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ANALYSIS AND IMPLEMENTATION OF A MLE-BASED STOCHASTIC 

ALGORITHM FOR PARAMETER ESTIMATION 

Irina BADRALEXI1 

For as long as mathematical modelling has existed, parameter estimation has 

been a fundamental problem. In this article, we make use of an existing algorithm 

for parameter estimation in discreetly observed stochastic systems and apply it on 

different known biological models. Our main purpose is to investigate the potential 

of the considered algorithm by comparing the results we obtain to the results from 

literature. We also discuss the computational cost and possible optimizations that 

can be included.  
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1. Introduction 

The sole purpose of a mathematical model is to describe, as authentic as 

possible, a phenomenon. During the modelling phase, selecting which parameters 

should be included in the model influences its degree of accuracy and robustness.  

In most cases, though, the numerical values of the parameters are not known. 

Thus, estimating these values, so that the model behaves alike to the studied 

phenomenon, is a crucial step. 

In this paper we focus on a method for parameter inference in discretely 

observed complex stochastic systems that can be modelled as a continuous-time 

discrete-state Markov process. It is based on estimating the likelihood function 

and its gradient with respect to the parameters. The mathematical framework and 

full description of the method can be found in [3]. 

The author remarks on the broad nature of the method and states that is 

can be applied to any discretely observed continuous-time Markov process with an 

explicit functional form of the transition rates. Moreover, this approach is also suitable for 
parameter estimation in the case of partial observations. 

In what follows, we will use the method from [3] to estimate the 

parameters of some biological models from literature. For this purpose, we are 

going to offer a brief presentation of the mathematical concepts in a biological 

context and a short sketch of the algorithm. For more details, see [3]. 
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2. Parameter estimation for biological systems  

Consider K species of molecules 1 2, ,..., KS S S , each having a population of 

1 2, ,..., Kx x x molecules at a certain time t . In the system containing our species of 

molecules, only M  reactions 1 2, ,..., MR R R  can take place. This system can be 

modelled by a continuous-time discrete-state Markov process. The state vector for 

the reaction system at a time moment t  is: ( ) ( )1 2, ,..., KX t x x x= . 

We assume that the reaction model is governed by a set of parameters 

 1 2, ,..., r   = , with r M  (such that each reaction depends on at least one 

parameter). 

The author of [3] assures us that the hypotheses of the mathematical 

framework (which is more general in nature) hold, in particular, for any biological 

system that obeys the mass-action law. This is due to the fact that the likelihood 

function is linear with respects to the parameters. Moreover, in biochemical 

reaction systems, the functional form for the transition rates is known (as they are 

the propensity functions).  

Given a time interval  ,a b , we will perform a discretization in N  

subintervals of length 
b a

t
N

−
= , such that at most one reaction (transition) can 

take place in any of the N  subintervals. 

Let ( ); ( ), ( )L X a X b  denote the likelihood function for the biochemical 

reaction system in the time interval  ,a b , with full observations at 0a t= ,  

( )0( )X a X t=  and at 1Jb t += , ( )1( ) JX b X t += . Assuming that the three hypothesis 

from [3] are fulfilled and that J  reactions have occurred in the time interval 

 ,a b , with the corresponding times of the reactions ( ),j jR t , 1,2,...,j J= , the 

likelihood function can be represented as: 

( ) ( ) ( ) ( )( ) ( )( )
( )

0

1 0

, 0 1

; ( ), ( ) exp , ,

N

JJ

j j j j j

X S a b j j
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+
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 = − −    
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  
    

and its gradient is: 
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    
= − − + 

  

   
  
 

   
 

 

where the state ( )jX t  is the state of the system immediately after reaction 

number j , ( )( )0 ,ja X t   is the sum of all propensity functions for a given system 
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state and  E   is the average over the different paths from 0 ( )X X a=  to 

( )NX X b= . 

 

3. The algorithm (SAPEL) 

The author of [3] proposed an algorithm (SAPEL – “Stochastic Algorithm 

for Parameter Estimation with Likelihood function”) which outlays the steps 

necessary for implementing the estimation method. The algorithm consists of two 

main steps:  

1. Sampling step 

2. Parameter estimation step 

The procedure requires the user to start with initial values for the 

parameters, which we will denote by ( )(0)

1 2
ˆ , ,..., n   = , and with known 

(observed) number of molecules for each species at t a=  and t b= (in the fully 

observed case).  

With these values, a number of system's trajectories is generated between 

t a=  and t b=  (sampling step). The user will choose a number N  of subintervals 

for [ , ]a b , such that at most one reaction takes place in each subinterval (the 

choosing of N requires the user to have extensive knowledge of the biological 

phenomenon considered). The generation of some possible trajectories translates 

into determining the number of molecules from each species at the intermediate 

time points it , 1,i N=  , taking into account the number of molecules at time t a=  

and the number of molecules at time t b= . This step can be implemented by using 

Gillespie’s First Reaction Method (see [2]).  

After the trajectories are determined, the likelihood function and its 

gradient are calculated. The parameter estimation step basically consists of 

maximizing the likelihood function. Thus, the values of the parameters are 

updated according to the maximization process. This step can be implemented 

using a Gradient Ascent Method, as follows: 

1. Determine the ascent direction: ( )k

kd L = ; 

2. Update the parameter vector: 
1k k

kd  + = +   (the step size 0   is a 

small fixed value); 

3. Test the stopping criterion: 1k k  + −  , with a suitable value 0   (this 

value must depend on the parameters range values).  

4. If the stopping criterion is not satisfied, go back to the sampling step with 

the updated parameters values 
1k +
 .  
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An interesting remark is that this algorithm also works in the case of 

partially observed data. This basically means that the number of molecules of a 

certain species (or more species) is unknown at the time moments t a=  and t b= . 

The mathematical framework allows parameter estimation in this case by simply 

declaring the unobserved species as unknown parameters (to be estimated).  

 

4. Applications of the algorithm in biological models 

In order to test the algorithm, we will consider two of the models 

presented in [1] and one of the examples provided in [3].  

Example 1. The first model is a simple reaction model (see Table 1). 

Table 1 

Reaction model with 3 molecular species 

Reactions Intensity rates a
 

State change vector 

( , , )v A B C
 

1

1

:R A B


→  1 1 Aa N=  ( )1 1,1,0v = −  

2

2

:R B C


→  2 2 Ba N=  ( )2 0, 1,1v = −  

We denoted by 
AN and BN  the number of molecules from species A  and 

B , respectively. Through reaction 1R , one individual from species A  transforms 

into an individual from species B  and through the reaction 2R , one individual 

from species B  transforms into an individual from species A . 

The true values of the parameters, as found in [1], are ( )0.04, 0.11true = . 

We consider the initial number of individuals at time t a=  as 

( ) ( ), , 7,8,0a a a

A B CN N N =  and at time t b=  as ( ) ( ), , 4,0,11b b b

A B CN N N = , with 

   , 0,23a b = . For 0.001 =  (from the stopping criterion), we get: 

Table 2 

Estimated parameter values depending on the initial conditions, ( )0.04, 0.11true =  

Initial parameter values Estimated parameter values 

( )1,1  ( )0.122, 0.568  

( )0.5, 0.8  ( )0.0703, 0.3231  

( )0.1, 0.5  ( )0.0445, 0.198  
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Example 2. The second example we consider is a viral infection model. As stated 

in [1], the viral infection process goes through the following stages: adsorption to 

the host cell and entry, the uncoating of the genome, transcription and translation, 

genome replication, assembly and release of the virus progeny. For this paper, we 

will consider a simple version of the model which corresponds to the early stages 

of the infection (see Table 3). 

Table 3 

Viral infection model 

Reactions Intensity rates a
 

State change vector 

( , , , )v V G M P
 

1

1

:R V G


→  1 1 Va N=  ( )1 1,1,0,0v = −  

2

2

:R G G M


+→  2 2 Ga N=  ( )2 0,0,1,0v =  

3

3

: 2R G G


→  3 3 Ga N=  ( )3 0,2,0,0v =  

4

4

:R M M P


+→  4 4 Ma N=  ( )4 0,0,0,1v =  

 

The molecular species are involved in the model are V (inactivated viral 

genome), G (activated viral genome), M (mRNA) and P (red fluorescent protein). 

For more information regarding the interaction of these molecules, see [1] We 

denoted by 
VN , 

GN  and MN  the number of molecules from the respective 

species.  

The inactivated viral genome V  activates into G  through reaction 1R . The 

transcription reaction 2R  creates mRNA, M ,  from the activated genome G . 

Reaction 3R  is responsible for the replication of the activated viral genome G . 

The translation reaction 4R  creates red fluorescent protein P from the mRNA M . 

The true values of the parameters, as found in [1], are 

( )0.15,0.02,0.05,1true = . We consider the initial number of individuals at time 

t a=  as ( ) ( ), , , 10,0,0,0a a a a

V G M PN N N N = . For the values at time t b= , we generate 

a single trajectory using the true parameter values, and use the result as input for 

the algorithm. We consider the time interval    , 0,30a b = . For 0.001 =  (from the 

stopping criterion), we get the parameter estimations found in Table 4. 
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Table 4 

Estimated parameter values depending on the initial conditions ( )0.15,0.02,0.05,1true =  

Initial parameter values Estimated parameter values 

( )1,1,1,2  ( )0.3776,0.152,0.09,1.301  

( )0.3,0.1,0.1,1.5  ( )0.1721,0.0332,0.0505,1.02  

( )0.1,0.05,0.05,0.8  ( )0.1499,0.02814,0.0498,1.031  

Example 3. The third model we include is a stochastic version of a reversible 

decay-dimerization with conversion. The system contains 4 reactions, involving 

one species decay, a reversible dimerization and a conversion reaction (see Table 

5). 

Table 5 

Decay-dimerization model 

Reactions Intensity rates a
 State change vector 

1 2 3
( , , )S S Sv N N N

 

1 1

1

:R S


→  11 1 Sa N=  ( )1 1,0,0v = −  

2 1 1 2

2

:R S S S


+ →  
( )

1 1

2 2

1

2

S SN N
a 

−
=  ( )2 2,1,0v = −  

3 2 1 1

3

:R S S S


+→  23 3 Sa N=  ( )3 2, 1,0v = −  

4 2 3

4

:R S S


→  24 4 Sa N=  ( )4 0, 1,1v = −  

We denoted by 
1 2 3
, ,S S SN N N  the molecular species counts and assume that 

the reaction system follow the mass-action law. 

The true values of the parameters, as found in [1], are 

( )0.2 , 0.04 , 0.5true = . We consider the initial number of individuals at time 

t a=  as ( ) ( )
1 2 3
, , 1000,10,10a a a

S S SN N N = .  

For the values at time t b= , we generate a single trajectory using the true 

parameter values, and use the result as input for the algorithm. We consider the 

time interval    , 0,0.01a b = . For 0.001 =  (from the stopping criterion), we get: 

Table 6 

 Estimated parameter values depending on the initial conditions, ( )0.2 , 0.04 , 0.5true =  

Initial parameter values Estimated parameter values 

( )1,1,1  ( )0.219 , 0.0556 , 0.8798  

( )0.5,0.3,0.8  ( )0.2023,0.0445,0.565  
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5. Computational issues 

The high computational cost is a known problem in the implementation of 

stochastic algorithms. Remark that, for the algorithm considered in this paper, a 

number (usually a fairly large number) of system trajectories are generated after 

each modification of the parameter values after the second step (if the stopping 

criterion was not met). For some simulation settings, it is not uncommon to expect 

a result after hours of waiting. 

An important issue with this algorithm is that the method depends greatly 

on the initial conditions provided by the user. Note that for some initial 

conditions, the algorithm may not converge or it may converge towards inaccurate 

values. 

Another aspect that requires special attention is the stopping criteria value  

 . This value needs to be adjusted relative to the parameter range of values. If  is 

very small (too small), then the computational cost will increase, but if it is too 

big, then the estimations may be amiss. 

The computational cost also depends on the number of subintervals N   

which divide the time interval  ,a b . The user needs to take into account the 

implications of choosing this number. If the number of subintervals is too small, 

then more than one reaction may take place in any subinterval (which contradicts 

the theoretical results); if the number of subintervals is too big, then the 

computational cost will increase. 

Regarding the sampling step, as stated before, every execution of this step 

requires the generation of many system trajectories that are consistent with the 

observed data. If the observed data consist of many time points, simulating a 

trajectory that passes through all of the data will be extremely unlikely, even when 

using the true parameter values (this is common when working with stochastic 

models). In order to bypass this problem, we can consider checking if the distance 

between the observed number of molecules and the simulated number (at each 

time point) is less than a user-defined threshold . We can use a normalized 
1L  

distance d  and test if d  , where d  has the form: 

( ) ( )

1 ( )

sim i obs i

N sim i

x t x t
d

x t

−
=

+
  

 

Note that, by doing this, we can also account for the possible observation errors. 

 

 

 

 



30  Irina Badralexi 

 

 

6. Conclusions 

Working with the true values of a system’s parameters is a requirement in 

mathematical modelling. Having prior knowledge of these values is impossible in 

most cases. Thus, the development and implementation of parameter estimation 

methods is of outmost importance.  

Due to the probabilistic nature of biological processes, mathematical 

modelling in biology usually implies the use of stochastic models. The purpose of 

this paper was to take an existing method for parameter estimation, to describe the 

associated algorithm and discuss the computational issues that arise. 

The use of this algorithm demands that the user possesses extensive 

information regarding the process which is modelled. For example, the initial 

parameter values (which are imputed by the user) influence the estimated values, 

so prior knowledge of the interaction between the species is preferable. 

A known issue of stochastic algorithms is the high computational cost. 

Moreover, the computation cost may increas relative to some values which are 

critical to the convergence of the algorithm. Some of the variables which 

influence the computation cost (but which also increase the accuracy of the 

estimation), are the stopping value  , the learning value  and the number of 

subintervals N  for the trajectories. It is recommended that the user test different values 

for these variables in order to obtain the best computational cost versus accuracy ratio. 

An upside to applying this method is that it also works in the case of 

partially observed data. The solution found in [3] is to consider the unobserved 

species as extra parameters. The problem in doing this is that the vector of 

parameters grows in length and the optimization problem increases in difficulty 

Overall, excluding the high computation cost, the algorithm is general in 

nature and adaptable to different simulation scenarios and the estimations are 

close to the true parameter values (with appropriate initial values). 
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