphism $\theta: \frac{A}{L} \rightarrow A$ such that $\phi \circ \theta(x + L) = \phi(x)$.*

Proof. Since A is ϕ -biprojective, there exists a bounded A -bimodule morphism $\rho: A \rightarrow A \otimes_p A$ such that $\phi \circ \pi_A \circ \rho(a) = \phi(a)$ for every $a \in A$. Let $q: A \rightarrow \frac{A}{L}$ be the quotient map. Then it is easy to see that $\rho_1 = (id_A \otimes q) \circ \rho: A \rightarrow A \otimes_p \frac{A}{L}$ is a bounded left A -module morphism. Since $\overline{AL} = L$, for every $l \in L$, there exist sequences (l_n') in L and (a_n) in A such that $a_n l_n' \rightarrow l$, so continuity of ρ_1 implies that

$$\begin{aligned} \rho_1(l) &= (id_A \otimes q) \circ \rho(l) = (id_A \otimes q) \circ \rho\left(\lim_n a_n l_n'\right) \\ &= \lim_n (id_A \otimes q)(\rho(a_n) l_n') = 0 \end{aligned}$$

Then ρ_1 induces a bounded left A -module morphism from $\frac{A}{L}$ into $A \otimes_p \frac{A}{L}$ which still is denoted by ρ_1 . Let $\rho(x) = \sum_{i=1}^{\infty} a_i^x \otimes b_i^x$ for some nets $(a_i^x)_i$ and $(b_i^x)_i$ in A . Hence

$$\phi \otimes \bar{\phi} \circ \rho_1(x + L) = \sum_i \phi(a_i^x) \phi(b_i^x) = \phi \circ \pi_A \circ \rho(x) = \phi(x) \quad (2.1),$$

where $\bar{\phi}$ is a character on $\frac{A}{L}$ defined by $\overline{\phi}(a + L) = \phi(a)$. Now define $\theta: (id_A \otimes \bar{\phi}) \circ \rho_1: \frac{A}{L} \rightarrow A$, where $id_A \otimes \bar{\phi}$ a is defined by $id_A \otimes \bar{\phi}(a \otimes b + L) = \phi(b)$ for every a and b in A . Since ρ_1 is a left A -module morphism, we have

$$\begin{aligned} \theta(a \cdot x + L) &= id_A \otimes \bar{\phi} \circ \rho_1(a \cdot x + L) = id_A \otimes \bar{\phi} \circ \rho_1(a \cdot x) \\ &= \sum_i a \cdot a_i^x \phi(b_i^x) \\ &= a \cdot id_A \otimes \bar{\phi} \circ \rho_1(x) \\ &= a \cdot \theta(x + L). \end{aligned}$$

Therefore θ is a bounded left A -module morphism. Also by (2.1) we have

$$\phi \circ \theta(x + L) = \phi \otimes \bar{\phi} \circ \rho_1(x + L) = \phi(x).$$

for every $x \in A$. Thus θ is a non-zero left A -module morphism as required.

Let A be a Banach algebra and $\phi \in \Delta(A)$. Then A is left ϕ -contractible (right ϕ -contractible) if and only if there exists an element m in A such that $am = \phi(a)m$ ($ma = \phi(a)m$) and $\phi(m) = 1$ for every $a \in A$, respectively [9].

Corollary 2.2. *Let A be a ϕ -biprojective Banach algebra and let $\overline{A \ker \phi} = \ker \phi$. Then A is left ϕ -contractible.*

Proof. Let A be a ϕ -biprojective Banach algebra. By the previous Proposition, there exists a bounded left A -module morphism $\theta: \frac{A}{L} \rightarrow A$ such that $\phi \circ \theta(x + L) = \phi(x)$, where $L = \ker \phi$. Pick $x_0 \in A$ such that $\phi(x_0) = 1$. Since $x_0^2 - x_0 \in L$, $x_0^2 + x_0 = x_0 + L$. Thus

$$\begin{aligned} ax_0 + L &= (a - \phi(a)x_0 + \phi(a)x_0)x_0 = (a - \phi(a)x_0^2) + \phi(a)x_0^2 + L \\ &\quad + L \\ &= \phi(a)x_0^2 + L \\ &= \phi(a)x_0 + L. \end{aligned}$$

Therefore

$$a \cdot \theta(x_0 + L) = \theta(a \cdot x_0 + L) = \phi(a) \theta(x_0 + L)$$

and $\phi(\theta(x_0 + L)) = \phi(x_0) = 1$. Since $\theta(x_0 + L) \in A$, [9, Theorem 2.1] shows that A is left ϕ -contractible.

Note that the previous results also hold when we consider a right module action.

In the following example we show that the condition " $\overline{A \ker \phi} = \ker \phi$ " in Corollary 2.2 is a necessary condition.

Example 2.3. Let $A = \mathbb{C} \oplus \mathbb{C}$ be a two dimensional Banach algebra with product $(a, b) \cdot (c, d) = (ad, bd)$. Consider a character $\phi: A \rightarrow \mathbb{C}$ defined by $\phi(a, b) = b$. So $\ker \phi = \{(a, 0) : a \in \mathbb{C}\}$ and $\overline{\ker \phi} = \{0\}$. Now define $\rho: A \rightarrow A \otimes_p A$ by $\rho(a, b) = (a, b) \otimes (0, 1)$ for every $(a, b) \in A$. It is easy to see that ρ is a bounded A -bimodule morphism and $\phi \circ \pi_A \circ \rho(a, b) = \phi(a, b)$. Hence A is ϕ -biprojective. We claim that A is not left ϕ -contractible. Otherwise there exists an element $(m_1, m_2) \in A$ such that $(a, b) \cdot (m_1, m_2) = \phi(a, b) \cdot (m_1, m_2)$ and $\phi(m_1, m_2) = 1$ for every $(a, b) \in A$. But, $\phi(a, b) \cdot (m_1, m_2) = m_2(a, b) = \phi(m_1, m_2)(a, b) = (a, b)$ which implies that $\dim A = 1$, which yields a contradiction.

Let $(A, \|\cdot\|_A)$ be a Banach algebra. We say that a Banach algebra $(B, \|\cdot\|_B)$ is an abstract Segal algebra with respect to A if

- (i) B is a dense left ideal in A ,
- (ii) there exists $M > 0$ such that $\|b\|_A \leq M \|b\|_B$ for every $b \in B$,
- (iii) there exists $C > 0$ such that $\|ab\|_B \leq C \|a\|_A \|b\|_B$ for every $a \in A$ and $b \in B$.

If B is a dense ideal of A and $\|ba\|_B \leq C \|b\|_B \|a\|_A$ for the same C as in (iii), then B is called symmetric abstract Segal algebra. Note that the character space $\Delta(B) = \{\phi|_B : \phi \in \Delta(A)\}$, see [1, Lemma 2.2].

Theorem 2.4. *Let A be a Banach algebra with a left approximate identity and a right approximate identity and let $\phi \in \Delta(A)$. Suppose that B is a symmetric abstract Segal algebra with respect to A which has a left approximate identity and a right approximate identity. Then the followings are equivalent*

- (i) A is ϕ -biprojective,
- (ii) A is left and right ϕ -contractible,
- (iii) B is left and right ϕ -contractible,
- (iv) B is ϕ -biprojective.

Proof. (i) \Rightarrow (ii) Since A has a left approximate identity and a right approximate identity, we have $\overline{A \ker \phi} = \ker \phi$ and $\overline{\ker \phi A} = \ker \phi$. Then by Corollary 2.2, A is left and right ϕ -contractible.

(ii) \Rightarrow (iii) Let m_1 and m_2 be a left ϕ -contraction and a right ϕ -contraction for A , respectively. Choose $i_0 \in B$ such that $\phi(i_0) = 1$. Since B is an ideal in A , we have $m_1 i_0 \in B$. It is easy to see that $b m_1 i_0 = \phi(b) m_1 i_0$, and $\phi(m_1 i_0) = 1$ for every $b \in B$. Then B is left ϕ -contractible. Also it is easy to see that $m_2 = m_2 i_0 \in B$ and $\phi(m_2) = 1$. Hence B is left and right ϕ -contractible.

(iii) \Rightarrow (iv) Let m_1 and m_2 be a left and a right ϕ -contraction for B , respectively. Then $M = m_1 \otimes m_2$ is in $B \otimes_p B$ and define $\rho: B \rightarrow B \otimes_p B$ by $\rho(b) = b \cdot M$ for every $b \in B$. It is easy to see that ρ is a bounded B -bimodule morphism and $\phi \circ \pi_B \circ \rho = \phi$. Hence B is ϕ -biprojective.

(iv) \Rightarrow (i) Since B have a left and a right approximate identity, $\overline{\ker \phi B} = \ker \phi$ and $\overline{B \ker \phi} = \ker \phi$. Hence by Corollary 2.2, B is left and right ϕ -contractible. Let m_1 and m_2 be a left and a right ϕ -contraction for B , respectively. Since B is a symmetric abstract Segal algebra, m_1 and m_2 are a left and a right ϕ -contraction for A , respectively. Using the similar arguments as in the proof of (iii) \Rightarrow (iv) one can see that A is ϕ -biprojective.

We remind that A is a biprojective Banach algebra, if there exists a bounded A -bimodule morphism $\rho: A \rightarrow A \otimes_p A$ such that $\pi_A \circ \rho(a) = a$ for every $a \in A$ [6]. It is easy to see that if A is biprojective, then A is ϕ -biprojective for every $\phi \in \Delta(A)$.

We recall that, for a locally compact group G , a linear subspace $S(G)$ of $L^1(G)$ is said to be a Segal algebra on G if it satisfies the following conditions.

- (i) $S(G)$ is dense in $L^1(G)$,
- (ii) $S(G)$ with the norm $\| \cdot \|_{S(G)}$ is a Banach space and $\|f\|_{L^1(G)} \leq \|f\|_{S(G)}$ for every $f \in S(G)$

(iii) for every $f \in S(G)$ and $y \in G$ we have $L_y f \in S(G)$ and the map $y \mapsto L_y f$ of G into $S(G)$ is continuous, where $L_y f(y) = f(y^{-1}x)$,

(iv) $\|L_y f\|_{S(G)} = \|f\|_{S(G)}$ for every $f \in S(G)$ and $y \in G$.

It is well-known that $S(G)$ has a left approximate identity. Also every Segal algebra is an abstract Segal algebra with respect to $L^1(G)$. For more information on Segal algebras see [11].

Theorem 2.5. *Let G be a locally compact group. Suppose that $S(G)$ is a Segal algebra with respect to $L^1(G)$. Then the following statements are equivalent*

- (i) $L^1(G)$ is ϕ -biprojective,
- (ii) $L^1(G)$ is left and right ϕ -contractible,
- (iii) $S(G)$ is left and right ϕ -contractible,
- (iv) $S(G)$ is ϕ -biprojective,
- (v) G is compact.

Proof. By the same arguments as in the proof of Theorem 2.4 the implications $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)$ are clear.

$(iv) \Rightarrow (v)$ Since $S(G)$ has a left approximate identity, $\overline{S(G)} \cap \ker \phi = \ker \phi$. So by Corollary 2.2, $S(G)$ is left ϕ -contractible. Since $S(G)$ is a dense left ideal in $L^1(G)$, it is easy to see that $L^1(G)$ is also left ϕ -contractible, then G is compact, see [9, Theorem 6.1].

$(v) \Rightarrow (i)$ If G is compact, then by [6, Theorem 5.13] $L^1(G)$ is biprojective. Hence $L^1(G)$ is ϕ -biprojective, for every $\phi \in \Delta(L^1(G))$.

3. Character biprojectivity of some Banach algebras

In this section we study the notion of character biprojectivity for some Banach algebras.

Definition 3.1. *A Banach algebra A is called character biprojective, if for every $\phi \in \Delta(A)$ there exists a bounded A -bimodule morphism $\rho_\phi: A \rightarrow A \otimes_p A$ such that $\phi \circ \pi_A \circ \rho_\phi(a) = a$ for each $a \in A$.*

Theorem 3.2. *Let A be a Banach algebra and $\phi \in \Delta(A)$. If A is ϕ -biprojective and $Z(A) \cap (A - \ker \phi)$ is a non-empty set, then $\{\phi\}$ is open in $\Delta(A)$ with respect to the w^* -topology.*

Proof. Suppose that A is ϕ -biprojective. Then there exists a bounded A -bimodule morphism $\rho: A \rightarrow A \otimes_p A$ such that $\phi \circ \pi_A \circ \rho = \phi$. Pick $a_0 \in Z(A) \cap (A - \ker \phi)$ such that $\phi(a_0) = 1$. Set $m = \rho(a_0) \in A \otimes_p A$. Since ρ is a bounded A -bimodule morphism, we have $a \cdot m = m \cdot a$ and $\phi \circ \pi_A(m) = \phi(a_0) =$

1. Define $T: A \rightarrow A \otimes_p A$ by $T(a \otimes b) = \phi(b)a$ for every $a, b \in A$. It is easy to see that

$$aT(m) = T(am) = T(ma) = \phi(a)T(m) \quad (a \in A)$$

and

$$\phi \circ T(m) = \phi \circ \pi_A(m) = \phi \circ \pi_A \circ \rho(a_0) = 1$$

Set $n = T(m) \in A \hookrightarrow A^{**}$. Let ψ be an arbitrary element of $\Delta(A)$ such that $\psi \neq \phi$. Fix a_ψ in A with $\phi(a_\psi) = 1$ and $\psi(a_\psi) = 0$. So

$$n(\psi) = a_\psi n(\psi) = n(\psi \cdot a_\psi) = \psi(a_\psi) n(\psi) = 0, \quad n(\phi) = \phi(n) = 1$$

It follows that $n = \chi_{\{\phi\}}$, where χ identifies the characteristic function at $\{\phi\}$. Therefore $n \in C(\Delta(A))$ which implies that $\{\phi\}$ is an open set in $\Delta(A)$.

Corollary 3.3. Let A be a character biprojective Banach algebra with a left approximate identity. Then $\Delta(A)$ is discrete with respect to the w^* -topology.

Proof. Suppose that A is character biprojective. Since A has a left approximate identity, we have

$\overline{A \ker \phi} = \ker \phi$ for every $\phi \in \Delta(A)$. Then by Corollary 2.2. character biprojectivity of A implies the left ϕ -contractibility of A . Then there exists an element $n \in A$ such that $an = \phi(a)n$, and $\phi(n) = 1$. By the same argument as in the proof of Theorem 3.2. one can show that $\{\phi\}$ is an open set in $\Delta(A)$, that is $\Delta(A)$ is discrete.

Corollary 3.4. Every commutative character biprojective Banach algebra has a discrete character space.

Corollary 3.5. Let G be a locally compact group. Then the following statements are equivalent

- (i) $C_0(G)$ is character biprojective,
- (ii) $C_0(G)$ is ϕ -biprojective,
- (iii) G is discrete.

Proof. (i) \Rightarrow (ii) is clear.

(ii) \Rightarrow (iii) Let $C_0(G)$ be ϕ -biprojective. By Theorem 3.2. $\{\phi\}$ is open in $\Delta(C_0(G))$. We may identify G with $\Delta(C_0(G))$. Therefore $\{\phi\}$ is open in G which implies that G is discrete.

(iii) \Rightarrow (i) is clear.

Remark 3.6. Consider the semigroup \mathbb{N}_V , with the semigroup operation $m \vee n = \max\{m, n\}$, where $m, n \in \mathbb{N}$. Let $\omega: \mathbb{N}_V \rightarrow [1, \infty)$ be a weight function, that is, a function which satisfies $\omega(m \vee n) \leq \omega(m)\omega(n)$, for every m and n in \mathbb{N}_V . We denote by $\ell^1(\mathbb{N}_V, \omega)$ the set of all functions $f: \mathbb{N}_V \rightarrow \mathbb{C}$ such that $\sum_{i=1}^{\infty} |f(i)|\omega(i) < \infty$. With the norm

$$\|f\|_\omega = \sum_{i=1}^{\infty} |f(i)|\omega(i) < \infty$$

and with the convolution product, $\ell^1(\mathbb{N}_v, \omega)$ is a Banach algebra. The character space $\Delta(\ell^1(\mathbb{N}_v, \omega))$ consists precisely of all functions $\phi_n: \ell^1(\mathbb{N}_v, \omega) \rightarrow \mathbb{C}$ defined by $\phi_n(\sum_{i=1}^{\infty} \alpha_i \delta_i) = \sum_{i=1}^n \alpha_i$ for every $n \in \mathbb{N} \cup \{\infty\}$. Hence $\Delta(\ell^1(\mathbb{N}_v, \omega)) = \mathbb{N} \cup \{\infty\}$ is compact, because $\ell^1(\mathbb{N}_v, \omega)$ is a commutative unital Banach algebra. For more information see [3].

Lemma 3.7. $\ell^1(\mathbb{N}_v, \omega)$ is not character biprojective.

Proof. Assume towards a contradiction that $\ell^1(\mathbb{N}_v, \omega)$ is character biprojective. Then Corollary 3.4 shows that the character space $(\ell^1(\mathbb{N}_v, \omega))$ is discrete. But in the previous remark we showed that it is compact. Therefore $\Delta(\ell^1(\mathbb{N}_v, \omega)) = \mathbb{N} \cup \{\infty\}$ is finite, a contradiction.

We recall that A is left character contractible (left character amenable) if A is left ϕ -contractible (left ϕ -amenable) for every $\phi \in \Delta(A) \cup \{0\}$, respectively. Right character contractibility and right character amenability are defined similarly. For more details we refer the reader to [9] and [14].

Proposition 3.8. Let G be a locally compact group. Then $M(G)$ is character biprojective if and only if G is finite.

Proof. Sufficiency is clear in view of Theorem 2.5 and the fact that if G is finite, then $M(G) = \ell^1(G)$. To show the converse statement, we note that by [9, Proposition 3.4] $M(G)$ is 0-contractible. Using Corollary 2.2 character biprojectivity of $M(G)$ implies the left character contractibility of $M(G)$. Now apply [9, Corollary 6.2] to show that G is finite.

Proposition 3.9. Let G be a locally compact group. If $M(G)^{**}$ is character biprojective, then G is discrete and amenable.

Proof. Since $M(G)$ has a unit element e and since two maps $x \mapsto xe$ and $x \mapsto ex$ are w^* -continuous on $M(G)^{**}$, one can easily see that e is a unit for $M(G)^{**}$. Hence $M(G)^{**}$ is 0-contractible. Since $M(G)^{**}$ is character biprojective, by [13, Lemma 3.2], there exists an element $m \in M(G)^{**} \otimes_p M(G)^{**}$, such that $a \cdot m = m \cdot a$ and $\tilde{\phi} \circ \pi_{M(G)^{**}}(m) = 1$ for every $a \in M(G)$, where $\phi \in \Delta(M(G))$. Using [5, Lemma 1.7], one can assume that $m \in (M(G) \otimes_p M(G))^{**}$ such that $a \cdot m = m \cdot a$ and $\tilde{\phi} \circ \pi_{M(G)^{**}}(m) = 1$ for every $a \in M(G)$. Applying the same argument as in the proof of [13, Proposition 2.2] one can easily see that $M(G)$ is left character amenable and right character amenable. Hence by [14, Corollary 2.5] G is discrete and amenable.

In the following example we show that

- (i) there exists a ϕ -biprojective Banach algebra A which is not character biprojective,
- (ii) there exists a character biprojective Banach algebra which is neither left ϕ -contractible nor is right ϕ -contractible for some character ϕ ,
- (iii) there exists a character biprojective Banach algebra which is not biprojective.

Example 3.10. (i) Let G be an infinite compact group and $\phi \in \Delta(L^1(G))$. Using Theorem 2.5, $L^1(G)$ has a left and a right ϕ -contraction. Since $L^1(G)$ is a closed ideal of $M(G)$, we can assume that $\phi \in \Delta(M(G))$. So one can easily see that $M(G)$ has a left and a right ϕ -contraction. Using the similar argument as in the proof (the implication (iii) \Rightarrow (iv)) of Theorem 2.4, $M(G)$ is ϕ -biprojective. But by Proposition 3.8, $M(G)$ is not character biprojective.

(ii) Let A and B be Banach algebras such that $\dim A > 1$ and $\dim B > 1$. For every $a, b \in A$ and $x, y \in B$ and for fix $\phi \in \Delta(A)$ and fix $\psi \in \Delta(B)$, we define

$$ab = \phi(a)b, \quad xy = \psi(y)x.$$

With these products A and B are Banach algebras such that $\Delta(A) = \{\phi\}$ and $\Delta(B) = \{\psi\}$, respectively.

Pick $a_0 \in A$ and $x_0 \in B$ such that $\phi(a_0) = \psi(x_0) = 1$. Define a bounded A -bimodule morphism $\rho: A \rightarrow A \otimes_p B$ by $\rho(a) = a_0 \otimes a$ ($a \in A$) and define a bounded B -bimodule morphism $g: B \rightarrow B \otimes_p B$ by $g(x) = x \otimes x_0$ ($x \in B$).

Since for every $a \in A$, $\pi_A \circ \rho(a) = a$ and for every $x \in B$, $\pi_B \circ g(x) = x$, A and B are biprojective, respectively. Now [10, Proposition 2.4] implies that $A \otimes_p B$ is biprojective and so $A \otimes_p B$ is character biprojective. We claim that $A \otimes_p B$ is not left $\phi \otimes \psi$ -contractible. Otherwise by [9, Theorem 3.14] A is left ϕ -contractible and B is left ψ -contractible. So there exists $m \in B$ such that $x \cdot m = \psi(x) \cdot m$ and $\psi(m) = 1$ for every $x \in B$ which leads to $x = xm = \psi(x)m$, that is, $\dim B = 1$, a contradiction. With the similar method working with A instead of B one can show that $A \otimes_p B$ is not right $\phi \otimes \psi$ -contractible.

(iii) Consider the semigroup \mathbb{N}_Λ with the semigroup operation $m \wedge n = \min\{m, n\}$ for every $m, n \in \mathbb{N}$. Using exactly the same argument of [1, Example 5.3] we can show that $\ell^1(\mathbb{N}_\Lambda)$ is character biprojective but this algebra is not biprojective, if $\ell^1(\mathbb{N}_\Lambda)$ is biprojective, then $\ell^1(\mathbb{N}_\Lambda)$ is biflat. Since $\ell^1(\mathbb{N}_\Lambda)$ has a bounded approximate identity, biflatness of $\ell^1(\mathbb{N}_\Lambda)$ implies the amenability of $\ell^1(\mathbb{N}_\Lambda)$. Hence by [4, Theorem 2] the set of idempotents of \mathbb{N}_Λ is finite which is impossible.

4. ϕ -biprojectivity of triangular Banach algebras

Let A be a Banach algebra and $\phi \in \Delta(A)$. Suppose that X is a Banach left A -module. A non-zero linear functional $\psi \in X^*$ is called left ϕ -character if $\psi(a \cdot x) = \phi(a) \psi(x)$ and it is called right ϕ -character if $\psi(x \cdot a) = \phi(a) \psi(x)$. A left and a right ϕ -character is called ϕ -character. Note that if A is a Banach algebra and $\phi \in \Delta(A)$, then $\phi \otimes \phi$ on $A \otimes_p A$ and $\tilde{\phi}$ on A^{**} are ϕ -characters.

Note that if a Banach left A -module X has a left ϕ -character, then $A \cdot X \leq 0$. Since if $A \cdot X = \{0\}$, then for every a in A and x in X , we have $a \cdot x = 0$, so $0 = \psi(ax) = \phi(a) \psi(x)$ which implies that $\psi(x) = 0$ for every x in X , which is a contradiction.

In this section we focus on triangular Banach algebras. We will present a number of examples of triangular Banach algebras which is not ϕ -biprojective.

Let A and B be Banach algebras and let X be a Banach A, B -module, that is, X is a Banach left A -module and a Banach right B -module that satisfy $(a \cdot x) \cdot b = a \cdot (x \cdot b)$ and $\|a \cdot x \cdot b\| \leq \|a\| \|x\| \|b\|$ for every $a \in A$, $b \in B$ and $x \in X$. Consider

$$T = \text{Tri}(A, B, X) = \left\{ \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} : a \in A, b \in B, x \in X \right\}$$

with the usual matrix operations and

$$\left\| \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \right\| = \|a\| + \|x\| + \|b\| \quad (a \in A, b \in B, x \in X)$$

T becomes a Banach algebra which is called triangular Banach algebra. Let $\phi \in \Delta(B)$. We define a character $\psi_\phi \in \Delta(T)$ via $\psi_\phi \left(\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \right) = \phi(b)$ for every $a \in A$, $b \in B$ and $x \in X$.

Theorem 4.1. *Let $T = \text{Tri}(A, B, X)$ be a triangular Banach algebra such that $\overline{A^2} = A$ and $A \cdot X = X \cdot B = X$. Suppose that $\phi \in \Delta(B)$ such that $\overline{B \cdot \ker \phi} = \ker \phi$. If one of the following holds*

(i) B is not left ϕ -contractible,

(ii) X has a right ϕ -character,

then T is not ψ_ϕ -biprojective.

Proof. Assume towards a contradiction that T is a ψ_ϕ -biprojective Banach algebra. One can easily see that $\overline{T \cdot \ker \psi_\phi} = T$. Hence by Corollary 2.2, T is left ψ_ϕ -contractible. Clearly $I = \left(\begin{smallmatrix} 0 & x \\ 0 & B \end{smallmatrix} \right)$ is a closed ideal of T and $\psi_\phi|_I \neq 0$, then by [9, Proposition 3.8] I is left ψ_ϕ -contractible. Thus there exists an $m \in I$ such that $am = \psi_\phi|_I(a)m$ and $\psi_\phi|_I(m) = 1$, where $a \in I$. Let $x_0 \in X$ and $b_0 \in B$ be such that $m = \left(\begin{smallmatrix} 0 & x_0 \\ 0 & b_0 \end{smallmatrix} \right)$. Then we have $\psi_\phi \left(\begin{smallmatrix} 0 & x_0 \\ 0 & b_0 \end{smallmatrix} \right) = \phi(b_0) = 1$ and

$$\begin{pmatrix} 0 & x \\ 0 & b \end{pmatrix} \begin{pmatrix} 0 & x_0 \\ 0 & b_0 \end{pmatrix} = \psi_\phi \begin{pmatrix} 0 & x \\ 0 & b \end{pmatrix} \begin{pmatrix} 0 & x_0 \\ 0 & b_0 \end{pmatrix} = \phi(b) \begin{pmatrix} 0 & x_0 \\ 0 & b_0 \end{pmatrix} \quad (4.1),$$

for each $x \in X$ and $b \in B$. Using (4.1) we obtain $bb_0 = \phi(b)b_0$, and since $\phi(b_0) = 1$, we see that B is left ϕ -contractible, which contradicts (i).

Now suppose that the statement (ii) holds. Then from (4.1) we have $xb_0 = \phi(b)x_0$ and from (ii) there exists a right ϕ -character $\eta \in X^*$ such that $\eta(xb_0) = \eta(x) = \phi(b)\eta(x_0)$ for every $b \in B$ and $x \in X$, which is impossible (take $b \in \ker \phi$), that is, (ii) does not hold.

Corollary 4.2. Suppose that A is a unital Banach algebra and $\phi \in \Delta(A)$. Let $T = \text{Tri}(A, A, A \otimes_p A)$ and $\psi_\phi \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \phi(b)$. Then T is not ψ_ϕ -biprojective.

Proof. Since $\phi \otimes \phi \in \Delta(A \otimes_p A)$ is a ϕ -character, by Theorem 4.1 the proof is complete.

Corollary 4.3. Let A be a Banach algebra with a left identity and $\phi \in \Delta(A)$. If $T = \text{Tri}(A, A, A)$ and $\psi_\phi \in \Delta(T)$ is defined by $\psi_\phi \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \phi(b)$ for every a, x and b in A . Then T is not ψ_ϕ -biprojective.

Similarly one can show that for a Banach algebra A with a right identity, $T = \text{Tri}(A, A, A)$ is not ψ_ϕ -biprojective, where $\psi_\phi \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \phi(a)$ and $\phi \in \Delta(A)$.

Example 4.4. Let G be a locally compact group. It is well-known that $L^1(G)^{**}$ has a right identity. We show that $\text{Tri}(L^1(G)^{**}, L^1(G)^{**}, L^1(G)^{**})$ is not biprojective. Our proof proceeds by contradiction. Suppose that T is biprojective. Then T is ψ_ϕ -biprojective, where $\psi_\phi \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \phi(a)$ and $\phi \in \Delta(L^1(G)^{**})$. Since $\ker \psi_\phi T = \ker \psi_\phi$, by the same argument as in the proof of Corollary 2.2, T is right ψ_ϕ -contractible. Set $I = \begin{pmatrix} L^1(G)^{**} & L^1(G)^{**} \\ 0 & 0 \end{pmatrix}$, it is easy to see that I is a closed ideal of T and it is right ψ_ϕ -contractible. A similar argument as in the proof of Theorem 4.1 yields a contradiction.

Example 4.5. Let S be a right-zero semigroup with $|S| \geq 2$, that is, $st = t$ for every $s, t \in S$. Let ϕ be the augmentation character on $\ell^1(S)$, that is, the map $\phi: \ell^1(S) \rightarrow \mathbb{C}$ given by

$$\phi(\sum_{s \in S} \alpha(s) \delta_s) = \sum_{s \in S} \alpha(s),$$

where $(\alpha(s))_{s \in S}$ is a net in \mathbb{C} and δ_s is the characteristic function at $\{s\}$. It is easy to check that $f^*g = \phi(f)g$ for every $f, g \in \ell^1(S)$. Hence $\ell^1(S)$ has a left identity. One can easily see that $\ell^1(S)$ is biprojective. But Corollary 4.3 shows that $T = \text{Tri}(\ell^1(S), \ell^1(S), \ell^1(S))$ is not ψ_ϕ -biprojective and so it is not biprojective.

Corollary 4.6. *Let G be a discrete group. Then $T = \text{Tri}(\ell^1(G), \ell^1(G), \ell^1(G)^{**})$ is not ψ_ϕ -biprojective for every $\phi \in \Delta(\ell^1(G))$.*

R E F E R E N C E S

- [1] *M. Alaghmandan, R. Nasr-Isfahani and M. Nemat*, Character amenability and contractibility of abstract Segal algebras, *Bull. Aust. Math. Soc.* **82** (2010) 274-281.
- [2] *M. Alaghmandan, R. Nasr-Isfahani and M. Nemat*, On ϕ contractibility of the Lebesgue-Fourier algebra of a locally compact group, *Arch. Math.* **95** (2010), 373-379.
- [3] *H. G. Dales and R. J. Loy*, Approximate amenability of semigroup algebras and Segal algebras, *Dissertationes Math. (Rozprawy Mat.)* **474** (2010), 58 pp.
- [4] *J. Duncan and A. L. T. Paterson*, Amenability for discrete convolution semigroup algebras, *Math. Scand.* **66** (1990) 141-146.
- [5] *F. Ghahramani, R. J. Loy and G. A. Willis*, Amenability and weak amenability of second conjugate Banach algebras, *Proc. Amer. Math. Soc.* **124** (1996), 1489-1497.
- [6] *A. Ya. Helemskii*, The homology of Banach and topological algebras, Kluwer, Academic Press, Dordrecht. (1989).
- [7] *B. E. Johnson*; Cohomology in Banach algebras, *Mem. Amer. Math. Soc.* **127** (1972).
- [8] *E. Kaniuth, A. T. Lau and J. Pym*, On ϕ -amenability of Banach algebras, *Math. Proc. Camb. Soc.* **44** (2008) 85-96.
- [9] *R. Nasr-Isfahani and S. Soltani Renani*, Character contractibility of Banach algebras and homological properties of Banach modules, *Studia Math.* **202** (3) (2011) 205-225.
- [10] *P. Ramsden*; Biflatness of semigroup algebras. *Semigroup Forum* **79**, (2009) 515-530.
- [11] *H. Reiter*, L^1 -algebras and Segal Algebras. *Lecture Notes in Math.* **231** (Springer, 1971).
- [12] *V. Runde*, Lectures on Amenability, Springer, New York, 2002.
- [13] *A. Sahami and A. Pourabbas*, On ϕ -biflat and ϕ -biprojective Banach algebras, *Bull. Belgian Math. Soc. Simon Stevin*, **20** (2013) 789-801.
- [14] *M. Sangani Monfared*, Character amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc.* **144** (2008), 697-706.