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ANALYSIS AND IMPLEMENTATION OF A MLE-BASED STOCHASTIC
ALGORITHM FOR PARAMETER ESTIMATION

Irina BADRALEXI!

For as long as mathematical modelling has existed, parameter estimation has
been a fundamental problem. In this article, we make use of an existing algorithm
for parameter estimation in discreetly observed stochastic systems and apply it on
different known biological models. Our main purpose is to investigate the potential
of the considered algorithm by comparing the results we obtain to the results from
literature. We also discuss the computational cost and possible optimizations that
can be included.
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1. Introduction

The sole purpose of a mathematical model is to describe, as authentic as
possible, a phenomenon. During the modelling phase, selecting which parameters
should be included in the model influences its degree of accuracy and robustness.
In most cases, though, the numerical values of the parameters are not known.
Thus, estimating these values, so that the model behaves alike to the studied
phenomenon, is a crucial step.

In this paper we focus on a method for parameter inference in discretely
observed complex stochastic systems that can be modelled as a continuous-time
discrete-state Markov process. It is based on estimating the likelihood function
and its gradient with respect to the parameters. The mathematical framework and
full description of the method can be found in [3].

The author remarks on the broad nature of the method and states that is
can be applied to any discretely observed continuous-time Markov process with an
explicit functional form of the transition rates. Moreover, this approach is also suitable for
parameter estimation in the case of partial observations.

In what follows, we will use the method from [3] to estimate the
parameters of some biological models from literature. For this purpose, we are
going to offer a brief presentation of the mathematical concepts in a biological
context and a short sketch of the algorithm. For more details, see [3].
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2. Parameter estimation for biological systems

Consider K species of molecules S,,S,,...,S, , each having a population of
X, X,,..., X, molecules at a certain time t. In the system containing our species of
molecules, only M reactions R,R,,...,R,, can take place. This system can be
modelled by a continuous-time discrete-state Markov process. The state vector for
the reaction system at a time moment t is: X (t) =(X,, X,,..., X ) -

We assume that the reaction model is governed by a set of parameters
©={6,6,,...6,}, with r>M (such that each reaction depends on at least one

parameter).

The author of [3] assures us that the hypotheses of the mathematical
framework (which is more general in nature) hold, in particular, for any biological
system that obeys the mass-action law. This is due to the fact that the likelihood
function is linear with respects to the parameters. Moreover, in biochemical
reaction systems, the functional form for the transition rates is known (as they are
the propensity functions).

Given a time interval [a,b], we will perform a discretization in N

subintervals of length at :bl;_a’ such that at most one reaction (transition) can
take place in any of the N subintervals.

Let L(©; X (a), X(b)) denote the likelihood function for the biochemical
reaction system in the time interval [a,b], with full observations at a=t,,
X(a)=X(t,) andat b=t,,;, X(b)=X(t,,,). Assuming that the three hypothesis
from [3] are fulfilled and that J reactions have occurred in the time interval
[a,b], with the corresponding times of the reactions (R,t;), j=12...,J, the
likelihood function can be represented as:

L(e:X @ x(b)= X, P(X")[exp{—i(tm—t;)'ao(x(n)@)]f[aj(X(tj),@))

XeSy(ab) j=0

and its gradient is:

aL(@;X(a)'X(b)):E{j(-(tm-t,.)aa"(x(tj)‘@)}i_ 1 ,aaj(x(tj)@)}

06, 00

r j=0 r

where the state X(tj is the state of the system immediately after reaction

number j, @, (X (tj),G)) is the sum of all propensity functions for a given system
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state and E[-] is the average over the different paths from X°=X(a) to
XN = X(b).

3. The algorithm (SAPEL)

The author of [3] proposed an algorithm (SAPEL — “Stochastic Algorithm
for Parameter Estimation with Likelihood function”) which outlays the steps
necessary for implementing the estimation method. The algorithm consists of two
main steps:

1. Sampling step
2. Parameter estimation step
The procedure requires the user to start with initial values for the

parameters, which we will denote by 6 =(4,6,,..,6,), and with known

n
(observed) number of molecules for each species at t=a and t=b(in the fully
observed case).

With these values, a number of system's trajectories is generated between
t=a and t=b (sampling step). The user will choose a number N of subintervals
for [a,b], such that at most one reaction takes place in each subinterval (the
choosing of N requires the user to have extensive knowledge of the biological
phenomenon considered). The generation of some possible trajectories translates
into determining the number of molecules from each species at the intermediate
time points t., i=1, N , taking into account the number of molecules at time t=a

and the number of molecules at time t=b. This step can be implemented by using
Gillespie’s First Reaction Method (see [2]).

After the trajectories are determined, the likelihood function and its
gradient are calculated. The parameter estimation step basically consists of
maximizing the likelihood function. Thus, the values of the parameters are
updated according to the maximization process. This step can be implemented
using a Gradient Ascent Method, as follows:

1. Determine the ascent direction: d, = VL(6");

2. Update the parameter vector: 8" =6+ 1-d, (the step size 1>0 is a
small fixed value);

3. Test the stopping criterion: ‘0“*1 —9"‘ < ¢, with a suitable value &>0 (this
value must depend on the parameters range values).

4. If the stopping criterion is not satisfied, go back to the sampling step with
the updated parameters values 6" .
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An interesting remark is that this algorithm also works in the case of
partially observed data. This basically means that the number of molecules of a
certain species (or more species) is unknown at the time moments t=a and t=b.
The mathematical framework allows parameter estimation in this case by simply
declaring the unobserved species as unknown parameters (to be estimated).

4. Applications of the algorithm in biological models

In order to test the algorithm, we will consider two of the models
presented in [1] and one of the examples provided in [3].

Example 1. The first model is a simple reaction model (see Table 1).

Table 1
Reaction model with 3 molecular species

] . State change vector
Reactions Intensity rates a,, v (A B,C)
u ) y
6
R: A— B 3, =N, v, =(-110)
6,
R,: B—C a, =O,N, v, =(0,-11)

We denoted by N,and N, the number of molecules from species A and
B, respectively. Through reaction R, one individual from species A transforms
into an individual from species B and through the reaction R,, one individual
from species B transforms into an individual from species A.

The true values of the parameters, as found in [1], are 6, =(0.04,0.11).
We consider the initial number of individuals at time t=a as
(N, Ng,N&)=(7,8,0) and at time t=b as (N}, Ng,Ng)=(4,0,11), with
[a,b]=[0,23]. For ¢£=0.001 (from the stopping criterion), we get:

Estimated parameter values depending on the initial conditions, 6, =(0.04, 0.11;able i
Initial parameter values Estimated parameter values
(L1) (0.122,0.568)
(05,0.8) (0.0703, 0.3231)
(0.1,05) (0.0445,0.198)
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Example 2. The second example we consider is a viral infection model. As stated
in [1], the viral infection process goes through the following stages: adsorption to
the host cell and entry, the uncoating of the genome, transcription and translation,
genome replication, assembly and release of the virus progeny. For this paper, we
will consider a simple version of the model which corresponds to the early stages
of the infection (see Table 3).

Table 3
Viral infection model

Reactions Intensity rates a, Stiie&hgg&"’e;)tor
R: V i G a=4N, v, =(-11,0,0)
R,: G 2 G+M a, = 6,Ng v, =(0,0,1,0)
R,: G i 2G a, =6N; v;=(0,2,0,0)
R,: M i M +P a, = O,Ny, v,=(0,0,0,1)

The molecular species are involved in the model are V (inactivated viral
genome), G (activated viral genome), M (MRNA) and P (red fluorescent protein).
For more information regarding the interaction of these molecules, see [1] We
denoted by N,, N, and N,, the number of molecules from the respective

species.
The inactivated viral genome V activates into G through reaction R,. The

transcription reaction R, creates mMRNA, M, from the activated genome G.
Reaction R, is responsible for the replication of the activated viral genome G.
The translation reaction R, creates red fluorescent protein P from the mRNAM .

The true values of the parameters, as found in [1], are
G =(0.15,0.02,0.05,1). We consider the initial number of individuals at time

true
t=a as (N\j", N2, N2, N§)=(10,0,0,0). For the values at time t=b, we generate

a single trajectory using the true parameter values, and use the result as input for
the algorithm. We consider the time interval [a,b]=[0,30]. For £=0.001 (from the

stopping criterion), we get the parameter estimations found in Table 4.
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Table 4
Estimated parameter values depending on the initial conditions 6, =(0.15,0.02,0.05,1)

Estimated parameter values

(0.3776,0.152,0.09,1.301)
(0.1721,0.0332,0.0505,1.02)
(0.1499,0.02814,0.0498,1.031)

Initial parameter values
(L112)
(0.3,0.1,0.1,1.5)
(0.1,0.05,0.05,0.8)

Example 3. The third model we include is a stochastic version of a reversible
decay-dimerization with conversion. The system contains 4 reactions, involving
one species decay, a reversible dimerization and a conversion reaction (see Table
5).
Table 5
Decay-dimerization model

State change vector v, (N, N, , Ns,)

Reactions Intensity rates a,,
R: S 5. 3 =GN v, =(-1,0,0)
R,: S,+S, Kk S, a, =0, N, <N251 - v, =(-2,1,0)
Ryt S, 5 s+8, | 2=0Ns v, =(2,-1,0)
R,: S, 3 s, a, =0,Ng, v, =(0,-11)

We denoted by N, N, ,Ng the molecular species counts and assume that
the reaction system follow the mass-action law.

The true

6,

true

values of the
=(O.2,0.04,0.5 ). We consider the initial number of individuals at time

t=aas (N2,NZ,N¢ )=(1000,10,10).

For the values at time t=b, we generate a single trajectory using the true
parameter values, and use the result as input for the algorithm. We consider the
time interval [a,b]=[0,0.01]. For &=0.001 (from the stopping criterion), we get:

parameters, as

found in

[1], are

Table 6

Estimated parameter values depending on the initial conditions, 6, =(0.2,0.04,0.5)

Initial parameter values Estimated parameter values

(L11) (0.219,0.0556, 0.8798 )
(0.5,03,0.8) (0.2023,0.0445,0.565)
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5. Computational issues

The high computational cost is a known problem in the implementation of
stochastic algorithms. Remark that, for the algorithm considered in this paper, a
number (usually a fairly large number) of system trajectories are generated after
each modification of the parameter values after the second step (if the stopping
criterion was not met). For some simulation settings, it is not uncommon to expect
a result after hours of waiting.

An important issue with this algorithm is that the method depends greatly
on the initial conditions provided by the user. Note that for some initial
conditions, the algorithm may not converge or it may converge towards inaccurate
values.

Another aspect that requires special attention is the stopping criteria value
¢ . This value needs to be adjusted relative to the parameter range of values. If ¢ is
very small (too small), then the computational cost will increase, but if it is too
big, then the estimations may be amiss.

The computational cost also depends on the number of subintervals N
which divide the time interval [a,b]. The user needs to take into account the

implications of choosing this number. If the number of subintervals is too small,
then more than one reaction may take place in any subinterval (which contradicts
the theoretical results); if the number of subintervals is too big, then the
computational cost will increase.

Regarding the sampling step, as stated before, every execution of this step
requires the generation of many system trajectories that are consistent with the
observed data. If the observed data consist of many time points, simulating a
trajectory that passes through all of the data will be extremely unlikely, even when
using the true parameter values (this is common when working with stochastic
models). In order to bypass this problem, we can consider checking if the distance
between the observed number of molecules and the simulated number (at each
time point) is less than a user-defined threshold & . We can use a normalized L

distance d andtestif d <&, where d has the form:

— |Xsim (t|) — Xobs (t| )|
d _; 1+Xsim(ti)

Note that, by doing this, we can also account for the possible observation errors.
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6. Conclusions

Working with the true values of a system’s parameters is a requirement in
mathematical modelling. Having prior knowledge of these values is impossible in
most cases. Thus, the development and implementation of parameter estimation
methods is of outmost importance.

Due to the probabilistic nature of biological processes, mathematical
modelling in biology usually implies the use of stochastic models. The purpose of
this paper was to take an existing method for parameter estimation, to describe the
associated algorithm and discuss the computational issues that arise.

The use of this algorithm demands that the user possesses extensive
information regarding the process which is modelled. For example, the initial
parameter values (which are imputed by the user) influence the estimated values,
so prior knowledge of the interaction between the species is preferable.

A known issue of stochastic algorithms is the high computational cost.
Moreover, the computation cost may increas relative to some values which are
critical to the convergence of the algorithm. Some of the variables which
influence the computation cost (but which also increase the accuracy of the
estimation), are the stopping value ¢, the learning value Aand the number of
subintervals N for the trajectories. It is recommended that the user test different values
for these variables in order to obtain the best computational cost versus accuracy ratio.

An upside to applying this method is that it also works in the case of
partially observed data. The solution found in [3] is to consider the unobserved
species as extra parameters. The problem in doing this is that the vector of
parameters grows in length and the optimization problem increases in difficulty

Overall, excluding the high computation cost, the algorithm is general in
nature and adaptable to different simulation scenarios and the estimations are
close to the true parameter values (with appropriate initial values).
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