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ARENS REGULARITY OF QUASI-MULTIPLIERS

Marjan Adib!

Assume that A is a Banach algebra and m : A x A — A is a quasi-
multiplier on A. In this paper, we will study the relation between Arens reqularities
of m and A. Also, we define the quasi-multipliers on the dual of a Banach algebra
A and we give a simple criterion for Arens regqularity of a bounded quasi-multiplier
of A*. Also, we investigate those conditions under which the space of all quasi-
multipliers of A* is Arens regular.
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1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a mul-
tiplier on a Banach algebra and was introduced by Akemann and Pedersen [3] for
C*-algebras. McKennon [12] extended the definition to a general complex Banach
algebra A with a bounded approximate identity (b.a.i., for brevity) as follows. A
bilinear mapping m : A X A — A is a quasi-multiplier on A if

m(ab, cd) = am(b,c)d (a,b,c,d € A).

Let QM (A) denote the set of all separately continuous quasi-multipliers on A. Tt is
showed in [12] that QM (A) is a Banach space for the norm ||m/|| = sup{||m(a,d)||;
a,b€ A, flal = o] = 1}.

Arens regularity of bilinear mappings have been extensively studied by many
authors for example [4] , [5], [8], [13],...

In [2] we extended the notion of quasi-multipliers to the dual of a Banach
algebra A whose second dual has a mixed identity. We considered algebras satisfying
a weaker condition than Arens regularity.

In [1] we defined extended left (right) quasi-multipliers on the dual of a Banach
algebra. We established some properties of QM (A*) of all bounded extended left
quasi-multipliers of A*. In particular, we characterized the y—dual of QMg (A*)
and proved that (QM(A*),~v)* under the topology of bounded convergence, is
isomorphic to A***.
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The aim of this paper is to present a few new statements on Arens regularity
of quasi-multipliers.

Before we state our main results the basic notation is introduced. We mainly
adopt the notation from the monograph [7]. The reader is referred to this book for
some results used in this paper, as well.

For a Banach space X, let X* be its topological dual. The pairing between
X and X* is denoted by (-, ). We always consider X naturally embedded into X**
through the mapping 7, which is given by (7(z),&) = (€,z) (z € X, £ € X*).

Let A be a Banach algebra. It is well known that on the second dual A**
there are two algebra multiplications called the first and the second Arens product,
respectively. Since in the paper we use mainly the first Arens product, we recall its
definition. Let a € A, £ € A*, and F, G € A** be arbitrary. Then one defines & - a
and G- ¢ as (£ - a,b) = (§,ab) and (G - £,b) = (G,€ - b), where b € A is arbitrary.
Now, the first Arens product of F' and G is an element F' o G in A*™ which is given
by (F o G,&) = (F,G - &), where £ € A* is arbitrary. The second Arens product,
which we donete by o', is defined in a similar way.

Space A** equipped with the first (or second) Arens product is a Banach
algebra and A is a subalgebra of it. It is said that A is Arens regular if the equality
FoG = Fo G holds for all F, G € A**. For example, every C*-algebra is Arens
regular, see [6]. Note however, that FFoa = F o' a and ao F = a o F hold for
any a € A and F € A*. An element F in the second dual A** is said to be a
mixed identity if it is a right identity for the first and a left identity for the second
Arens product. Note that A™ has a mixed identity if and only if A has a b.a.i.
By [7, Proposition 2.6.21], an element F € A** is a mixed identity if and only if
E-£E=¢=¢-F, for every £ € A*.

Let X,Y,Z be normed spaces. A bilinear mapping m : X x Y — Z can
be extended in a natural way to a bilinear map X** x Y™ — Z**; we outline the
construction in stages, as follows:

m* 2" x X —=Y", (m*(&,x),y) = (€, m(x,y)),
m*™* Y x 7" - X*, (m*™(F,§),x) = (F,m" (&, x)),

(xe X,yeY, e Z*Ge X" F €Y*™). The mapping m™** is the unique extention
of m such that G — m**(G, F) from X** into Z** is weak™ — weak™® continuous for
every F' € Y** but the mapping F — m**(G, F) is not in general weak™ — weak*
continuous from Y** into Z** unless G € X. Hence the first topological center of m
may be defined as following

Zi(m) ={G € X* : F - m™" (G, F) is weak™ — weak™ continuous}.

Let now m! : Y x X — Z be the transpose of m defined by m!(y,z) = m(z,y) for
every z € X and y € Y. Then m! is a bilinear map from Y x X — Z and so it may be
extended as above to m!*** : Y** x X** — Z** The mapping m">*** : X** x Y** —
Z** in general is not equal to m***. If m*** = m"***, then m is called Arens regular.
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The mapping F' — m™*** (G, F) is weak* —weak* continuous for every F' € Y** but
the mapping G — m™**(G, F) from X** into Z** is not in general weak* — weak*
continuous for every F' € Y**. So we define the second topological center of m as

Zo(m) = {F € Y* : G — m"™™ (G, F) is weak* — weak* continuous}.

It is clear that m is Arens regular if and only if Z;(m) = X** and Zy(m) = Y™**.
Also, m is called strongly Arens irregular if and only if Z;(m) = X and Zs(m) =Y.

It is worthwile mentioning that in the case where 7 is the multiplication of a Banach

* Tkt

algebra A, then 7** and = are actually the first and second Arens products

which will be denote by o and o, respectively. We also say A is Arens regular if the
multiplication 7 of A is Arens regular. This means that if we define

Z1(A™)={G e A : F - G o F is weak™ — weak™ continuous}.

Zy(A*) ={F € A™ : G — G F is weak™ — weak™ continuous}.

Then a Banach algebra A is Arens regular if and only if Z;(A*) = A** and
Zo(A*) = A*. Also, A is called strongly Arens irregular if and only if Z;(A**) = A
and Zo(A*) = A.

2. Main results

Theorem 2.1. Let A be a Banach algebra and m : Ax A — A be a quasi-multiplier
on A.

(1) If A** has an identity and A is Arens regular, then m is Arens regular.

(13) If m is onto and Arens regular, then A is Arens reqular.

Proof. (i) Let E be an identity for A**. Tt is easy to check that when m is a quasi-

* is a quasi-multiplier on A**. Then since Z;(A**) = A**,

multiplier on A, then m**
the mapping

F—-m™ (G,E)o F =m™" (G,EoF)=m""(G,F)
is weak™ — weak™ continuous for all F,G € A**. Also since Zy(A™) = A™, the
mapping
G = Go/ mt***t(E,F) — mt***t(G o E,F) — mt***t(G, F)
is weak® — weak™® continuous for all F,G € A**. Therefore m is Arens regular.
(11) Let F € A* and {F/}, C A* such that F! —"* F. Let G € A**. Since m

is onto, m*** is onto as well. Let H, K € A** such that m**(H,K) = G. As m is
Arens regular, we have

GoF =m"™(H,K)o F =m™" (H,K o F) = weak* — limm™*(H, K o F)
(0%

= weak®™ —limm**(H, K)o F| = weak™ —1lim G o F,,.
« (0%

Which means Z; (A**) = A**. Similarly Zy(A**) = A**. Thus A is Arens regular. [
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Example 2.1. Let X = [0,1] and m : Loo(X) X Loo(X) — Loo(X) be defined by
m(f,g) = f * g where x is the convolution product which is given by

frg(x)= /Om f(z —1t)g(t)dt where 0 <z < 1.

By [5], Loo(X) is an Arens regular Banach algebra whose second dual has an identity.
So by Theorem 2.1, we conclude that m is Arens regular.

Theorem 2.2. Let A be a Banach algebra and m be a quasi-multiplier on A.
If m is bijection and A is strongly Arens irreqular. Then m is strongly Arens irreg-
ular.

Proof. Since A is strongly Arens irregular, Z;(A™) = Za(A**) = A. We show that
Zi(m) = A. Let G € Zi(m). Assume that {H,}, C A** such that H, —* H.
Then F'o H, — F o H is weak* — weak* continuous for all F' € A**. Now, since
G € Z1(m), we have

m*™*(G,F)o H=m""(G,F o H) = weak™ — limm™* (G, F o H,)

1
= weak™ — limm™* (G, F) o H,. )

Consequently, the mapping H — m***(G, F) o H is weak* — weak® continuous for
all H € A*. Which means that m**(G, F) € Z;(A*) = A. Since, m is a bijection,
it follows that G € A. O

Definition 2.1. A bilinear map m : A* x A*™ — A* is a right quasi-multiplier of
A*if
hold for arbitrary £ € A* and F, G € A*™.

Similarly, a bilinear map m' : A** x A* — A* is a left quasi-multiplier of A*
if

m/(FoG,&) =F-m'(G,¢§) and m'(G,¢-F)=m/(G,€)- F

hold for arbitrary £ € A* and F, G € A**.

Recall that QMr(A*) be the set of all separately continuous right quasi-

multipliers of A*. It is obvious that QMr(A*) is a linear space. Moreover, it is
a Banach space with respect to the norm

|Im|| = sup{[lm(&, F)|[; §€ A", FeA™, ||¢]| <1, [|F|| <1}.

Of course, the same holds for QMI(A*), the set of all separately continuous left
quasi-multipliers of A*.

Theorem 2.3. Let A be a commutative Banach algebra. If m is a quasi-multiplier
on A, then m** is a left quasi-multiplier of A*.



Arens regularity of quasi-multipliers 203

Proof. In order to prove that m** : A* x A* — A* is a left quasi-multiplier of A*,
we show that for all F,G € A* £ € A" and x € A,

<m**(F oG, 5)7 .1‘) - <F ’ m**(Gv ’S): .CL‘> (3)
The following can be verified from the left side of (3)
(i) (m™(FoG,§),x) = (FoG m*(§x)) =(F.G-m*(§x))
(ZZZ) <m*(€7 ‘T) Y, Z> = (m*(§7 1’), y2’> = <§7 m(x, yz)> (24)
From the right side of (3) we have:
(i/) <F : m**(G7£)>x> = <F7 m**(G7§) : .1‘>
(ii/) <m**(G7 5) " T, y> = <m**(G7 g)? LL’y> = <G7 m* (57 a:y)>

(i1i") (m* (&, zy), z) = (§, m(zy, 2)) (25)
Now, since m is a quasi-multiplier on A and A is commutative, by compairing (2.4)
and (2.5) we obtain m**(F o G,&) = F - m**(G,¢). O

Definition 2.2. Let A be a general Banach algebra. Then a map T : A* — A* is
called a right multiplier of A* if T(F -&) = F -T(§), for all £ € A*, F € A**. With
Mr(A*) we denote the space of all bounded linear right multipliers on A*.

Remark 2.1. It is obvious that for each F € A* the right multiplication operator
Rp& = £ - F is a right multiplier on A*. If A*™ has a mized identity, then each
bounded linear right multiplier on A* is a right multiplication operator. Indeed, let
E be a mized identity for A** and T € Mr(A*) be arbitrary. Then equalities

(T¢,a) = (Eoa,T§) = (E,T(a-€)) = (Rr«(p)§, a)
hold for all a € A and § € A*, which means T' = Ryp«(g).

Theorem 2.4. If A* has a mized identity, then pr(&, F) = (T€)-F (T € Mr(A*),
¢ € A%, F € A™) defines an injective linear map p : Mr(A*) — QMr(A*) with
norm ||p|| < 1. Moreover, p is onto if A** has an identity. If A** has a mized
identity with norm one, then p is an isometry.

Proof. Let T € Mr(A*) be arbitrary. It is obvious that pr is a bilinear map from
A* x A** to A* and that it is bounded with || T||. Fora € A, § € A*, and F, G € A**,
we have pr(F -§,G)=T(F-&)-G=(F-T¢)-G=F-(T¢-G)=F - pr(§,G) and
pr(€.G o F) = (T€)- (G o F) = (TE- G) - F = pr(&,G) - F. Thus, pr € QMr(A").
It follows from the definition that p : Mr(A*) — QMr(A*) is linear. Obviously,
llor|l < ||T||, which gives ||p|| < 1. Let E € A** be a mixed identity. If pp = 0,
then we have (T€) - E = 0 for every £ € A* and consequently 7' = 0. Assume that
E is an identity for A**. Let m € QMr(A*) be arbitrary. It is easily seen that
T¢ = m(§, E) (§ € A*) defines a bounded right multiplier of A*. Since equalities
pr(&, F)=(T¢) - F=m(§,E)-F=m(§,EoF)=m({F) hold for all £ € A* and
F € A*™ we conclude that p is onto.

At the end assume that F is mixed identity for A** of norm one. Let T €
Mr(A*) and € > 0 be arbitrary. If £ € A* is such that ||£]| < 1 and ||T|| —e < [|T¢],
then ||pr|| > |lpr(&, E)|| = |T€|| > ||T|| — . Thus, p is an isometry. O
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Theorem 2.5. If A is a Arens reqular Banach algebra and A** has an identity E.
Then each bounded left quasi-multiplier of A* is Arens regqular.

Proof. Let m; € QM;(A*). From Theorem 2.4 there exists a multiplier 7' € M;(A*)
satisfying m1 = pr. By remark 2.1, T = Rp-(g) and then by [9, Theorem 2.1],
T is weakly compact. Also, It is easily seen that mo : A** x A* — A* with
mao(F, &) = F - & (F € A, £ € A*) defines a bounded bilinear map. And,

Therefore by [5, Theorem 2], m; is Arens regular. O

In our investigation in [2], we did not assume Arens regularity, we assumed
that the given algebra satisfies the following weaker condition. We say a Banach
algebra A satisfies condition (K) if (F-€)-G=F-(£-G) (F, Ge A, £ AY).
Of course, every Arens regular Banach algebra satisfies condition (K). However,

the class of Banach algebras satisfying (K) is larger. It contains, for instance, every
Banach algebra A which is an ideal in its second dual.

Theorem 2.6. Let A be a Banach algebra satisfying condition (K) and E be a
mized identity for A**. Then the mapping p : QM;(A*) — A**, which is defined by
uw(m) = m*(E, E) is an isometric. If A** has an identity, then p is an isometric
isomorphism from QM;(A*) onto A**.

Proof. 1t is easy to see that p is linear. Let us prove that for each £ € A* F €
A ae A, (m*(E,E), (£-a)-F)= (m(F,§), a). Now,
(m*(B, E), (€.a) - F) = (B,m(E, (€a) - F)) = (E,m(E,&.q) - F) = (E - m(E,¢.a), F)
— (m(E,£.0),F) = (F,m(E,£.a)) = (F,m(E,).a)
= (F.m(E,¢§),a) = (m(F o E,£),a) = (m(F,§), a)
Consider,
[ml|l = sup [[m(F,&)|| = sup [[(m(F,¢),a)l

|7]]<1 [|7]]<1
ll€N<1 l€ll<1
lall<1
*
[|7]]<1
ll€l<1
llafl <1

< [m*(E, E)[ IEll llall |F[ < [lm™(E, E)[| = [[u(m)]]

Also, [[u(m)[| = [[m*(E, E)|| < |[m*|[ [[E]| < |lml|. Thus [[u(m)[| = [|m]], i.e. pis an
isometry. Next we show that p is onto. Assume that E is an identity for A™*. Let
G € A*™ be arbitrary. Since A satisfying the condition (K), the bilinear mapping
m(F,&) = (FoQ)- & (F e A ¢ € A*) denotes a bounded left quasi-multiplier of
A*. Moreover, since equalities

(1(m), &) = (m*(E, E), &) = (E,m(E,§)) = (E,(E0G)-¢)
= <EaG£> = <EOG7£> = <G7§>
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hold for all £ € A* we conclude that u is onto. O

The previous theorem holds, for instance, for every Arens regular Banach
algebra with a b.a.i., in particular for every C*-algebra.

Example 2.2. Let H be a Hilbert space and let A = K (H), the algebra of all compact
operators on H. The dual of the space of compact operators is the space of all trace-
class operators, C1(H). The second dual of A is B(H). Since K(H) is a C*-algebra
we have QM;(C1(H)) = B(H).

Now, we consider the group algebra of a compact group G. By [15], L1(G) is
Arens regular if and only if G is finite. However, since L;(G) is a two-sided ideal in
its second dual ([14]), it satisfies condition (K). Note that the dual Li(G)* can be
identified with L (G). Let M (G) be the convolution algebra of all bounded regular
measures on G. Recall that the convolution product of f € L1(G) and p € M(G) is
given by

fxp( / flay™) duly).
Of course, Loo(G) is a Banach L;(G)**-bimodule. However, the space Lo (G) has

also a natural structure of a Banach M (G)-bimodule. The same holds for Lo, (G)* =
L1 (G)**. We will denote all these module multiplications by x*.

Proposition 2.1. Let G be a compact group and A = L1(G). Then the equation
(O F) = (Exp)xF  (peM(G),§ € Lo(G), F € L1(G)™)
defines a linear isomorphism between M (G) and a subspace of QM,(A*).

Proof. Note that by the definition of module action ({xp)* F' = E*(u+F). From this
and condition (K) we conclude that 6, € QMr(Li(G)*). Of course, § : M(G) —
QMr(Li(G)*) is a bounded linear map. We claim that 6 is injective. Indeed,
suppose that 6, = 0. Then ({ *x u) * FF = 0 for all { € Lo(G) and F € (Loo(G))*.
Since L1(G) has a b.a.i. it follows £ o u = 0. In particular, for each £ € Cy(G),
& o pu= 0. Since the measure algebra M (G) is the dual of Cy(G) and it has a b.a.i.,
@ =0, as required. 0
Theorem 2.7. Let A be a Banach algebra satisfying condition (K) and assume that

A** has an identity E. If A** is Arens regular then the space QM,(A*) is Arens
regular.

Proof. Define a map ¢ : A — QM,(A*) by ¥(H) = pgr,,, where Ry is the right
multiplication operator on A* determined by H € A**. Then, for arbitrary £ €
A*F € A (H)(& F)= (£ H) - F. We check only the multiplicativity of ¢ since
the linearity and continuity are evident. Let Hy, Ho € A**. By Theorem 2.4, there
exist 11,75 € M,(A*) such that ¢(H;1) = pr, and ¢(H2) = pp,. Hence, for arbitrary
€€ A*F € A**, we have Ty(&) - F = (¢ - Hy) - F and To(&) - F = (¢ - Hp) - F. Tt
follows
(Y(H1) 0p $(H2))(&, F) = prory (& F) = Ta(T1(8)) o F =T1§ - (Ha o F)
=¢-(HioHyoF)=1(H;0Hs) (& F),
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which means ¢ is a homomorphism. Now, let m € QM,(A*), then there exist
T € M;(A*) such that m = pr = pry., = P(T"(E)).

Thus, it is an onto homomorphism. Of course, ¥** : (A™)*™* — (QM,(A*))**

has the same property, as well. Let F, G € (QM,(A*))**. Then there exist F,G €
(A™)** such that ¢**(F) = F, ¥**(G) = G. Thus,

FoG= " (F)ow™(G) = ™(FoG) = v (Fo' G) = F o' C. O

Questions 2.1.

(1) Under which conditions Theorem 2.1 is true if it would be extended to a bilinear

mapping m from A x A to B?

(2) Suppose that A is a Banach algebra and m is a strongly Arens irregular quasi-

multiplier on A. Under which conditions the algebra A is Arens irreqular?
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