
U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 4, 2018 ISSN 1223-7027

ARENS REGULARITY OF QUASI-MULTIPLIERS

Marjan Adib1

Assume that A is a Banach algebra and m : A× A → A is a quasi-

multiplier on A. In this paper, we will study the relation between Arens regularities

of m and A. Also, we define the quasi-multipliers on the dual of a Banach algebra

A and we give a simple criterion for Arens regularity of a bounded quasi-multiplier

of A∗. Also, we investigate those conditions under which the space of all quasi-

multipliers of A∗ is Arens regular.
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1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a mul-

tiplier on a Banach algebra and was introduced by Akemann and Pedersen [3] for

C∗-algebras. McKennon [12] extended the definition to a general complex Banach

algebra A with a bounded approximate identity (b.a.i., for brevity) as follows. A

bilinear mapping m : A×A→ A is a quasi-multiplier on A if

m(ab, cd) = am(b, c) d (a, b, c, d ∈ A).

Let QM(A) denote the set of all separately continuous quasi-multipliers on A. It is

showed in [12] that QM(A) is a Banach space for the norm ∥m∥ = sup{∥m(a, b)∥;
a, b ∈ A, ∥a∥ = ∥b∥ = 1}.

Arens regularity of bilinear mappings have been extensively studied by many

authors for example [4] , [5], [8], [13],...

In [2] we extended the notion of quasi-multipliers to the dual of a Banach

algebra A whose second dual has a mixed identity. We considered algebras satisfying

a weaker condition than Arens regularity.

In [1] we defined extended left (right) quasi-multipliers on the dual of a Banach

algebra. We established some properties of QMel(A
∗) of all bounded extended left

quasi-multipliers of A∗. In particular, we characterized the γ−dual of QMel(A
∗)

and proved that (QMel(A
∗), γ)∗ under the topology of bounded convergence, is

isomorphic to A∗∗∗.
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The aim of this paper is to present a few new statements on Arens regularity

of quasi-multipliers.

Before we state our main results the basic notation is introduced. We mainly

adopt the notation from the monograph [7]. The reader is referred to this book for

some results used in this paper, as well.

For a Banach space X, let X∗ be its topological dual. The pairing between

X and X∗ is denoted by ⟨·, ·⟩. We always consider X naturally embedded into X∗∗

through the mapping π, which is given by ⟨π(x), ξ⟩ = ⟨ξ, x⟩ (x ∈ X, ξ ∈ X∗).

Let A be a Banach algebra. It is well known that on the second dual A∗∗

there are two algebra multiplications called the first and the second Arens product,

respectively. Since in the paper we use mainly the first Arens product, we recall its

definition. Let a ∈ A, ξ ∈ A∗, and F, G ∈ A∗∗ be arbitrary. Then one defines ξ · a
and G · ξ as ⟨ξ · a, b⟩ = ⟨ξ, ab⟩ and ⟨G · ξ, b⟩ = ⟨G, ξ · b⟩, where b ∈ A is arbitrary.

Now, the first Arens product of F and G is an element F ◦G in A∗∗ which is given

by ⟨F ◦ G, ξ⟩ = ⟨F,G · ξ⟩, where ξ ∈ A∗ is arbitrary. The second Arens product,

which we donete by ◦′, is defined in a similar way.

Space A∗∗ equipped with the first (or second) Arens product is a Banach

algebra and A is a subalgebra of it. It is said that A is Arens regular if the equality

F ◦ G = F ◦′ G holds for all F, G ∈ A∗∗. For example, every C∗-algebra is Arens

regular, see [6]. Note however, that F ◦ a = F ◦′ a and a ◦ F = a ◦′ F hold for

any a ∈ A and F ∈ A∗∗. An element E in the second dual A∗∗ is said to be a

mixed identity if it is a right identity for the first and a left identity for the second

Arens product. Note that A∗∗ has a mixed identity if and only if A has a b.a.i.

By [7, Proposition 2.6.21], an element E ∈ A∗∗ is a mixed identity if and only if

E · ξ = ξ = ξ · E, for every ξ ∈ A∗.

Let X,Y, Z be normed spaces. A bilinear mapping m : X × Y → Z can

be extended in a natural way to a bilinear map X∗∗ × Y ∗∗ → Z∗∗; we outline the

construction in stages, as follows:

m∗ : Z∗ ×X → Y ∗, ⟨m∗(ξ, x), y⟩ = ⟨ξ,m(x, y)⟩,

m∗∗ : Y ∗∗ × Z∗ → X∗, ⟨m∗∗(F, ξ), x⟩ = ⟨F,m∗(ξ, x)⟩,
m∗∗∗ : X∗∗ × Y ∗∗ → Z∗∗, ⟨m∗∗∗(G,F ), ξ⟩ = ⟨G,m∗∗(F, ξ)⟩.

(x ∈ X, y ∈ Y, ξ ∈ Z∗, G ∈ X∗∗, F ∈ Y ∗∗). The mappingm∗∗∗ is the unique extention

of m such that G→ m∗∗∗(G,F ) from X∗∗ into Z∗∗ is weak∗−weak∗ continuous for

every F ∈ Y ∗∗, but the mapping F → m∗∗∗(G,F ) is not in general weak∗ − weak∗

continuous from Y ∗∗ into Z∗∗ unless G ∈ X. Hence the first topological center of m

may be defined as following

Z1(m) = {G ∈ X∗∗ : F → m∗∗∗(G,F ) is weak∗ − weak∗ continuous}.

Let now mt : Y ×X → Z be the transpose of m defined by mt(y, x) = m(x, y) for

every x ∈ X and y ∈ Y. Then mt is a bilinear map from Y ×X → Z and so it may be

extended as above to mt∗∗∗ : Y ∗∗ ×X∗∗ → Z∗∗. The mapping mt∗∗∗t : X∗∗ × Y ∗∗ →
Z∗∗ in general is not equal to m∗∗∗. If m∗∗∗ = mt∗∗∗t, then m is called Arens regular.
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The mapping F → mt∗∗∗t(G,F ) is weak∗−weak∗ continuous for every F ∈ Y ∗∗, but

the mapping G→ mt∗∗∗t(G,F ) from X∗∗ into Z∗∗ is not in general weak∗ − weak∗

continuous for every F ∈ Y ∗∗. So we define the second topological center of m as

Z2(m) = {F ∈ Y ∗∗ : G→ mt∗∗∗t(G,F ) is weak∗ − weak∗ continuous}.

It is clear that m is Arens regular if and only if Z1(m) = X∗∗ and Z2(m) = Y ∗∗.

Also, m is called strongly Arens irregular if and only if Z1(m) = X and Z2(m) = Y.

It is worthwile mentioning that in the case where π is the multiplication of a Banach

algebra A, then π∗∗∗ and πt∗∗∗t are actually the first and second Arens products

which will be denote by ◦ and ◦′, respectively. We also say A is Arens regular if the

multiplication π of A is Arens regular. This means that if we define

Z1(A
∗∗) = {G ∈ A∗∗ : F → G ◦ F is weak∗ − weak∗ continuous}.

Z2(A
∗∗) = {F ∈ A∗∗ : G→ G ◦′ F is weak∗ − weak∗ continuous}.

Then a Banach algebra A is Arens regular if and only if Z1(A
∗∗) = A∗∗ and

Z2(A
∗∗) = A∗∗. Also, A is called strongly Arens irregular if and only if Z1(A

∗∗) = A

and Z2(A
∗∗) = A.

2. Main results

Theorem 2.1. Let A be a Banach algebra and m : A×A→ A be a quasi-multiplier

on A.

(i) If A∗∗ has an identity and A is Arens regular, then m is Arens regular.

(ii) If m is onto and Arens regular, then A is Arens regular.

Proof. (i) Let E be an identity for A∗∗. It is easy to check that when m is a quasi-

multiplier on A, then m∗∗∗ is a quasi-multiplier on A∗∗. Then since Z1(A
∗∗) = A∗∗,

the mapping

F → m∗∗∗(G,E) ◦ F = m∗∗∗(G,E ◦ F ) = m∗∗∗(G,F )

is weak∗ − weak∗ continuous for all F,G ∈ A∗∗. Also since Z2(A
∗∗) = A∗∗, the

mapping

G→ G ◦′ mt∗∗∗t(E,F ) = mt∗∗∗t(G ◦′ E,F ) = mt∗∗∗t(G,F )

is weak∗ − weak∗ continuous for all F,G ∈ A∗∗. Therefore m is Arens regular.

(ii) Let F ∈ A∗∗ and {F ′′
α}α ⊆ A∗∗ such that F ′′

α →w∗ F. Let G ∈ A∗∗. Since m

is onto, m∗∗∗ is onto as well. Let H,K ∈ A∗∗ such that m∗∗∗(H,K) = G. As m is

Arens regular, we have

G ◦ F = m∗∗∗(H,K) ◦ F = m∗∗∗(H,K ◦ F ) = weak∗ − lim
α
m∗∗∗(H,K ◦ F ′′

α)

= weak∗ − lim
α
m∗∗∗(H,K) ◦ F ′′

α = weak∗ − lim
α
G ◦ Fα.

Which means Z1(A
∗∗) = A∗∗. Similarly Z2(A

∗∗) = A∗∗. Thus A is Arens regular. �
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Example 2.1. Let X = [0, 1] and m : L∞(X) × L∞(X) → L∞(X) be defined by

m(f, g) = f ∗ g where ∗ is the convolution product which is given by

f ∗ g(x) =
∫ x

0
f(x− t)g(t)dt where 0 ≤ x ≤ 1.

By [5], L∞(X) is an Arens regular Banach algebra whose second dual has an identity.

So by Theorem 2.1, we conclude that m is Arens regular.

Theorem 2.2. Let A be a Banach algebra and m be a quasi-multiplier on A.

If m is bijection and A is strongly Arens irregular. Then m is strongly Arens irreg-

ular.

Proof. Since A is strongly Arens irregular, Z1(A
∗∗) = Z2(A

∗∗) = A. We show that

Z1(m) = A. Let G ∈ Z1(m). Assume that {Hα}α ⊆ A∗∗ such that Hα →w∗
H.

Then F ◦ Hα → F ◦ H is weak∗ − weak∗ continuous for all F ∈ A∗∗. Now, since

G ∈ Z1(m), we have

m∗∗∗(G,F ) ◦H = m∗∗∗(G,F ◦H) = weak∗ − lim
α
m∗∗∗(G,F ◦Hα)

= weak∗ − lim
α
m∗∗∗(G,F ) ◦Hα.

(1)

Consequently, the mapping H → m∗∗∗(G,F ) ◦H is weak∗ − weak∗ continuous for

all H ∈ A∗∗. Which means that m∗∗∗(G,F ) ∈ Z1(A
∗∗) = A. Since, m is a bijection,

it follows that G ∈ A. �

Definition 2.1. A bilinear map m : A∗ × A∗∗ → A∗ is a right quasi-multiplier of

A∗ if

m(F · ξ,G) = F ·m(ξ,G) and m(ξ,G ◦ F ) = m(ξ,G) · F (2)

hold for arbitrary ξ ∈ A∗ and F, G ∈ A∗∗.

Similarly, a bilinear map m′ : A∗∗ ×A∗ → A∗ is a left quasi-multiplier of A∗

if

m′(F ◦G, ξ) = F ·m′(G, ξ) and m′(G, ξ · F ) = m′(G, ξ) · F

hold for arbitrary ξ ∈ A∗ and F, G ∈ A∗∗.

Recall that QMr(A∗) be the set of all separately continuous right quasi-

multipliers of A∗. It is obvious that QMr(A∗) is a linear space. Moreover, it is

a Banach space with respect to the norm

||m|| = sup{||m(ξ, F )||; ξ ∈ A∗, F ∈ A∗∗, ||ξ|| ≤ 1, ||F || ≤ 1}.

Of course, the same holds for QMl(A∗), the set of all separately continuous left

quasi-multipliers of A∗.

Theorem 2.3. Let A be a commutative Banach algebra. If m is a quasi-multiplier

on A, then m∗∗ is a left quasi-multiplier of A∗.
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Proof. In order to prove that m∗∗ : A∗∗ × A∗ → A∗ is a left quasi-multiplier of A∗,

we show that for all F,G ∈ A∗∗, ξ ∈ A∗ and x ∈ A,

⟨m∗∗(F ◦G, ξ), x⟩ = ⟨F ·m∗∗(G, ξ), x⟩. (3)

The following can be verified from the left side of (3)

(i) ⟨m∗∗(F ◦G, ξ), x⟩ = ⟨F ◦G,m∗(ξ, x)⟩ = ⟨F,G ·m∗(ξ, x)⟩
(ii) ⟨G ·m∗(ξ, x), y⟩ = ⟨G,m∗(ξ, x) · y⟩
(iii) ⟨m∗(ξ, x) · y, z⟩ = ⟨m∗(ξ, x), yz⟩ = ⟨ξ,m(x, yz)⟩ (2.4)

From the right side of (3) we have:

(i′) ⟨F ·m∗∗(G, ξ), x⟩ = ⟨F,m∗∗(G, ξ) · x⟩
(ii′) ⟨m∗∗(G, ξ) · x, y⟩ = ⟨m∗∗(G, ξ), xy⟩ = ⟨G,m∗(ξ, xy)⟩
(iii′) ⟨m∗(ξ, xy), z⟩ = ⟨ξ,m(xy, z)⟩ (2.5)

Now, since m is a quasi-multiplier on A and A is commutative, by compairing (2.4)

and (2.5) we obtain m∗∗(F ◦G, ξ) = F ·m∗∗(G, ξ). �

Definition 2.2. Let A be a general Banach algebra. Then a map T : A∗ → A∗ is

called a right multiplier of A∗ if T (F · ξ) = F · T (ξ), for all ξ ∈ A∗, F ∈ A∗∗. With

Mr(A∗) we denote the space of all bounded linear right multipliers on A∗.

Remark 2.1. It is obvious that for each F ∈ A∗∗ the right multiplication operator

RF ξ = ξ · F is a right multiplier on A∗. If A∗∗ has a mixed identity, then each

bounded linear right multiplier on A∗ is a right multiplication operator. Indeed, let

E be a mixed identity for A∗∗ and T ∈Mr(A∗) be arbitrary. Then equalities

⟨Tξ, a⟩ = ⟨E ◦ a, Tξ⟩ = ⟨E, T (a · ξ)⟩ = ⟨RT ∗(E)ξ, a⟩

hold for all a ∈ A and ξ ∈ A∗, which means T = RT ∗(E).

Theorem 2.4. If A∗∗ has a mixed identity, then ρT (ξ, F ) = (Tξ) ·F (T ∈Mr(A∗),

ξ ∈ A∗, F ∈ A∗∗) defines an injective linear map ρ : Mr(A∗) → QMr(A∗) with

norm ∥ρ∥ ≤ 1. Moreover, ρ is onto if A∗∗ has an identity. If A∗∗ has a mixed

identity with norm one, then ρ is an isometry.

Proof. Let T ∈ Mr(A∗) be arbitrary. It is obvious that ρT is a bilinear map from

A∗×A∗∗ to A∗ and that it is bounded with ∥T∥. For a ∈ A, ξ ∈ A∗, and F, G ∈ A∗∗,

we have ρT (F · ξ,G) = T (F · ξ) ·G = (F · Tξ) ·G = F · (Tξ ·G) = F · ρT (ξ,G) and
ρT (ξ,G ◦ F ) = (Tξ) · (G ◦ F ) = (Tξ ·G) · F = ρT (ξ,G) · F . Thus, ρT ∈ QMr(A∗).

It follows from the definition that ρ : Mr(A∗) → QMr(A∗) is linear. Obviously,

∥ρT ∥ ≤ ∥T∥, which gives ∥ρ∥ ≤ 1. Let E ∈ A∗∗ be a mixed identity. If ρT = 0,

then we have (Tξ) · E = 0 for every ξ ∈ A∗ and consequently T = 0. Assume that

E is an identity for A∗∗. Let m ∈ QMr(A∗) be arbitrary. It is easily seen that

Tξ = m(ξ, E) (ξ ∈ A∗) defines a bounded right multiplier of A∗. Since equalities

ρT (ξ, F ) = (Tξ) · F = m(ξ, E) · F = m(ξ, E ◦ F ) = m(ξ, F ) hold for all ξ ∈ A∗ and

F ∈ A∗∗ we conclude that ρ is onto.

At the end assume that E is mixed identity for A∗∗ of norm one. Let T ∈
Mr(A∗) and ε > 0 be arbitrary. If ξ ∈ A∗ is such that ∥ξ∥ ≤ 1 and ∥T∥− ε < ∥Tξ∥,
then ∥ρT ∥ ≥ ∥ρT (ξ, E)∥ = ∥Tξ∥ > ∥T∥ − ε. Thus, ρ is an isometry. �
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Theorem 2.5. If A is a Arens regular Banach algebra and A∗∗ has an identity E.

Then each bounded left quasi-multiplier of A∗ is Arens regular.

Proof. Let m1 ∈ QMl(A
∗). From Theorem 2.4 there exists a multiplier T ∈Ml(A

∗)

satisfying m1 = ρT . By remark 2.1, T = RT ∗(E) and then by [9, Theorem 2.1],

T is weakly compact. Also, It is easily seen that m2 : A∗∗ × A∗ → A∗ with

m2(F, ξ) = F · ξ (F ∈ A∗∗, ξ ∈ A∗) defines a bounded bilinear map. And,

m1(F, ξ) = ρT (F, ξ) = F · T (ξ) = m2(F, T (ξ)).

Therefore by [5, Theorem 2], m1 is Arens regular. �

In our investigation in [2], we did not assume Arens regularity, we assumed

that the given algebra satisfies the following weaker condition. We say a Banach

algebra A satisfies condition (K) if (F · ξ) ·G = F · (ξ ·G) (F, G ∈ A∗∗, ξ ∈ A∗).

Of course, every Arens regular Banach algebra satisfies condition (K). However,

the class of Banach algebras satisfying (K) is larger. It contains, for instance, every

Banach algebra A which is an ideal in its second dual.

Theorem 2.6. Let A be a Banach algebra satisfying condition (K) and E be a

mixed identity for A∗∗. Then the mapping µ : QMl(A
∗) → A∗∗, which is defined by

µ(m) = m∗(E,E) is an isometric. If A∗∗ has an identity, then µ is an isometric

isomorphism from QMl(A
∗) onto A∗∗.

Proof. It is easy to see that µ is linear. Let us prove that for each ξ ∈ A∗, F ∈
A∗∗, a ∈ A, ⟨m∗(E,E), (ξ · a) · F ⟩ = ⟨m(F, ξ), a⟩. Now,

⟨m∗(E,E), (ξ.a) · F ⟩ = ⟨E,m(E, (ξ.a) · F )⟩ = ⟨E,m(E, ξ.a) · F ⟩ = ⟨E ·m(E, ξ.a), F ⟩
= ⟨m(E, ξ.a), F ⟩ = ⟨F,m(E, ξ.a)⟩ = ⟨F,m(E, ξ).a⟩
= ⟨F.m(E, ξ), a⟩ = ⟨m(F ◦ E, ξ), a⟩ = ⟨m(F, ξ), a⟩

Consider,

∥m∥ = sup
∥F∥≤1
∥ξ∥≤1

∥m(F, ξ)∥ = sup
∥F∥≤1
∥ξ∥≤1
∥a∥≤1

∥⟨m(F, ξ), a⟩∥

= sup
∥F∥≤1
∥ξ∥≤1
∥a∥≤1

∥⟨m∗(E,E), (ξ · a) · F ⟩∥

≤ ∥m∗(E,E)∥ ∥ξ∥ ∥a∥ ∥F∥ ≤ ∥m∗(E,E)∥ = ∥µ(m)∥

Also, ∥µ(m)∥ = ∥m∗(E,E)∥ ≤ ∥m∗∥ ∥E∥ ≤ ∥m∥. Thus ∥µ(m)∥ = ∥m∥, i.e. µ is an

isometry. Next we show that µ is onto. Assume that E is an identity for A∗∗. Let

G ∈ A∗∗ be arbitrary. Since A satisfying the condition (K), the bilinear mapping

m(F, ξ) = (F ◦ G) · ξ (F ∈ A∗∗, ξ ∈ A∗) denotes a bounded left quasi-multiplier of

A∗. Moreover, since equalities

⟨µ(m), ξ⟩ = ⟨m∗(E,E), ξ⟩ = ⟨E,m(E, ξ)⟩ = ⟨E, (E ◦G) · ξ⟩
= ⟨E,G · ξ⟩ = ⟨E ◦G, ξ⟩ = ⟨G, ξ⟩
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hold for all ξ ∈ A∗ we conclude that µ is onto. �

The previous theorem holds, for instance, for every Arens regular Banach

algebra with a b.a.i., in particular for every C∗-algebra.

Example 2.2. Let H be a Hilbert space and let A = K(H), the algebra of all compact

operators on H. The dual of the space of compact operators is the space of all trace-

class operators, C1(H). The second dual of A is B(H). Since K(H) is a C∗-algebra

we have QMl(C1(H)) ∼= B(H).

Now, we consider the group algebra of a compact group G. By [15], L1(G) is

Arens regular if and only if G is finite. However, since L1(G) is a two-sided ideal in

its second dual ([14]), it satisfies condition (K). Note that the dual L1(G)
∗ can be

identified with L∞(G). Let M(G) be the convolution algebra of all bounded regular

measures on G. Recall that the convolution product of f ∈ L1(G) and µ ∈M(G) is

given by

f ∗ µ(x) =
∫
G
f(xy−1) dµ(y).

Of course, L∞(G) is a Banach L1(G)
∗∗-bimodule. However, the space L∞(G) has

also a natural structure of a BanachM(G)-bimodule. The same holds for L∞(G)∗ =

L1(G)
∗∗. We will denote all these module multiplications by ∗.

Proposition 2.1. Let G be a compact group and A = L1(G). Then the equation

(θµ(ξ, F ) := (ξ ∗ µ) ∗ F (µ ∈M(G), ξ ∈ L∞(G), F ∈ L1(G)
∗∗)

defines a linear isomorphism between M(G) and a subspace of QMr(A
∗).

Proof. Note that by the definition of module action (ξ∗µ)∗F = ξ∗(µ∗F ). From this

and condition (K) we conclude that θµ ∈ QMr(L1(G)
∗). Of course, θ : M(G) →

QMr(L1(G)
∗) is a bounded linear map. We claim that θ is injective. Indeed,

suppose that θµ = 0. Then (ξ ∗ µ) ∗ F = 0 for all ξ ∈ L∞(G) and F ∈ (L∞(G))∗.

Since L1(G) has a b.a.i. it follows ξ ◦ µ = 0. In particular, for each ξ ∈ C0(G),

ξ ◦ µ = 0. Since the measure algebra M(G) is the dual of C0(G) and it has a b.a.i.,

µ = 0, as required. �
Theorem 2.7. Let A be a Banach algebra satisfying condition (K) and assume that

A∗∗ has an identity E. If A∗∗ is Arens regular then the space QMr(A
∗) is Arens

regular.

Proof. Define a map ψ : A∗∗ → QMr(A
∗) by ψ(H) = ρRH

, where RH is the right

multiplication operator on A∗ determined by H ∈ A∗∗. Then, for arbitrary ξ ∈
A∗, F ∈ A∗∗, ψ(H)(ξ, F ) = (ξ ·H) ·F . We check only the multiplicativity of ψ since

the linearity and continuity are evident. Let H1,H2 ∈ A∗∗. By Theorem 2.4, there

exist T1, T2 ∈Mr(A
∗) such that ψ(H1) = ρT1 and ψ(H2) = ρT2 . Hence, for arbitrary

ξ ∈ A∗, F ∈ A∗∗, we have T1(ξ) · F = (ξ · H1) · F and T2(ξ) · F = (ξ · H2) · F . It

follows

(ψ(H1) ◦ρ ψ(H2))(ξ, F ) = ρT2T1(ξ, F ) = T2(T1(ξ)) ◦ F = T1ξ · (H2 ◦ F )
= ξ · (H1 ◦H2 ◦ F ) = ψ(H1 ◦H2)(ξ, F ),
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which means ψ is a homomorphism. Now, let m ∈ QMr(A
∗), then there exist

T ∈Mr(A
∗) such that m = ρT = ρRT∗(E)

= ψ(T ∗(E)).

Thus, it is an onto homomorphism. Of course, ψ∗∗ : (A∗∗)∗∗ → (QMr(A
∗))∗∗

has the same property, as well. Let F̃ , G̃ ∈ (QMr(A
∗))∗∗. Then there exist F,G ∈

(A∗∗)∗∗ such that ψ∗∗(F ) = F̃ , ψ∗∗(G) = G̃. Thus,

F̃ ◦ G̃ = ψ∗∗(F ) ◦ ψ∗∗(G) = ψ∗∗(F ◦G) = ψ∗∗(F ◦′ G) = F̃ ◦′ G̃. �

Questions 2.1.

(1) Under which conditions Theorem 2.1 is true if it would be extended to a bilinear

mapping m from A×A to B?

(2) Suppose that A is a Banach algebra and m is a strongly Arens irregular quasi-

multiplier on A. Under which conditions the algebra A is Arens irregular?
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