

ARENS REGULARITY OF QUASI-MULTIPLIERS

Marjan Adib¹

Assume that A is a Banach algebra and $m : A \times A \rightarrow A$ is a quasi-multiplier on A . In this paper, we will study the relation between Arens regularities of m and A . Also, we define the quasi-multipliers on the dual of a Banach algebra A and we give a simple criterion for Arens regularity of a bounded quasi-multiplier of A^* . Also, we investigate those conditions under which the space of all quasi-multipliers of A^* is Arens regular.

Keywords: Keywords: Quasi-multiplier, multiplier, Banach algebra, second dual, Arens product, topological center.

MSC2000: 47B48, 46H25.

1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a multiplier on a Banach algebra and was introduced by Akemann and Pedersen [3] for C^* -algebras. McKennon [12] extended the definition to a general complex Banach algebra A with a bounded approximate identity (b.a.i., for brevity) as follows. A bilinear mapping $m : A \times A \rightarrow A$ is a quasi-multiplier on A if

$$m(ab, cd) = a m(b, c) d \quad (a, b, c, d \in A).$$

Let $QM(A)$ denote the set of all separately continuous quasi-multipliers on A . It is showed in [12] that $QM(A)$ is a Banach space for the norm $\|m\| = \sup\{\|m(a, b)\|; a, b \in A, \|a\| = \|b\| = 1\}$.

Arens regularity of bilinear mappings have been extensively studied by many authors for example [4], [5], [8], [13],...

In [2] we extended the notion of quasi-multipliers to the dual of a Banach algebra A whose second dual has a mixed identity. We considered algebras satisfying a weaker condition than Arens regularity.

In [1] we defined extended left (right) quasi-multipliers on the dual of a Banach algebra. We established some properties of $QM_{el}(A^*)$ of all bounded extended left quasi-multipliers of A^* . In particular, we characterized the γ -dual of $QM_{el}(A^*)$ and proved that $(QM_{el}(A^*), \gamma)^*$ under the topology of bounded convergence, is isomorphic to A^{***} .

Department of Mathematics, Payamnoor university(PNU), Tehran, Iran, E-mail:
 m.adib.pnu@gmail.com

The aim of this paper is to present a few new statements on Arens regularity of quasi-multipliers.

Before we state our main results the basic notation is introduced. We mainly adopt the notation from the monograph [7]. The reader is referred to this book for some results used in this paper, as well.

For a Banach space X , let X^* be its topological dual. The pairing between X and X^* is denoted by $\langle \cdot, \cdot \rangle$. We always consider X naturally embedded into X^{**} through the mapping π , which is given by $\langle \pi(x), \xi \rangle = \langle \xi, x \rangle$ ($x \in X, \xi \in X^*$).

Let A be a Banach algebra. It is well known that on the second dual A^{**} there are two algebra multiplications called the first and the second Arens product, respectively. Since in the paper we use mainly the first Arens product, we recall its definition. Let $a \in A$, $\xi \in A^*$, and $F, G \in A^{**}$ be arbitrary. Then one defines $\xi \cdot a$ and $G \cdot \xi$ as $\langle \xi \cdot a, b \rangle = \langle \xi, ab \rangle$ and $\langle G \cdot \xi, b \rangle = \langle G, \xi \cdot b \rangle$, where $b \in A$ is arbitrary. Now, the first Arens product of F and G is an element $F \circ G$ in A^{**} which is given by $\langle F \circ G, \xi \rangle = \langle F, G \cdot \xi \rangle$, where $\xi \in A^*$ is arbitrary. The second Arens product, which we denote by \circ' , is defined in a similar way.

Space A^{**} equipped with the first (or second) Arens product is a Banach algebra and A is a subalgebra of it. It is said that A is Arens regular if the equality $F \circ G = F \circ' G$ holds for all $F, G \in A^{**}$. For example, every C^* -algebra is Arens regular, see [6]. Note however, that $F \circ a = F \circ' a$ and $a \circ F = a \circ' F$ hold for any $a \in A$ and $F \in A^{**}$. An element E in the second dual A^{**} is said to be a mixed identity if it is a right identity for the first and a left identity for the second Arens product. Note that A^{**} has a mixed identity if and only if A has a b.a.i. By [7, Proposition 2.6.21], an element $E \in A^{**}$ is a mixed identity if and only if $E \cdot \xi = \xi = \xi \cdot E$, for every $\xi \in A^*$.

Let X, Y, Z be normed spaces. A bilinear mapping $m : X \times Y \rightarrow Z$ can be extended in a natural way to a bilinear map $X^{**} \times Y^{**} \rightarrow Z^{**}$; we outline the construction in stages, as follows:

$$\begin{aligned} m^* : Z^* \times X \rightarrow Y^*, & \quad \langle m^*(\xi, x), y \rangle = \langle \xi, m(x, y) \rangle, \\ m^{**} : Y^{**} \times Z^* \rightarrow X^*, & \quad \langle m^{**}(F, \xi), x \rangle = \langle F, m^*(\xi, x) \rangle, \\ m^{***} : X^{**} \times Y^{**} \rightarrow Z^{**}, & \quad \langle m^{***}(G, F), \xi \rangle = \langle G, m^{**}(F, \xi) \rangle. \end{aligned}$$

($x \in X, y \in Y, \xi \in Z^*, G \in X^{**}, F \in Y^{**}$). The mapping m^{***} is the unique extention of m such that $G \rightarrow m^{***}(G, F)$ from X^{**} into Z^{**} is $weak^* - weak^*$ continuous for every $F \in Y^{**}$, but the mapping $F \rightarrow m^{***}(G, F)$ is not in general $weak^* - weak^*$ continuous from Y^{**} into Z^{**} unless $G \in X$. Hence the first topological center of m may be defined as following

$$Z_1(m) = \{G \in X^{**} : F \rightarrow m^{***}(G, F) \text{ is } weak^* - weak^* \text{ continuous}\}.$$

Let now $m^t : Y \times X \rightarrow Z$ be the transpose of m defined by $m^t(y, x) = m(x, y)$ for every $x \in X$ and $y \in Y$. Then m^t is a bilinear map from $Y \times X \rightarrow Z$ and so it may be extended as above to $m^{t***} : Y^{**} \times X^{**} \rightarrow Z^{**}$. The mapping $m^{t***t} : X^{**} \times Y^{**} \rightarrow Z^{**}$ in general is not equal to m^{***} . If $m^{***} = m^{t***t}$, then m is called Arens regular.

The mapping $F \rightarrow m^{t***t}(G, F)$ is $weak^* - weak^*$ continuous for every $F \in Y^{**}$, but the mapping $G \rightarrow m^{t***t}(G, F)$ from X^{**} into Z^{**} is not in general $weak^* - weak^*$ continuous for every $F \in Y^{**}$. So we define the second topological center of m as

$$Z_2(m) = \{F \in Y^{**} : G \rightarrow m^{t***t}(G, F) \text{ is } weak^* - weak^* \text{ continuous}\}.$$

It is clear that m is Arens regular if and only if $Z_1(m) = X^{**}$ and $Z_2(m) = Y^{**}$. Also, m is called strongly Arens irregular if and only if $Z_1(m) = X$ and $Z_2(m) = Y$. It is worthwhile mentioning that in the case where π is the multiplication of a Banach algebra A , then π^{***} and π^{t***t} are actually the first and second Arens products which will be denote by \circ and \circ' , respectively. We also say A is Arens regular if the multiplication π of A is Arens regular. This means that if we define

$$Z_1(A^{**}) = \{G \in A^{**} : F \rightarrow G \circ F \text{ is } weak^* - weak^* \text{ continuous}\}.$$

$$Z_2(A^{**}) = \{F \in A^{**} : G \rightarrow G \circ' F \text{ is } weak^* - weak^* \text{ continuous}\}.$$

Then a Banach algebra A is Arens regular if and only if $Z_1(A^{**}) = A^{**}$ and $Z_2(A^{**}) = A^{**}$. Also, A is called strongly Arens irregular if and only if $Z_1(A^{**}) = A$ and $Z_2(A^{**}) = A$.

2. Main results

Theorem 2.1. *Let A be a Banach algebra and $m : A \times A \rightarrow A$ be a quasi-multiplier on A .*

- (i) *If A^{**} has an identity and A is Arens regular, then m is Arens regular.*
- (ii) *If m is onto and Arens regular, then A is Arens regular.*

Proof. (i) Let E be an identity for A^{**} . It is easy to check that when m is a quasi-multiplier on A , then m^{***} is a quasi-multiplier on A^{**} . Then since $Z_1(A^{**}) = A^{**}$, the mapping

$$F \rightarrow m^{***}(G, E) \circ F = m^{***}(G, E \circ F) = m^{***}(G, F)$$

is $weak^* - weak^*$ continuous for all $F, G \in A^{**}$. Also since $Z_2(A^{**}) = A^{**}$, the mapping

$$G \rightarrow G \circ' m^{t***t}(E, F) = m^{t***t}(G \circ' E, F) = m^{t***t}(G, F)$$

is $weak^* - weak^*$ continuous for all $F, G \in A^{**}$. Therefore m is Arens regular.

(ii) Let $F \in A^{**}$ and $\{F_\alpha''\}_\alpha \subseteq A^{**}$ such that $F_\alpha'' \rightarrow^{w*} F$. Let $G \in A^{**}$. Since m is onto, m^{***} is onto as well. Let $H, K \in A^{**}$ such that $m^{***}(H, K) = G$. As m is Arens regular, we have

$$\begin{aligned} G \circ F &= m^{***}(H, K) \circ F = m^{***}(H, K \circ F) = weak^* - \lim_\alpha m^{***}(H, K \circ F_\alpha'') \\ &= weak^* - \lim_\alpha m^{***}(H, K) \circ F_\alpha'' = weak^* - \lim_\alpha G \circ F_\alpha. \end{aligned}$$

Which means $Z_1(A^{**}) = A^{**}$. Similarly $Z_2(A^{**}) = A^{**}$. Thus A is Arens regular. \square

Example 2.1. Let $X = [0, 1]$ and $m : L_\infty(X) \times L_\infty(X) \rightarrow L_\infty(X)$ be defined by $m(f, g) = f * g$ where $*$ is the convolution product which is given by

$$f * g(x) = \int_0^x f(x-t)g(t)dt \text{ where } 0 \leq x \leq 1.$$

By [5], $L_\infty(X)$ is an Arens regular Banach algebra whose second dual has an identity. So by Theorem 2.1, we conclude that m is Arens regular.

Theorem 2.2. Let A be a Banach algebra and m be a quasi-multiplier on A . If m is bijection and A is strongly Arens irregular. Then m is strongly Arens irregular.

Proof. Since A is strongly Arens irregular, $Z_1(A^{**}) = Z_2(A^{**}) = A$. We show that $Z_1(m) = A$. Let $G \in Z_1(m)$. Assume that $\{H_\alpha\}_\alpha \subseteq A^{**}$ such that $H_\alpha \rightarrow^{w^*} H$. Then $F \circ H_\alpha \rightarrow F \circ H$ is $weak^* - weak^*$ continuous for all $F \in A^{**}$. Now, since $G \in Z_1(m)$, we have

$$\begin{aligned} m^{***}(G, F) \circ H &= m^{***}(G, F \circ H) = weak^* - \lim_\alpha m^{***}(G, F \circ H_\alpha) \\ &= weak^* - \lim_\alpha m^{***}(G, F) \circ H_\alpha. \end{aligned} \tag{1}$$

Consequently, the mapping $H \rightarrow m^{***}(G, F) \circ H$ is $weak^* - weak^*$ continuous for all $H \in A^{**}$. Which means that $m^{***}(G, F) \in Z_1(A^{**}) = A$. Since, m is a bijection, it follows that $G \in A$. \square

Definition 2.1. A bilinear map $m : A^* \times A^{**} \rightarrow A^*$ is a right quasi-multiplier of A^* if

$$m(F \cdot \xi, G) = F \cdot m(\xi, G) \quad \text{and} \quad m(\xi, G \circ F) = m(\xi, G) \cdot F \tag{2}$$

hold for arbitrary $\xi \in A^*$ and $F, G \in A^{**}$.

Similarly, a bilinear map $m' : A^{**} \times A^* \rightarrow A^*$ is a left quasi-multiplier of A^* if

$$m'(F \circ G, \xi) = F \cdot m'(G, \xi) \quad \text{and} \quad m'(G, \xi \cdot F) = m'(G, \xi) \cdot F$$

hold for arbitrary $\xi \in A^*$ and $F, G \in A^{**}$.

Recall that $QMr(A^*)$ be the set of all separately continuous right quasi-multipliers of A^* . It is obvious that $QMr(A^*)$ is a linear space. Moreover, it is a Banach space with respect to the norm

$$\|m\| = \sup\{\|m(\xi, F)\|; \xi \in A^*, F \in A^{**}, \|\xi\| \leq 1, \|F\| \leq 1\}.$$

Of course, the same holds for $QMr(A^*)$, the set of all separately continuous left quasi-multipliers of A^* .

Theorem 2.3. Let A be a commutative Banach algebra. If m is a quasi-multiplier on A , then m^{**} is a left quasi-multiplier of A^* .

Proof. In order to prove that $m^{**} : A^{**} \times A^* \rightarrow A^*$ is a *left quasi-multiplier of A^** , we show that for all $F, G \in A^{**}$, $\xi \in A^*$ and $x \in A$,

$$\langle m^{**}(F \circ G, \xi), x \rangle = \langle F \cdot m^{**}(G, \xi), x \rangle. \quad (3)$$

The following can be verified from the left side of (3)

- (i) $\langle m^{**}(F \circ G, \xi), x \rangle = \langle F \circ G, m^*(\xi, x) \rangle = \langle F, G \cdot m^*(\xi, x) \rangle$
- (ii) $\langle G \cdot m^*(\xi, x), y \rangle = \langle G, m^*(\xi, x) \cdot y \rangle$
- (iii) $\langle m^*(\xi, x) \cdot y, z \rangle = \langle m^*(\xi, x), yz \rangle = \langle \xi, m(x, yz) \rangle$

From the right side of (3) we have:

- (i') $\langle F \cdot m^{**}(G, \xi), x \rangle = \langle F, m^{**}(G, \xi) \cdot x \rangle$
- (ii') $\langle m^{**}(G, \xi) \cdot x, y \rangle = \langle m^{**}(G, \xi), xy \rangle = \langle G, m^*(\xi, xy) \rangle$
- (iii') $\langle m^*(\xi, xy), z \rangle = \langle \xi, m(xy, z) \rangle$

Now, since m is a quasi-multiplier on A and A is commutative, by comparing (2.4) and (2.5) we obtain $m^{**}(F \circ G, \xi) = F \cdot m^{**}(G, \xi)$. \square

Definition 2.2. Let A be a general Banach algebra. Then a map $T : A^* \rightarrow A^*$ is called a *right multiplier of A^** if $T(F \cdot \xi) = F \cdot T(\xi)$, for all $\xi \in A^*$, $F \in A^{**}$. With $Mr(A^*)$ we denote the space of all bounded linear right multipliers on A^* .

Remark 2.1. It is obvious that for each $F \in A^{**}$ the right multiplication operator $R_F \xi = \xi \cdot F$ is a right multiplier on A^* . If A^{**} has a mixed identity, then each bounded linear right multiplier on A^* is a right multiplication operator. Indeed, let E be a mixed identity for A^{**} and $T \in Mr(A^*)$ be arbitrary. Then equalities

$$\langle T\xi, a \rangle = \langle E \circ a, T\xi \rangle = \langle E, T(a \cdot \xi) \rangle = \langle R_{T^*(E)} \xi, a \rangle$$

hold for all $a \in A$ and $\xi \in A^*$, which means $T = R_{T^*(E)}$.

Theorem 2.4. If A^{**} has a mixed identity, then $\rho_T(\xi, F) = (T\xi) \cdot F$ ($T \in Mr(A^*)$, $\xi \in A^*$, $F \in A^{**}$) defines an injective linear map $\rho : Mr(A^*) \rightarrow QMr(A^*)$ with norm $\|\rho\| \leq 1$. Moreover, ρ is onto if A^{**} has an identity. If A^{**} has a mixed identity with norm one, then ρ is an isometry.

Proof. Let $T \in Mr(A^*)$ be arbitrary. It is obvious that ρ_T is a bilinear map from $A^* \times A^{**}$ to A^* and that it is bounded with $\|T\|$. For $a \in A$, $\xi \in A^*$, and $F, G \in A^{**}$, we have $\rho_T(F \cdot \xi, G) = T(F \cdot \xi) \cdot G = (F \cdot T\xi) \cdot G = F \cdot (T\xi \cdot G) = F \cdot \rho_T(\xi, G)$ and $\rho_T(\xi, G \circ F) = (T\xi) \cdot (G \circ F) = (T\xi \cdot G) \cdot F = \rho_T(\xi, G) \cdot F$. Thus, $\rho_T \in QMr(A^*)$. It follows from the definition that $\rho : Mr(A^*) \rightarrow QMr(A^*)$ is linear. Obviously, $\|\rho_T\| \leq \|T\|$, which gives $\|\rho\| \leq 1$. Let $E \in A^{**}$ be a mixed identity. If $\rho_T = 0$, then we have $(T\xi) \cdot E = 0$ for every $\xi \in A^*$ and consequently $T = 0$. Assume that E is an identity for A^{**} . Let $m \in QMr(A^*)$ be arbitrary. It is easily seen that $T\xi = m(\xi, E)$ ($\xi \in A^*$) defines a bounded right multiplier of A^* . Since equalities $\rho_T(\xi, F) = (T\xi) \cdot F = m(\xi, E) \cdot F = m(\xi, E \circ F) = m(\xi, F)$ hold for all $\xi \in A^*$ and $F \in A^{**}$ we conclude that ρ is onto.

At the end assume that E is mixed identity for A^{**} of norm one. Let $T \in Mr(A^*)$ and $\varepsilon > 0$ be arbitrary. If $\xi \in A^*$ is such that $\|\xi\| \leq 1$ and $\|T\| - \varepsilon < \|T\xi\|$, then $\|\rho_T\| \geq \|\rho_T(\xi, E)\| = \|T\xi\| > \|T\| - \varepsilon$. Thus, ρ is an isometry. \square

Theorem 2.5. *If A is a Arens regular Banach algebra and A^{**} has an identity E . Then each bounded left quasi-multiplier of A^* is Arens regular.*

Proof. Let $m_1 \in QM_l(A^*)$. From Theorem 2.4 there exists a multiplier $T \in M_l(A^*)$ satisfying $m_1 = \rho_T$. By remark 2.1, $T = R_{T^*(E)}$ and then by [9, Theorem 2.1], T is weakly compact. Also, It is easily seen that $m_2 : A^{**} \times A^* \rightarrow A^*$ with $m_2(F, \xi) = F \cdot \xi$ ($F \in A^{**}, \xi \in A^*$) defines a bounded bilinear map. And,

$$m_1(F, \xi) = \rho_T(F, \xi) = F \cdot T(\xi) = m_2(F, T(\xi)).$$

Therefore by [5, Theorem 2], m_1 is Arens regular. \square

In our investigation in [2], we did not assume Arens regularity, we assumed that the given algebra satisfies the following weaker condition. We say a Banach algebra A satisfies condition (K) if $(F \cdot \xi) \cdot G = F \cdot (\xi \cdot G)$ ($F, G \in A^{**}, \xi \in A^*$). Of course, every Arens regular Banach algebra satisfies condition (K) . However, the class of Banach algebras satisfying (K) is larger. It contains, for instance, every Banach algebra A which is an ideal in its second dual.

Theorem 2.6. *Let A be a Banach algebra satisfying condition (K) and E be a mixed identity for A^{**} . Then the mapping $\mu : QM_l(A^*) \rightarrow A^{**}$, which is defined by $\mu(m) = m^*(E, E)$ is an isometric. If A^{**} has an identity, then μ is an isometric isomorphism from $QM_l(A^*)$ onto A^{**} .*

Proof. It is easy to see that μ is linear. Let us prove that for each $\xi \in A^*, F \in A^{**}, a \in A$, $\langle m^*(E, E), (\xi \cdot a) \cdot F \rangle = \langle m(F, \xi), a \rangle$. Now,

$$\begin{aligned} \langle m^*(E, E), (\xi \cdot a) \cdot F \rangle &= \langle E, m(E, (\xi \cdot a) \cdot F) \rangle = \langle E, m(E, \xi \cdot a) \cdot F \rangle = \langle E \cdot m(E, \xi \cdot a), F \rangle \\ &= \langle m(E, \xi \cdot a), F \rangle = \langle F, m(E, \xi \cdot a) \rangle = \langle F, m(E, \xi) \cdot a \rangle \\ &= \langle F \cdot m(E, \xi), a \rangle = \langle m(F \circ E, \xi), a \rangle = \langle m(F, \xi), a \rangle \end{aligned}$$

Consider,

$$\begin{aligned} \|m\| &= \sup_{\substack{\|F\| \leq 1 \\ \|\xi\| \leq 1}} \|m(F, \xi)\| = \sup_{\substack{\|F\| \leq 1 \\ \|\xi\| \leq 1 \\ \|a\| \leq 1}} \|\langle m(F, \xi), a \rangle\| \\ &= \sup_{\substack{\|F\| \leq 1 \\ \|\xi\| \leq 1 \\ \|a\| \leq 1}} \|\langle m^*(E, E), (\xi \cdot a) \cdot F \rangle\| \\ &\leq \|m^*(E, E)\| \|\xi\| \|a\| \|F\| \leq \|m^*(E, E)\| = \|\mu(m)\| \end{aligned}$$

Also, $\|\mu(m)\| = \|m^*(E, E)\| \leq \|m^*\| \|E\| \leq \|m\|$. Thus $\|\mu(m)\| = \|m\|$, i.e. μ is an isometry. Next we show that μ is onto. Assume that E is an identity for A^{**} . Let $G \in A^{**}$ be arbitrary. Since A satisfying the condition (K) , the bilinear mapping $m(F, \xi) = (F \circ G) \cdot \xi$ ($F \in A^{**}, \xi \in A^*$) denotes a bounded left quasi-multiplier of A^* . Moreover, since equalities

$$\begin{aligned} \langle \mu(m), \xi \rangle &= \langle m^*(E, E), \xi \rangle = \langle E, m(E, \xi) \rangle = \langle E, (E \circ G) \cdot \xi \rangle \\ &= \langle E, G \cdot \xi \rangle = \langle E \circ G, \xi \rangle = \langle G, \xi \rangle \end{aligned}$$

hold for all $\xi \in A^*$ we conclude that μ is onto. \square

The previous theorem holds, for instance, for every Arens regular Banach algebra with a b.a.i., in particular for every C^* -algebra.

Example 2.2. *Let H be a Hilbert space and let $A = K(H)$, the algebra of all compact operators on H . The dual of the space of compact operators is the space of all trace-class operators, $C_1(H)$. The second dual of A is $B(H)$. Since $K(H)$ is a C^* -algebra we have $QM_l(C_1(H)) \cong B(H)$.*

Now, we consider the group algebra of a compact group G . By [15], $L_1(G)$ is Arens regular if and only if G is finite. However, since $L_1(G)$ is a two-sided ideal in its second dual ([14]), it satisfies condition (K). Note that the dual $L_1(G)^*$ can be identified with $L_\infty(G)$. Let $M(G)$ be the convolution algebra of all bounded regular measures on G . Recall that the convolution product of $f \in L_1(G)$ and $\mu \in M(G)$ is given by

$$f * \mu(x) = \int_G f(xy^{-1}) d\mu(y).$$

Of course, $L_\infty(G)$ is a Banach $L_1(G)^{**}$ -bimodule. However, the space $L_\infty(G)$ has also a natural structure of a Banach $M(G)$ -bimodule. The same holds for $L_\infty(G)^* = L_1(G)^{**}$. We will denote all these module multiplications by $*$.

Proposition 2.1. *Let G be a compact group and $A = L_1(G)$. Then the equation*

$$(\theta_\mu(\xi, F) := (\xi * \mu) * F \quad (\mu \in M(G), \xi \in L_\infty(G), F \in L_1(G)^{**})$$

defines a linear isomorphism between $M(G)$ and a subspace of $QM_r(A^)$.*

Proof. Note that by the definition of module action $(\xi * \mu) * F = \xi * (\mu * F)$. From this and condition (K) we conclude that $\theta_\mu \in QMr(L_1(G)^*)$. Of course, $\theta : M(G) \rightarrow QMr(L_1(G)^*)$ is a bounded linear map. We claim that θ is injective. Indeed, suppose that $\theta_\mu = 0$. Then $(\xi * \mu) * F = 0$ for all $\xi \in L_\infty(G)$ and $F \in (L_\infty(G))^*$. Since $L_1(G)$ has a b.a.i. it follows $\xi * \mu = 0$. In particular, for each $\xi \in C_0(G)$, $\xi * \mu = 0$. Since the measure algebra $M(G)$ is the dual of $C_0(G)$ and it has a b.a.i., $\mu = 0$, as required. \square

Theorem 2.7. *Let A be a Banach algebra satisfying condition (K) and assume that A^{**} has an identity E . If A^{**} is Arens regular then the space $QM_r(A^*)$ is Arens regular.*

Proof. Define a map $\psi : A^{**} \rightarrow QMr(A^*)$ by $\psi(H) = \rho_{R_H}$, where R_H is the right multiplication operator on A^* determined by $H \in A^{**}$. Then, for arbitrary $\xi \in A^*, F \in A^{**}$, $\psi(H)(\xi, F) = (\xi \cdot H) \cdot F$. We check only the multiplicativity of ψ since the linearity and continuity are evident. Let $H_1, H_2 \in A^{**}$. By Theorem 2.4, there exist $T_1, T_2 \in M_r(A^*)$ such that $\psi(H_1) = \rho_{T_1}$ and $\psi(H_2) = \rho_{T_2}$. Hence, for arbitrary $\xi \in A^*, F \in A^{**}$, we have $T_1(\xi) \cdot F = (\xi \cdot H_1) \cdot F$ and $T_2(\xi) \cdot F = (\xi \cdot H_2) \cdot F$. It follows

$$\begin{aligned} (\psi(H_1) \circ \rho \psi(H_2))(\xi, F) &= \rho_{T_2 T_1}(\xi, F) = T_2(T_1(\xi)) \circ F = T_1 \xi \cdot (H_2 \circ F) \\ &= \xi \cdot (H_1 \circ H_2 \circ F) = \psi(H_1 \circ H_2)(\xi, F), \end{aligned}$$

which means ψ is a homomorphism. Now, let $m \in QM_r(A^*)$, then there exist $T \in M_r(A^*)$ such that $m = \rho_T = \rho_{R_{T^*}(E)} = \psi(T^*(E))$.

Thus, it is an onto homomorphism. Of course, $\psi^{**} : (A^{**})^{**} \rightarrow (QM_r(A^*))^{**}$ has the same property, as well. Let $\tilde{F}, \tilde{G} \in (QM_r(A^*))^{**}$. Then there exist $F, G \in (A^{**})^{**}$ such that $\psi^{**}(F) = \tilde{F}, \psi^{**}(G) = \tilde{G}$. Thus,

$$\tilde{F} \circ \tilde{G} = \psi^{**}(F) \circ \psi^{**}(G) = \psi^{**}(F \circ G) = \psi^{**}(F \circ' G) = \tilde{F} \circ' \tilde{G}. \quad \square$$

Questions 2.1.

- (1) Under which conditions Theorem 2.1 is true if it would be extended to a bilinear mapping m from $A \times A$ to B ?
- (2) Suppose that A is a Banach algebra and m is a strongly Arens irregular quasi-multiplier on A . Under which conditions the algebra A is Arens irregular?

REFERENCES

- [1] *M. Adib*, Some topology on the space of quasi-multipliers, *Bull. Iran. Math. Soc.*, **5** (2017), 1323-1332.
- [2] *M. Adib and A. Riazi and J. Bracic*, Quasi-multipliers of the dual of the dual of a Banach algebra, *Banach J. Math. Anal.*, **5** (2011), 6-14.
- [3] *C. A. Akemann and G. K. Pedersen*, Complications of semicontinuity in C^* -algebra theory, *Duke Math. J.*, **40** (1973), 785-795.
- [4] *R. Arens*, The adjoint of a bilinear operation, *Proc. Amer. Math. Soc.*, **2** (1951), 839-848.
- [5] *N. Arikian*, A simple condition ensuring the Arens regularity of bilinear mappings, *Proc. Amer. Math. Soc.*, **84** (1982), 525-532.
- [6] *P. Civin and B. Yood*, The second conjugate space of a Banach algebra as an algebra, *Pacific J. Math.*, **11** (1961), 847-870.
- [7] *H. G. Dales*, Banach algebras and automatic continuity, *London Math. Soc. Monographs*, Clarendon press, 2000.
- [8] *K. Haghnejad Azar*, Arens regularity of bilinear forms and unital Banach module spaces, *Bull. Iranian Math. Soc.*, **40** (2014), 505-520.
- [9] *J. Hennefeld*, A note on the Arens products, *Pacific J. Math.*, **26**, (1968), 115-119.
- [10] *H. G. Heuser*, Functional analysis, John Wiley and Sons, Ltd, Chichester, (1982).
- [11] *A. T. Lau, A. Ulger*, Topological center of certain dual algebras, *Trans. Amer. Math. Soc.*, **348** (1996), 1191-1212.
- [12] *M. McKennon*, Quasi-multipliers, *Trans. Amer. Math. Soc.* **233** (1977), 105-123.
- [13] *A. Ülger*, Some stability properties of Arens regular bilinear operators, *Prac. Amer. Math. Soc.*, **34** (1991), 443-454.
- [14] *S. Watanabe*, A Banach algebra which is an ideal in the second dual space, *Sci. Rep. Niigata Univ. Ser. A* (1974), No. 11, 95-101.
- [15] *N. Young*, The irregularity of multiplication in group algebras, *Quart. J. Math. Oxford.*, **24** (1973), 59-62.