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ON CHARACTER BIPROJECTIVITY OF BANACH
ALGEBRAS

Abdolrasoul POURABBAS!, Amir SAHAMI?

In this paper, we continue our work [13] in the study of ¢-biprojective
Banach algebra A, with respect to a character ¢ of A. For a locally
compact group G, we show that a Segal algebra S(G) is ¢-biprojective if
and only if G is compact.

We also introduce and study character biprojectivity of Banach
algebras. We show that the measure algebra M(G) is character
biprojective if and only if G is a finite group. For a commutative character
biprojective Banach algebra A, we prove that the character space
A(A) is discrete. Finally we show that some triangular Banach algebras
are never ¢-biprojective.

Keywords: ¢-biprojective, Character biprojective, Abstract Segal
algebras.

1. Introduction and preliminaries

Let A be a Banach algebra and X a Banach A-bimodule. Then a bounded linear
map D:A — X is called a derivation if

D(ab) = D(a).b — a.D(b) (a,b € A).
The set of all derivation from A into X is denoted by Z1(4, X). For every x € X, we
define an inner derivation ad,: A — X by

ad,(a) =a.x —x.a (a€A)
The set of all inner derivations from A into X is denoted by B1(4, X). Clearly,
B'(A,X) is a subspace of Z'(4,X). We define the first Hochschild
cohomology H 1(A4,X), as the quotient Z(4,X)/ B'(4,X) [12]. A Banach
algebra A is called amenable (contractible) if the first Hochschild cohomology

group H 1(4,X*) (H 1(4,X)) vanishes for every Banach A-bimodule X [7].
An alternative approach to Hochschild cohomology is Banach homology with the
most important concepts, like biflatness and biprojectivity. Indeed a Banach
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algebra A is called biflat (biprojective), if there exists a bounded A-bimodule
morphism p:A - (A®, )™ (p:A-> (A®,A)) such that m,"op(a)=
a (myop(a) = a), respectively, see [12] or [6]. Note that A is an amenable
(contractible) Banach algebra if and only if A is biflat (biprojective) and has a
bounded approximate identity (identity), respectively.

Kaniuth et al. in [8] generalized the notion of amenability to a notion of left
¢-amenability, where ¢ is a Banach algebra character. In fact a Banach algebra
A is called left ¢ -amenable, if there exists m € A*™* such that am = ¢(a)m,
and m(¢) =1 for every a € A, where ¢:A — C is a character on A. They
also showed that A is left ¢p-amenable if and only if 7 1(4,X*) vanishes for
every Banach A-bimodule X with a.x = ¢(a)x forevery a € A and x € X.

A Banach algebra A is called left character amenable, if A is left ¢-amenable for
every ¢eA(A) U {0}, where A(A) is the character space of A, that is, all non-zero
multiplicative linear functional on A. see [14]. Nasr Isfahani et al. [9] showed that
A is left ¢-contractible if and only if there exists an element m € A such that
am = ¢(a)m,and m(¢) = 1.

An analogue of the Kaniuth et al. formula for Banach homology have been defined
and studied by authors in [13] and the notions like ¢ -biflatness and
¢ -biprojectivity have been introduced. In fact a Banach algebra A is called
¢-biflat(¢p-biprojective) if there exists a bounded A-bimodule morphism p: A —
A®, A" (pA-(A®,A) such that ¢om,™op=¢ (Ppomaop =¢),
respectively, where ¢ is an extension of ¢ to A™ which is defined by ¢(F) =
F(¢) forevery F € A*. They showed that for a locally compact group G, L'(G)
is ¢-biflat if and only if G is amenable. Also they showed that the Fourier algebra
A(G) is ¢-biprojective if and only if G is discrete.

In this paper we continue to study the ¢-biprojectivity of certain Banach algebras.
We investigate the ¢-biprojectivity of L'(G), where G is a locally compact group.
More generally we show that every Segal algebra S(G) with respect to L'(G)
is ¢-biprojective if and only if G is compact. We introduce the notion of character
biprojectivity of Banach algebras and we show that the measure algebra M(G) is
character biprojective if and only if G is finite. It will be shown that every
commutative character biprojective Banach algebra has a discrete character
space. We give some examples which show the differences between these concepts
and the classical ones. Finally, we investigate ¢ -biprojectivity of triangular
Banach algebras.

2. ¢-biprojectivity of abstract Segal algebras

In this section we find some conditions under which ¢-biprojectivity implies left ¢
-contractibility. Then we study ¢-biprojectivity of Segal algebras.
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Proposition 2.1. Let A be a ¢ -biprojective Banach algebra and let L ©
ker ¢ be a closed ideal of A such that AL = L. Then there exists a non-zero left

A-module morphism 9:%1 — A suchthat ¢pof(x + L) = ¢p(x).

Proof. Since A is ¢-biprojective, there exists a bounded A-bimodule morphism
p:A—> A®,A suchthat ¢ o myop(a) = ¢(a) forevery a € A. Let q:A -

% be the quotient map. Then it is easy to see that p1 = (idy @ q)op: A -
A ®p% is a bounded left A-module morphism. Since AL = L, for every L € L,
there exist sequences (,,") in L and (a,,) in A such that a,l,’ — [, so continuity of
p1 implies that
pr() = (ids ® )op(D) = (idy ® Qo (limayly)
= lirr?( idy ® 9)(p(an)l,) =0

Then p, induces a bounded left A-module morphism from % into A ®p%

which still is denoted by pi.Let p(x) =X, a;* ® b, for some nets (a;*);
and (b;*); in A. Hence

b ® opi(x+1) = D d(aIPb") = bomaop(x) = $(x) @),

where ¢ is a character on % defined by ¢(a+L) =¢(a) . Now
define 6:(idy @ ¢ )o pl:%—>A, where id, ® ¢ a is defined by id, ®

p(a®@b+L)=¢(b) foreveryaandbinA. Since p, is a left A-module
morphism, we have

Ola.x+L)=idy @ po p;(a.x+L) =idy ® pop;(a.x)

=) a ar¢)

L
=a.id, ® ¢_’0 p1(x)
=a.0(x+1L).
Therefore 6 is a bounded left A-module morphism. Also by (2.1) we have
d 0o 0(x+L)=¢p Qo pi(x+L)=px).

for every x € A. Thus @ is a non-zero left A-module morphism as required.

Let A be a Banach algebra and ¢eA(A4). Then A is left ¢-contractible (right
¢-contractible) if and only if there exists an element m in A such that am= ¢(a)m
(ma= ¢(a)m)and ¢(m)=1 for every aeA, respectively [9].
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Corollary 2.2. Let A be a ¢-biprojective Banach algebra and let A ker ¢ =
ker ¢. Then Ais left ¢-contractible.
Proof. Let A be a ¢-biprojective Banach algebra. By the previous Proposition,
there exists a bounded left A-module morphism 9:%—> A such that ¢o6(x +
L) = ¢(x), where L =ker¢. Pick xyeA such that ¢(x,) = 1. Since x3 —
xo€L, x5 + xo = xo + L. Thus
axo+L=(a —Lfb(a)xo +o(@xo)xy = (a—¢(a) x5) +¢(a) x5 +1L
+
=¢(a) x5 +1L
= ¢p(a)xy + L.
Therefore
a.0(xog+L)=0(a.xg+L)=¢ (a) 6(xy+L)
and ¢ (0(xo+L)) =¢ (x) = 1.Since 8(x, + L)eA, [9, Theorem 2.1] shows
that A is left ¢ -contractible.

Note that the previous results also hold when we consider a right module action.
In the following example we show that the condition “A ker ¢ = ker ¢" in
Corollary 2.2 is a necessary condition.
Example 2.3. Let A = C @ C be atwo dimensional Banach algebra with product
(a,b).(c,d)=(ad,bd). Consider a character ¢: A — C defined by ¢(a,b) = b. So
ker¢ = {(a,0):ae C} and ker¢ = {0} . Now define p:A—> A®,A by
p(a,b) = (a,b) ® (0,1) for every (a,b)e A. It is easy to see that p is a
bounded A-bimodule morphism and ¢omr,0p(a,b) = ¢p(a,b). Hence A is
¢-biprojective. We claim that A is not left ¢-contractible. Otherwise there exists an
element (m;,m,)e A such that (a,b).(m;,m,)= ¢(a,b).(m;,m,) and
¢(m;,m,) =1 for every (a,b)e A. But, ¢(a,b).(m;,m,) =m,(a,b) =
¢(my,m,)(a,b) = (a,b) which implies that dimA=1, which vyields a
contradiction.
Let (4,]l.11,) be aBanach algebra. We say that a Banach algebra (B, ||.|[;) isan
abstract Segal algebra with respect to A if

(i) Biisadense leftideal in A,

(i) there exists M >0 such that||b||, < M||b]|, forevery beB,

(iii) there exists C >0 such that||ab||, < CIIaIIAIIbIIB for every aeA and beB.
If B is a dense ideal of A and ||ball; < Cl|blI;llall, for the same C as in (iii),

then B is called symmetric abstract Segal algebra. Note that the character
spaceA(B) = {¢|p: peA(A)}, see [1, Lemma 2.2].
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Theorem 2.4. Let A be a Banach algebra with a left approximate identity and a
right approximate identity and let ¢eA(A). Suppose that B is a symmetric abstract
Segal algebra with respect to A which has a left approximate identity and a right
approximate identity. Then the followings are equivalent

(i) Ais ¢-biprojective,

(i)Ais left and right ¢-contractible,

(iii) B is left and right ¢-contractible,

(iv) Bis ¢-biprojective.

Proof. (i)=(ii) Since A has a left approximate identity and a right
approximate identity, we have A ker¢ = Kker¢ and Kker ¢pA = Ker ¢.
Then by Corollary 2.2, A is left and right ¢-contractible.

(if)=(iii) Let m; and m, be a left ¢-contraction and a right ¢-contraction for
A, respectively. Choose iyeB such that ¢(i,) = 1. Since B is an ideal in A,
we have m,iyeB. Itis easy to seethat bm,iy = ¢p(b)m,iz,and ¢p(m,iy) =
1 for every beB. Then B is left ¢-contractible. Also it is easy to see that
m, = m,ipseB and ¢(m,) = 1. Hence B is left and right ¢-contractible.

(iii)=(iv) Let m; and m, be a left and a right ¢ -contraction for B,
respectively. Then M =m; ® m, is in B®,B and define p:B —

B ®, B by p(b) =b.M for every beB. It is easy to see that p is a
bounded B-bimodule morphism and ¢omgzop=¢ . Hence B is
¢-biprojective.

(iv)=(i) Since B have a left and a right approximate identity, ker ¢B = ker ¢
and B ker¢ = ker¢. Hence by Corollary 2.2, B is left and right
¢-contractible. Let m; and m, be a left and a right ¢-contraction for B,
respectively. Since B is a symmetric abstract Segal algebra, m; and m, are
a left and a right ¢ -contraction for A, respectively. Using the similar
arguments as in the proof of (iii) =(iv) one can see that A is p-biprojective.

We remind that A is a biprojective Banach algebra, if there exists a bounded
A-bimodule morphism p:4A - A ®, A such that my0p(a) = a for every aeA
[6]. It is easy to see that if A is biprojective, then A is ¢ -biprojective for every

PeA(A).

We recall that, for a locally compact group G, a linear subspace S(G) of L'(G)

is said to be a Segal algebra on G if it satisfies the following conditions.

(i) S(G) is dense in L1(G),
(i))S(G) with the norm ||. ”5((;) is a Banach space and ||f||L1(G) < IfIl

for every feS(G)

S(6)
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(iii) for every feS(G) and yeGwe have L, feS(G) and the map y — L, f of
G into S(G) is continuous, where L, f(y) = f(y~'x),

(iv) ”Lyf”S(G) = IIfIIS(G) for every feS(G) and yeG.

It is well-known that S(G) has a left approximate identity. Also every Segal algebra
is an abstract Segal algebra with respect to L'(G). For more information on Segal
algebras see [11].

Theorem 2.5. Let G be a locally compact group. Suppose that S(G) is a Segal
algebra with respect to L!(G). Then the following statements are equivalent
(i) L*(G) is ¢ -biprojective,
(i) L1(G). is left and right ¢ -contractible,
(ii1) S(G) is left and right ¢ -contractible,
(iv) S(G) is ¢ -biprojective,
(v) G is compact.
Proof. By the same arguments as in the proof of Theorem 2.4 the implications
() =(ii)=(iii) =(iv) are clear.
(iv)=(v) Since S(G) has a left approximate identity, = S(G) Kker ¢ = ker ¢.
So by Corollary 2.2, S(G) is left ¢-contractible. Since S(G) is a dense left

ideal in L'(G), it is easy to see that L'(G) is also left ¢-contractible, then
G is compact, see [9, Theorem 6.1].

(v)=(i) If G is compact, then by [6, Theorem 5.13] L'(G) is biprojective. Hence
L*(G)is ¢-biprojective, for every ¢peA(L*(G)).

3. Character biprojectivity of some Banach algebras

In this section we study the notion of character biprojectivity for some Banach
algebras.

Definition 3.1. A Banach algebra A is called character biprojective, if for every
¢eA(A) there exists a bounded A-bimodule morphism pg:A > A®, A such
that ¢omyopys(a) = a for each aeA.

Theorem 3.2. Let A be a Banach algebra and ¢eA(A). If A is ¢-biprojective
and Z(A) N (A—ker¢ ) is a non-empty set, then {¢} is open in A(A) with
respect to the w*-topology.

Proof. Suppose that A is ¢-biprojective. Then there exists a bounded A-bimodule
morphism p:A-> A®,A such that ¢omyop = ¢. Pick ageZ(4) N (A—
ker¢ ) such that ¢(ap) =1. Set m=p(as)e A®,A. Since p is a
bounded A-bimodule morphism, we havea.m = m.a and ¢omn,(m) = ¢p(ay) =
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1. Define T:A-> A®,A by T(a®b) =¢(b)a for every a,beA. It is
easy to see that
aT(m) = T(am) = T(ma) = ¢(a)T(m) (aed )
and
¢poT(m) = ¢pomy(m) = gpomyop(ay) =1
Set n=T(m) € Ao A*™. Let ¢ be an arbitrary element of A(A) such that
Y # ¢. Fix ay, inAwith ¢(ay,) =1 and ¥(ay) = 0. So

n@) = ayn(®) = n(y.ay) = P(ay)n@) =0 ,n(¢p) = p(n) =1
It follows that n = x4, where x identifies the characteristic function at {¢}.
Therefore neC(A(A)) which imlpies that {¢} is an open setin A(A).
Corollary 3.3. Let A be a character biprojective Banach algebra with a left
approximate identity. Then A(A) is discrete with respect to the w*-topology.
Proof. Suppose that A is character biprojective. Since A has a left approximate
identity, we have
A ker¢p =ker¢p for every ¢peA(A). Then by Corollary 2.2. character
biprojectivity of A implies the left ¢-contractiblity of A. Then there exists an
elementn € Asuchthat an = ¢(a)n,and ¢(n) = 1. By the same argument as in
the proof of Theorem 3.2. one can show that {¢} is an open set in A(4), that
iSA(A)is discrete.
Corollary 3.4. Every commutative character biprojective Banach algebra has a
discrete character space.

Corollary3.5. Let G be a locally compact group. Then the following statements are
equivalent

(i) Co(G) is character biprojective,

(i) Co(G) is ¢-biprojective,

(iii) G is discrete.
Proof. (i)=(ii) is clear.
(it) = (i) Let Co(G) be ¢ -biprojective. By Theorem 3.2. {¢} is open in
A(Cy(G)). We may identify G withA(Cy(G)). Therefore {¢} is open in G which
implies that G is discrete.
(iii)=(i) is clear.
Remark 3.6. Consider the semigroup N,, with the semigroup operation m Vv
n = max{m, n}, where m,neN. Let w:N, — [1,2) be a weight function, that is, a
function which satisfies w(m Vv n) < w(m)w(n), for every m and n in N,,. We

denote by (N, w) the set of all functions f:N, - C such
that 21l f(D)|w (i) < . With the norm
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Iflle = izl f D]w(@) <o
and with the convolution product, ¢*(N,, w) is a Banach algebra. The character
space A (fl(NV, a))) consists precisely of all functions ¢,: £*(N,, w) — Cdefined

by ¢,z @;i8;) = X, a; for every neN U {oo}. Hence A (fl(NV, a))) =NU

{0} is compact, because ¢*(N,,w) is a commutative unital Banach algebra. For
more information see [3].

Lemma3.7. ¢*(Ny,w) is not character biprojective.
Proof. Assume towards a contradiction that ¢*(N,, w)is character biprojective.
Then Corollary 3.4 shows that the character space (¢'(N,,w) ) isdiscrete. Butin

the previous remark we showed that it is compact. Therefore A (51 (N, o))) =NuU
{0} is finite, a contradiction.

We recall that A is left character contractible (left character amenable) if A is left
¢-contractible (left ¢p-amenable) for every ¢eA(A) U {0}., respectively. Right
character contractibility and right character amenability are defined similarly. For
more details we refer the reader to [9] and [14].

Proposition 3.8. Let G be a locally compact group. Then M(G) is character
biprojective if and only if G is finite.

Proof. Sufficiency is clear in view of Theorem 2.5 and the fact that if G is finite, then
M(G) =¢*(6)). To show the converse statement, we note that by [9, Proposition
3.4] M(G) is O-contractible. Using Corollary 2.2 character biprojectivity of M(G)
implies the left character contractibility of M(G). Now apply [9, Corollary 6.2] to
show that G is finite.

Proposition 3.9. Let G be a locally compact group. If M(G)** is character
biprojective, then G is discrete and amenable.
Proof. Since M(G) has a unit element e and since two maps x +— xe and
x +— ex are w*-continuous on M(G)** ,one can easily see that e is a unit
for M(G)™ . Hence M(G)** is O-contractible. Since M(G)*is character
biprojective, by [13, Lemma 3.2], there exists an element
meM(G)™ ®, M(G)™, such thata.m =m.a and ¢omy~(m) =1 for
every aeM(G), where ¢eA(M(G)). Using [5, Lemma 1.7], one can assume
that me(M(G) ®, M(G))™ such thata.m = m.a and pom,(m) =1
for every aeM(G). Applying the same argument as in the proof of [13,
Proposition 2.2] one can easily see that M(G) is left character amenable and
right character amenable. Hence by [14, Corollary 2.5] G is discrete and
amenable.
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In the following example we show that
(i) there exists a ¢-biprojective Banach algebra A which is not character
biprojective,
(i) there exists a character biprojective Banach algebra which is neither left
¢-contractible nor is right ¢-contractible for some character ¢,

(iii) there exists a character biprojective Banach algebra which is not
biprojective.

Example 3.10. (i) Let G be an infinite compact group and ¢eA(L!(G)). Using
Theorem 2.5, L'(G) has a left and a right ¢-contraction. Since L*(G) isaclosed
ideal of M(G), we can assume that ¢peA(M(G)). So one can easily see that M(G)
has a left and a right ¢-contraction. Using the similar argument as in the proof
(the implication (iii)=(iv)) of Theorem 2.4, M(G) is ¢ -biprojective. But by
Proposition 3.8, M(G) is not character biprojective.
(i) Let A and B be Banach algebras such that dimA>1 and dimB>1. For every
a,b00A and x,y[1B and for fix ¢eA(A) and fix peA(B),we define

ab = ¢(a)b, xy =P (y)x.
With these products A and B are Banach algebras such that A(A) = {¢} and
A(A) = {3y}, respectively.

Pick ayeA and x,eB such that ¢(ay,) = Y(x,) =1 Define a bounded
A-bimodule morphismp:4A > A®, A by p(a) = ag ® a(aed) and define a
bounded B-bimodule morphism g:B - B &, B by p(x) = x ® x,(x€B).

Since for every acA, myop(a) = a and for every xeB, my0g9(x) = x, A and
B are biprojective, respectively. Now [10, Proposition 2.4] implies that A ®,, B is
biprojective and so A ®,, B is character biprojective. We claim that A ®,, B is
not left ¢ @ ¥ -contractible. Otherwise by [9, Theorem 3.14] A is left
¢ -contractible and B is left y -contractible. So there exists meB such that
xm= P(x).m and Y(m) =1 for every xeB which leads to x =xm =

Y (x)m, that is, dimB=1, a contradiction. With the similar method working with A
instead of B one can show that A ®,, B is not right ¢ & -contractible.

(iii) Consider the semigroup N, with the semigroup operation man=min{m,n} for
evey m,n eN. Using exactly the same argument of [, Example 5.3] we can show that
¢*(N,) is character biprojective but this algebra is not biprojective, if £'(N,) is
biprojective, then ¢'(N,) is biflat. Since ¢'(N,) has a bounded approximate
identity, biflatness of ¢*(N,) implies the amenability of ¢*(N,). Hence by [4,
Theorem 2] the set of idempotents of N, is finite which is impossible.
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4. ¢-biprojectivity of triangular Banach algebras

Let A be a Banach algebra and ¢eA(A). Suppose that X is a Banach left A-module.
A non-zero linear functional ¢ € X* is called left ¢ -character if Y (a.x) =
¢(a) Y(x) and it is called right ¢-character if if Y(x.a) = ¢p(a) Y(x). A left
and a right ¢-character is called ¢ -character. Note that if A is a Banach algebra
and ¢eA(A), then ¢ @ ¢ on A®, A and ¢ on A" are ¢-characters.

Note that if a Banach left A-module X has a left ¢-character, then A-X<0. Since
if A-X={0}, then for every a in A and x in X, we have a-x=0, so 0 = y(ax) =
¢(a) Y(x) which implies that ¥(x) =0 for every x in X, which is a
contradiction.

In this section we focus on triangular Banach algebras. We will present a
number of examples of triangular Banach algebras which is not ¢-biprojective.

Let A and B be Banach algebras and let X be a Banach A,B-module, that is, X is a
Banach left A-module and a Banach right B-module that satisfy (a-x)-b=a-(x-b) and
lla-x-b|I<||a]| ||| ||b|]| for every aeA, beB and xeX. Consider

T =Tri (4,B,X)= {(a

0 );) :a€d, beB ,xeX}

with the usual matrix operations and

a X
I(, )l = tall+1ixll + b ( aed, beB ,xeX)
T becomes a Banach algebra which is called triangular Banach algebra. Let
¢eA(B). We define a character 14eA(T)via 1/)¢,(§ ’bf) = ¢(b) for every
aed, beB and xeX.
Theorem 4.1. Let T=Tri(A,B,X) be a triangular Banach algebra such that A2 =

A and A-X=X-B=X. Suppose that ¢[14(B) such that B ker ¢ = ker ¢. If one of the
following holds

(i) B is not left ¢-contractible,

(i)X has a right ¢-character,
then T is not 1 4-biprojective.
Proof. Assume towards a contradiction that T isa 4-biprojective Banach
algebra. One can easily see that T ker 4 = T. Hence by Corollary 2.2, T is left
pe-contractible. Clearly I = (; ) isaclosed ideal of Tand | +# 0, then
by [9, Proposition 3.8] I is left 14 —contractible. Thus there exists an mel such
that am = 1/)¢,|I(a)m and z/)¢|l(m) = 1, where ael. Let x,eX and byeB be

such that m = (0 ’;g) Then we have (g ’Ijg) =¢(b,) =1 and

0
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T R IR

s (0 ) (4.1),
for each xeX and beB. Using (4.1) we obtain bb, = ¢(b)b,,and since ¢(b,) =
1, we see that B is left ¢-contractible, which contradicts (i).
Now suppose that the statement (ii) holds. Then from (4.1) we have xb, = ¢ (b)x,
and from (ii) there exists a right ¢ -character n € X*such that n(xby) =
n(x) = ¢(b)n(x,y) for every beB and xeX, which is impossible (take be ker ¢),
that is, (ii) does not hold.
Corollary 4.2. Suppose that A is a unital Banach algebra and ¢eA(A). Let T =
Tri(A,A,A®,A) and Yu(5 ) =$(b) .ThenTisnot p,-biprojective.

Proof. Since ¢ ® gbeA(A Xy A)is a ¢-character, by Theorem 4.1 the proof is
complete.

Corollary 4.3. Let A be a Banach algebra with a left identity and ¢eA(A). If
T=Tri(AAA) and g €eA(T) is defined by ¥,(5 ) = P(b) for every ax
and b in A. Then T is not 1 4-biprojective.

Similarly one can show that for a Banach algebra A with a right identity,
T=Tri(A,A,A) is not ¥ ,-biprojective, where lp¢(‘g ¥) = ¢(a) and ¢peA(A).
Example 4.4. Let G be a locally compact group. It is well-known that L*(G)** has
a right identity. We show that Tri(L*(G)**, L*(G)**, L*(G)**) is not biprojective.
Our proof proceeds by contradiction. Suppose that T is biprojective. Then T is
Py -biprojective, where (5 ’bf) =¢(a) and PeA(L}(G)™) . Since
ker 4T = ker iy, by the same argument as in the proof of Corollary 2.2, T is

right ,,-contractible. Set I = (Ll(g)** Ll(g)**), it is easy to see that | is a

closed ideal of T and it is right 14-contractible. A similar argument as in the proof
of Theorem 4.1 yields a contradiction.

Example 4.5. Let S be a right-zero semigroup with |S|>2, that is, st=t for every
steS. Let ¢ be the augmentation character on ¢'(S), that is, the map
¢:£*(S) - C given by
¢(Zsesa(s)55 ) = Zsesa(s),

where (a(s))ses IS @ net in C and & is the characteristic function at {s}. It is
easy to check that f*g= ¢ (f)g for every f, gef*(S). Hence ¢*(S) has a left
identity. One can easily see that ¢*(S) is biprojective. But Corollary 4.3 shows that
T = Tri(£'(5), €'(S), £*(S) is not 1 ,-biprojective and so it is not biprojective.



174

A. Pourabbas , A. Sahami

Corollary 4.6. Let G be a discrete group. Then T = Tri(£*(G), *(G), €*(G)*™) is
not 14 -biprojective for every deA(*(G)) .
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