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OPTIMIZING THE COMPUTATION OF EIGENVALUES
USING GRAPHICS PROCESSING UNITS

Ion LUNGU', Alexandru PIRJAN?, Dana-Mihaela PETROSANU?®

In aceastd lucrare descriem mai intdi, pe scurt, cdteva aspecte matematice
referitoare la calcularea valorilor proprii, urmate de o abordare originala: un
algoritm de bisectie util in calculul valorilor proprii pentru matrici tridiagonale
simetrice de dimensiuni arbitrare, folosind capabilitatile computationale ale celor
mai noi unitdti de procesare grafica ce inglobeaza arhitectura de calcul paralel
Compute Unified Device Architecture. Originalitatea abordarii din aceasta lucrare
constd in optimizarea implementarii algoritmului, bazatd pe imbundtdtirea
gestiondrii memoriei partajate §i pe eficientizarea algoritmului de scanare. Astfel,
dezvoltatorii de aplicatii pot folosi puterea imensa de calcul paralel oferita de
unitdtile de procesare graficd de ultimd generatie.

In this paper, we first briefly describe some mathematical aspects regarding
the computation of eigenvalues, followed by an original approach: a bisection
algorithm useful in computing eigenvalues for a tridiagonal symmetric matrix of
arbitrary size, using the computing capabilities of the latest graphics processing
units that incorporate the Compute Unified Device Architecture. The novel
approach developed in this paper vrelates to an optimized algorithm’s
implementation, based on the improvement of the shared memory management and
on the increased efficiency of the scan algorithm. Thus, developers can use the huge
parallel computational power offered by the Compute Unified Device Architecture.

Keywords: eigenvalues, tridiagonal symmetric matrix, graphics processing units,
Compute Unified Device Architecture.

1. Introduction

The determination of all the eigenvalues and eigenvectors of a matrix is an
extremely important issue in linear algebra, statistics, physics, engineering and
many other fields. This is often used in common applications such as stability
analysis, physics of rotating bodies and small oscillations of vibrating systems.
This paper describes the implementation of a bisection algorithm useful in
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computing all the eigenvalues for a tridiagonal symmetric matrix of arbitrary size
using the capabilities of graphics processing units (GPUs) that are based on the
parallel Compute Unified Device Architecture (CUDA) developed by NVidia.

In the following, we first intend to mention a few notations and describe
some mathematical aspects regarding the computation of eigenvalues [1], [2]. In
the following we use Householder’s notations: scalars are denoted by lowercase
letters (a,b,c or a,f,y); vectors are considered by default as being column
vectors and are denoted with lowercase bold letters @ = (a;);=17; square matrices
with real elements are denoted by bold uppercase roman letters A € M'(n,n), A =
(aij)ij=1m; the transpose of the A matrix is denoted AT. This paper refers
especially to tridiagonal symmetric matrices with real elements, denoted by T and
characterized by the fact that only its first, lower and upper diagonals are non-
zero: T = (aij)i,j:L—n, ai]- = aji,ai]- =0 lf |l —]l = Z,Vl,] = 1,n.

For a square matrix with real elements A = (a;;);j-77, we denote an
eigenvalue by A, an eigenvector by u, the spectrum of A by A(4). An interesting
result for this study is the fact that all the eigenvalues for a symmetric matrix are
real [3].

In contrast with traditional data processing performed by central
processing units (CPUs), a general-purpose graphics processing unit (GPGPU)
represents a new concept. By increasing the clock speed and the number of
processor cores, central processing units (CPUs) and graphics processing units
(GPUs) have evolved over time. CUDA is a hardware architecture that introduces
a new parallel programming model that uses the computational power of GPUs to
solve complex computational problems more efficiently than through traditional
central processing units. The CUDA architecture provides a software development
environment that allows developers to use high-level language C.

The CUDA parallel programming model was designed to offer to the
developers the necessary tools for designing scalable parallel applications in a
standard programming language like C [4]. In the future, CUDA will provide
support for other programming languages and interfaces such as C++, OpenCL
and DirectX Compute.

2. The compute unified device architecture (CUDA)

In the following, we describe the main features of the Compute Unified
Device Architecture (CUDA). The CUDA programming environment provides
three levels of abstraction [5]: a hierarchy of thread groups, the shared memory
and the barrier synchronization (Fig. 1). These abstractions, available to the
developer as a minimal set of extensions in the C language, provide fine-grained
parallelism for data and threads, associated with large grained parallelism for data
and tasks. Using these abstractions, the developer partitions the problem into sub-
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problems of small sizes that can be solved in parallel. Such an approach allows
threads to cooperate when solving each sub-problem and also provides scalability
since each sub-problem can be solved by any of the available processing cores.
Consequently, a CUDA C compiled program can be executed on any number of
processing cores.

Thread

i

Per-thread Private
? Local 0
float LocalVar;

wed__ float SharedVar;
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Fig. 1. NVidia Compute Unified Device Architecture (CUDA)

Using CUDA, the latest NVidia GPUs effectively become open
architectures like CPUs and thus, the latest graphics processing units become
accessible for general-purpose computations that have been previously possible
only on central processing units (CPUs). However, unlike a CPU, a GPU has
parallel "many-core" architecture, each core being capable of running thousands
of threads simultaneously - if an application is suited to this kind of an
architecture, the GPU can offer large performance benefits. This approach of
solving general-purpose problems on GPUs is known as General-Purpose
computation on Graphics Processing Units (GPGPU).

A CUDA program calls parallel program kernels. A set of parallel threads
is executed in parallel by the kernel. The programmer or compiler organizes these
threads into thread blocks and grids of thread blocks. The GPU instantiates a
kernel program on a grid containing parallel thread blocks. Each thread from the
block executes an instance of the kernel, has a unique ID associated to its registers
and its private memory within the thread block [5].

In the CUDA programming model, when algorithms are being developed,
the developers’ most important concern is to divide the required work in
fragments that can be processed in parallel by a number of thread blocks, each
containing more threads. In order to avoid the execution of threads within a block
by multiple cores within a streaming multiprocessor, it is recommended that the
number of thread blocks match the number of processors. The most important
factor in achieving performance is the repartition of tasks that have to be
performed between the thread blocks.
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The newest NVidia’s architecture is called Fermi and became
commercially available on March 26, 2010. This architecture is implemented in
the GeForce GTX400 series and it features 16 SMs (streaming multiprocessors),
each of them having 32 SPs (streaming processors, also called CUDA cores in the
Fermi architecture) and 64 KB shared memory that is configurable as larger
shared memory or larger L1 cache (48/16 KB or 16/48 KB). The total amount of
SPs is 512 and the whole GPU shares a L2 cache of 768 KB. Fermi offers eight
times faster double precision performance, IEEE 754-2008 FP precision and error
correcting code (ECC) memory, necessary for consistency requirements of
scientific computing [5]. A comparison between different CUDA architectures is
depicted in [6]. This architecture offers a high degree of flexibility when it comes
to allocate local resources like registers or local memory in threads. The
programmer divides local resources among threads and every CUDA core can
process a variable number of threads. Although this flexibility offers a high
degree of control over an application’s performance, it has also a great impact on
optimizing the performance of computations. Another important aspect is related
to how the GeForce GTX480 can execute applications and what are the elements
that improve or limit its performance. Numerous software applications have been
ported and evaluated on the CUDA platform as a result of its huge data processing
power [7].

3. The Gerschgorin circle theorem and the computation of the inertia
for a tridiagonal symmetric matrix

In the following, we depict some mathematical results that are used later,
in order to establish a bisection algorithm for computing all eigenvalues in the
case of a tridiagonal symmetric matrix with real elements.

The first important result for our study is the Gerschgorin Circle Theorem.
If A€ M(n,n) is a symmetric matrix with real elements, Q € M'(n,n) an
orthogonal matrix with real elements, QTAQ=D+F with D € M'(n,n),D =
(dij)i'jzl,_n,dii =d;,d;j=0if |i—jl>1,Vi,j=1n a diagonal matrix and
F e M(n,n),F = Uij)i,j:ﬁ’
entries, then the spectrum of 4,

A(4) € UiLqd; — 1, d; + 1] (1)
where r; = Y7, |fi;], Vi = 1,n [3].
If we consider a tridiagonal symmetric matrix with real elements:
T = (aij)l_'j=1'_n, a;; = ai,Vi = 1,Tl, Aiiv1 = bi,Vi = 1,Tl - 1,

fii=0Vi=1,n a matrix with zero diagonal

aij = aji,aij =0if |l_]| = Z,Vl,] :H
we obtain a corollary of the above mentioned theorem. The spectrum of A
verifies:
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A(4) € UiLqla; —ma; + 1] ()
where r; = by, 1, =b; + b;_1,Vi=2,n— 1,1, = b,_1 [7].
Another interesting result establishes a relationship between the
eigenvalues of a square matrix A and those of a shifted version of A
A, =A—ul 3)
where u € R is a parameter called shift index. If 4;,i = 1,n are the eigenvalues
of the matrix A4, then the matrix A, has the eigenvalues y; = A;-u, i = 1,nand
the eigenvectors of A and A, are identical. The proof of this theorem is based on
the characteristic polynomial

det(A— A1) =0,Vi=1,n 4
Using (3) and (4) we obtain:
det( (A, +ul)— A1) =0,Vi=T1n (5)
and this relation is equivalent with
det(A,+ @l —2)I)=0,vi=Tn (6)

Consequently, denoting by p; = A;-u, i =1,n, we obtain that u;are the
eigenvalues of the matrix A,. If we arrange the spectrum of a the square matrix A
in a diagonal matrix A, we obtain

(A—uDU = (A-uhU (7
and therefore, the eigenvectors of A and A, are identical. This result is the
starting point for a wide class of eigenvalue algorithms as the shift does not
change the eigenvectors but translates the eigenvalues by the shift index u. In
many situations, it is more efficient to compute first the eigenvalues of the shifted
matrix and then, using the above obtained result, to compute the eigenvalues of
the original matrix.

For a square matrix A, after computing its spectrum A(A), one can
establish the number of negative elements in this spectrum, denoted by n(A4), the
number of zeros contained in the spectrum of A, denoted by z(A) and the number
of positive elements in the spectrum A(4), denoted by p(A). The inertia of the
square Hermitian matrix A is defined as the triple of positive
integers (n(A4),z(A),p(A)). An interesting result for our study is the Sylvester’s
Law of Inertia [3] which states that if A is a tridiagonal symmetric, positive
definite matrix and X € M (n,n) is a nonsingular matrix, then the inertia is the
same for the matrices 4 and XTAX.

In the following we introduce the notion of Cholesky decomposition (or
Cholesky triangle), used in linear algebra. This is a decomposition of a positive-
definite matrix into the product of a lower triangular matrix and its conjugate
transpose. If A is a tridiagonal symmetric, positive definite matrix, then A can be
decomposed as:

A=LLT ®)
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where L is a lower triangular matrix with strictly positive diagonal entries, and
LT denotes the transpose of L. This is the Cholesky decomposition, which is
unique [2].

Based on this notion, an interesting theorem can be obtained. If T is a non-
degenerated tridiagonal symmetric, positive definite matrix, then there are two
matrices, D diagonal and L lower bidiagonal with all diagonal elements being 1,
and there exists a factorization of T,

T = LDLT 9)
The proof of this statement is based on the Cholesky factorization T = LLT, [2].
Using L = LD/2, the existence of the factorization of T as in (9) follows
immediately.

As a corollary of this theorem, for a tridiagonal symmetric matrix T €
M (n,n) with real components, one can compute the inertia first by determining
the factorization (9) of T and then counting the positive and negative eigenvalues
of D, the diagonal matrix which appears in the decomposition (9).

4. The eigenvalue count for a tridiagonal symmetric matrix

In the following, we introduce the notion of eigenvalue count. Considering
a tridiagonal symmetric matrix T € M (n, n) with real components, a real number
x, the eigenvalue count of T is denoted C(x) and represents the number of
eigenvalues of T, satisfying the condition:

C(x) = card 2,(T), 1,(T) = {1 € A(T)|1 < x} (10)
Similarly, the eigenvalue count of an interval (x;,x,], denoted by C(xq,x,) is
defined by:
C(x1,x3) = C(xz) — C(x1) (11)
If C(xq,x,) = 0, the interval (x4, x,] is called empty.

Using the above-mentioned corollary, the eigenvalue count C(x) of T can

be obtained applying the following steps:

1. Using T and x, we first compute the shifted version of T, T, =T — xI.

2. For the shifted version T, we compute the LDLT factorization, as in (9).

3. Once obtained the diagonal matrix D, we can count its negative elements.
Actually, the computation of the full LDLT factorization is not necessary, but only
the signs of those elements of D that are non-zero.

In [8] an algorithm is proposed which is useful for obtaining the
eigenvalue count in an efficient way, without the computation of the full LDLT
factorization and avoiding the storage of the full vector containing diagonal
elements of the matrix D. We will refer later at this algorithm as Al. As input
there are considered the elements of the tridiagonal symmetric matrix T with real
elements: the diagonal and upper diagonal elements a; = a;,Vi = 1,1, a;;41 =
b;, Vi = 1,n — 1 and we define b, = 0. Also the real number x, which is used as
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a shift, is considered as an input. The output is the eigenvalue count of T denoted
by C(x) and is obtained by using the following steps:

1. The initialization: count = 0

2. The initialization: dy = 1

bi*b;

3. For every index i = 1:n we compute d; = a; —x — . If the computed

i-1
value d;is negative, then the counter variable is incremented count =
count + 1.

5. An algorithm for computing the eigenvalues of a tridiagonal
symmetric matrix

Using the previous results, in the following we depict an algorithm [9] for
computing the eigenvalues of a tridiagonal symmetric matrix with real
components. Considering a tridiagonal symmetric matrix T € M (n,n) with real
components and applying the Gerschgorin circle theorem for symmetric,
tridiagonal matrices, as in the final part of section 2, we obtain the Gerschgorin
interval of T, which we note by Iy = (@0, Boo]- The eigenvalue count for this
interval is computed using the A1 algorithm, depicted in the previous section.

This interval can be divided in two smaller intervals of the same length
denoted by I;¢ = (@19, B1o] and I;; = (11, f11] Where, obviously, @,y = @,
Bio = @11, P11 = Poos loo =loVhiand LjpNI; =¢. Applying the Al
algorithm depicted in the previous section we compute the eigenvalues count for
these two intervals, C(aq,B10) =S and C(a;q,B11) = n — s.Using these two
smaller intervals, we obtain for the eigenvalues better bounds than we had
obtained before when using the first interval. The indices used to denote the
intervals have the following meaning: the first index denotes the level of bisection
and the second index is used for counting the obtained interval at that level. The
process continues and each of the two previously built intervals is split in two
intervals, determining another improvement of the eigenvalues bounds. The
process continues recursively and through this method, we obtain approximations
with a desired accuracy for the eigenvalues. If one of the generated intervals is
empty, its subdivision is stopped as it will no longer be interesting for our study.
Non-empty intervals are split until we obtain approximations of the eigenvalues
according to the desired accuracy. After every split only the intervals that have a
strictly positive eigenvalue count are kept.

As a result of the subdivision process we obtain a tree having the
Gerschgorin interval of T as a root and in the nodes of this tree there are the
subdivision intervals [;; = (a;j, B;;] obtained through the above described

method. The index i represents the level of the tree and the index j is used for
counting the obtained intervals at level i. The external nodes could be empty
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intervals if C (aij,,[?i j) = 0 or converged intervals having a size smaller than a

previous established accuracy.

The process of computing the eigenvalues of a tridiagonal symmetric
matrix can be summarized through the following algorithm, denoted A2. The
input consists in the elements of the tridiagonal symmetric matrix T with real
elements and the desired accuracy €. The output is the spectrum A(T) of the
matrix T and is determined through the following steps:

1. Compute the Gerschgorin interval of T, Iy = (®g0, Bool-

2. Divide the interval in two smaller equal intervals I;o = (@49, B10] and
L1y = (@11, B11] where, obviously, ajo = a0, P10 = @11, P11 = Poo,
Io =lipVUland 1o N1y = ¢.

3. For each of the obtained intervals a number is chosen within the interval, noted
by yij € (a;j, Bij]. Using Al, the eigenvalue count of the considered interval,
C(yi;) is computed.

4. If C(y;;) = 0, then the corresponding interval is empty and this interval will
not be split anymore. Otherwise, if C(y;;) # 0, the steps 2-4 are repeated,
keeping only non-empty intervals, until the approximations for the eigenvalues
are obtained, according to the desired accuracy.

5. All the obtained eigenvalues are saved in a list.

6. The implementation of the algorithm for computing eigenvalues
using CUDA

In the following, we will implement the A2 algorithm from section 5 for
computing eigenvalues using the CUDA data parallel programming model [5].
The implementation is based on the scan algorithm (also known as prefix sum)
[10].

Usually, when one intends to parallelize an algorithm in order to
implement it efficiently on a parallel data architecture, the first necessary step is to
identify the perfect candidates that can be processed in parallel: all the
computations that are independent and similar for a large set of data. In our case,
in the first algorithm, when the eigenvalue count is computed, similar
computations are performed for all the elements of the input tridiagonal
symmetric matrix. Every iteration of the algorithm updates the variable d and
thus, every step of the algorithm is linked to the previous one. Therefore, this
algorithm is computed serially and the eigenvalue count computation cannot be
parallelized. In the A2 algorithm depicted above, a parallelization can be obtained
if the steps 3-5 are performed in parallel for all the intervals I;; = (a;j, B;;] at the

level j.
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When implementing a CUDA data parallel programming model, one of the
most important issues is the threads allocation. From the available options, the
programmer can choose one or another taking into account different criteria
(efficiency, costs, the available devices and the set of data). As an example, in the
studied problem it is possible to process multiple intervals from the set I;; using
the same thread or using for each interval a different thread, which is more
suitable when dealing with a data parallel architecture. The Compute Unified
Device Architecture (CUDA) programming model does not offer the possibility to
dynamically allocate or create threads on the device and thus it needs a prior
decision and specification referring to threads allocations. Therefore it is of
paramount importance to choose a suitable number of threads when the kernel
program is launched, corresponding to the maximum number of parallel processed
intervals. If the desired accuracy is chosen smaller than the minimum distance
between any two eigenvalues, then the number of allocated threads must be equal
to the number of eigenvalues of the input tridiagonal symmetric matrix. For the
first levels of the tree processed by the computation algorithm, many threads are
inactive until a higher level of the tree has been reached. In that moment, an
increased number of threads are exploited. This means that the parallelism is fully
exploited after the first iterations of the algorithm [9].

In the following, we address several issues related to the intervals’
subdivision. In the 3-rd step of the algorithm depicted in section 5, for each of the
split intervals, a number within the interval has been chosen and denoted by
Yij € (@ij, Bi;]. In the literature, different approaches have been proposed in order
to determine y;; [8], [11]. In this paper, we have preferred the midpoint
subdivision, whose main advantage is that at a fixed level j of the tree, all the
child intervals have the same size. Therefore, all the converged intervals are
obtained at the same processing step and they lie on the same level of the tree.
This approach improves the efficiency of the eigenvalues computation [5].

The above depicted algorithm for computing the eigenvalues of a
tridiagonal symmetric matrix imposes the storage of a data set: the non-zero
elements of the input matrix and the active intervals. For the input matrix, data is
stored using two vectors that contain the diagonal and the first upper diagonal. For
the intervals, the data stored consists in the left and right bound and the
eigenvalue count for these bounds.

Taking into account the recommendations from the CUDA programming
guide [5], in order to attain an optimal performance the data must be represented
according to some conditions, the most important ones being: minimizing data
transfers to global memory; avoiding non-aligned data transfers to global
memory; using, whenever possible, the shared memory and registers for all
computations. The global memory is much slower than the shared memory and so,
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we have used it only at the beginning of the computations (for loading the data)
and at the end (for the storage of the results).

7. The parallel prefix sum algorithm

The implementation of the algorithm for computing the eigenvalues of a
tridiagonal symmetric matrix using a data parallel programming model through
CUDA is based on the scan algorithm (also known as prefix sum) [10]. In this
paper, we propose several improvements of the scan algorithm based on the huge
parallel computing power of the Fermi architecture.

The parallel prefix sum or parallel scan algorithm is a useful tool for
sorting routines, for building data structures and for many parallel algorithms.
Consequently, the efficient implementation of the parallel scan algorithm in
CUDA improves the performance for all the algorithms that make use of the
parallel prefix sum. By implementing the basic algorithm in CUDA, one can
obtain many advanced techniques useful in parallel algorithms. A particular case
is our algorithm for computing the eigenvalues using the Compute Unified Device
Architecture.

The implementations of the prefix sum concept based on the modern
parallel architectures are becoming increasingly important for developing efficient
computation algorithms. In [12] it is mentioned that, even if the prefix sum seems
to be an inherent situation of sequential computations, it can be efficiently
parallelized. In the following, we introduce the definition of the prefix sum, its
main properties and several improvements to the scan algorithm, based on the
CUDA parallel computing architecture. These improvements are used in the
above-mentioned algorithm for computing the eigenvalues using CUDA. There
are two basic concepts regarding the prefix sum: the all-prefix-sums operation
(inclusive scan) and the exclusive scan operation [12].

Let’s consider % a binary associative operator defined on the set of real
numbers and v = [ay, a4, ..., @,_1] an array of n real numbers. The inclusive scan
operation associates to the array v the n-dimension array w;, defined as follows:

w; = [ag, (ag % ay), (g * a; % ay), ..., (Ag % Ay * ... % ay_q1)] (12)

Some of the most common applications of the inclusive scan operation are
linked to lexical analysis, sorting, stream compaction, polynomial evaluation,
string comparison, building histograms, data structures (graphs, trees, etc.) in
parallel [12]. The main advantage of using all-prefix-sums implementations is the
fact that it converts a part of sequential computations in parallel equivalent ones.

The inclusive scan operation associates an array to another, for which each
element k is the sum of all precedent elements including the k-element of the
input array. This fact justifies the name of inclusive scan. In practice, another
output array is often used: each element k is the sum of all precedent elements of
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the input array, except the k-element of the input array. This is the exclusive scan
operation (or prescan) [12]. Let's consider @ a binary associative operator defined
on the set of real numbers, e the identity element for the binary operation,
v = [ag, a4, ...,an_1] an array of nreal numbers. The exclusive scan operation
associates to the array v the array w, of n elements, defined as follows:

we = [e,ap, (ao®ay), (a¢®a;®ay), ..., (a)®a; ® ... ®an_,)] (13)

One can easily generate an exclusive scan output vector w, starting from
an inclusive scan, by inserting on the first position of the output vector the identity
element for the binary operation and deleting the last component of the output
vector w;. Similarly, one can easily generate an inclusive scan output vector w;
starting from an exclusive scan. In the following we discuss the case of the
exclusive scan.

In the sequential version of the exclusive scan, a single thread on a central
processing unit (CPU) executes the computations. All the elements of the input
array are processed in an ascendant order and the current element of the output
array is computed as the sum of the previous element of the output array and the
previous element of the input array. In this case, if the input array has the size n,
the computation of the output array requires exactly n additions to be performed.

8. Managing shared memory bank conflicts, a solution for optimizing
the parallel prefix sum algorithm in CUDA

In [10], some parallel versions of the exclusive scan computing method are
depicted: a parallel scan implementation that is not work-efficient and an
improved, work-efficient scan algorithm.

In the situation of the above-depicted algorithm for computing the
eigenvalues using CUDA, we have used an efficient implementation of scan based
on multiple blocks of threads, resulting in a significant speedup over a sequential
implementation on a fast CPU. We have taken into account both the algorithm’s
and the hardware’s efficiency. In order to make the parallel scan version efficient
on NVidia GPU hardware, we have optimized the memory access patterns.

The overall performance has been significantly improved by managing the
shared memory bank conflicts. In [5] the CUDA shared memory (used by the scan
algorithm) is described as being composed of multiple banks (equally sized
memory modules). Consecutive array accesses through consecutive threads are
very fast as each memory bank holds a successive 32-bit value (e.g. a float
variable). Multiple data requests from the same bank generate bank conflicts. The
requests can originate from the same address or multiple addresses may map to
the same bank. The hardware serializes the memory operations when the conflict
occurs and this forces all the threads to wait until all memory requests are fulfilled
[6]. Serialization is avoided if all threads read from the same-shared memory
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address, because a broadcast mechanism is automatically triggered. The broadcast
mechanism is an excellent high-performance method to deliver data
simultaneously to many threads.

In the Fermi architecture the streaming multiprocessor schedules threads in
groups of 32 parallel threads called warps. We have used a warp serialize flag to
determine if a shared memory bank conflict occurs in any of the kernels. The
algorithm breaks the data block into warp-sized fragments and then scans these
fragments independently by using a warp of threads for each of them. We do not
have to synchronize in order to share data within the same warp, only across
different warps, because the instructions are executed in a SIMD (Single
Instruction Multiple Data) way. To complete the scan, the warps write their last
elements to a temporary shared array where a single warp performs an exclusive
scan on it. In the end, each thread adds the warp’s sum result to the one from the
first pass. In SIMD the most efficient algorithm is a step-efficient one, so we have
used within each warp a Hillis-and-Steele-style scan that takes log,n steps to scan
the warp [13], rather than the work-efficient tree-based algorithm described by
Guy Blelloch [12]. Because the warp size is 32, there are five steps per warp.
Each thread scans a single array element, inputs a single value to the scan through
the variable “valoare” and returns its own scanned result element. Each of the
warps’ threads cooperates through the shared memory array “date partajate” to
scan a number of “DIM_WARP” elements. The template parameter “nivelmax”
allows the scan to be performed on partial warps. For example, if we need only
the first 16 elements of each warp to be scanned, the scan performs only
log,16 = 4 steps rather than log,32 = 5. In order to enable warps to offset
beyond their input data and receive the identity element without having to use
branch instructions, the computation uses 2*DIM_WARP elements of shared
memory for each warp. The shared memory array “date partajate” is declared
volatile in order to prevent the compiler from optimizing away writes to shared
memory and to ensure a correct communication within the same warp without the
need of synchronization. In Fig. 2 it is presented the “scanarewarp” CUDA kernel.

template<class T, int nivelmax>
_ device_ T scanarewarp (T valoare, volatile T* date_partajate)
int idx 2 * threadIdx.x - (threadIdx.x & (DIM_WARP-1)):

date_partajate(idx] = 0:

idx 4= DIM_WARP;

T t = date_partajate[idr] = valoare;

_partajate[idx] t = partial(t, date_partaj
b4 t = partial(t, date_partaj

t partial(t, date_partaj

t

t

. = partial(t, date partajate[idx - 8]):

o o ot et

_partajate[idx] partial(t, date_partajate[idx -16]):

return date_partajate[idz-1];

Fig. 2. The “scanare_warp” CUDA kernel
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Finally, taking into account all these technical aspects, we have obtained
an efficient parallel scan routine that optimizes the algorithm for computing the
eigenvalues of a tridiagonal symmetric matrix, avoiding the shared memory bank
conflicts.

9. Examples and numerical results

In the following, we depict a series of experimental tests. In the
benchmarking, we have used the following configuration: Intel i7-2600K at 3.4
GHz with 8 GB (2x4GB) of 1333 MHz DDR3, dual channel. The GPU used was
GeForce GTX480 (from the FERMI architecture). Programming and access to the
GPUs used the CUDA toolkit 4.0 with NVidia driver version 270.81. In addition,
all processes related to graphical user interface have been disabled to reduce the
external traffic to the GPU.

In order to compute the average execution time we could have used one of
the CPU or operating system timers, but this would have included latency and
variations from different sources like system thread scheduling, availability of
high-precisions CPU timers, etc. In addition, we can asynchronously perform
computations on the host while the GPU kernel runs and the only way to measure
the necessary time for the host computations is to use the CPU or the operating
system timing mechanism. Therefore, in order to measure the average execution
time a GPU spends on a task we use the CUDA event API. A GPU time stamp
recorded at a user specified point in time represents an event in CUDA. Because
the time stamp is recorded directly by the GPU, we do not encounter the problems
that could have appeared if we had tried to time the GPU execution using CPU
timers. In order to time correctly the execution of the algorithm, we create both a
start and a stop event. Some of the kernel calls we make in CUDA C are
asynchronous, the GPU begins to execute the code but the CPU continues the
execution of the next line of the program before the GPU has finished. In order to
safely read the value of the stop event we instruct the CPU to synchronize on the
event using the API function “cudaEventSynchronize()”, like depicted in Fig. 3.

cudaEvent t inceput, sfarsit;

cudaEventCreate (&inceput)

cudaBventCreate (&sfarsit);

cudaEventRecord (inceput, 0);

calculValProprii (intrare, dim matrice, precizie, Gerschgorin inf, Gerschgorin sup, rezultat):
cudaEventRecord (sfarsit, 0);

cudaEventSynchronize (sfarsit):

Fig. 3. Measuring the execution time using events

In this way we instruct the runtime to block further instructions until the
GPU has reached the stop event so when calling the “cudaEventSynchronize()”
we are sure that all the GPU work prior to the stop event has been completed and
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it is safe to read the recorded time stamp. In this way we get a reliable
measurement of the execution time for computing the eigenvalues.

In Table 1 we present the experimental results obtained by taking different
sizes of the tridiagonal input matrix and choosing 10 as the desired accuracy,
necessary in the bisection algorithm for computing the eigenvalues of the
tridiagonal symmetric matrix with real components.

Table 1
The average execution time for different input matrix sizes
Test Matrix Average execution Test Matrix | Average execution
number size time (milliseconds) | number size time (milliseconds)
1 16 0.170977 7 1024 18.270479
2 30 0.287934 8 2040 34.498478
3 64 0.610396 9 4096 66.367801
4 120 1.080387 10 8190 140.005358
5 256 2.383497 11 16384 373.554061
6 510 5.254698 12 32760 913.889898

The average execution time measured in milliseconds is computed in the
third column of the Table 1. For each average execution time, 5 different
examples of matrices have been generated, their size being indicated in the second
column of the table. For each of the matrices the eigenvalues and the necessary
time for obtaining them have been computed. Finally the average time
corresponding to these 5 values has been computed. The sizes of the input
matrices can be any natural number n > 2, sufficiently large for most
applications, and have been chosen as to cover both cases of small and large
dimensions. In order to fill quickly the tridiagonal matrices used in the numerical
examples, the necessary real numbers have been automatically generated, using a
random number generator. It is also possible to provide the input matrix through a
file containing the desired values.
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Fig. 4. The average execution time for different input matrix sizes
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The effect of matrix dimension on the average execution time (based on
the results listed in the Table 1) is represented in Fig. 4. As we had expected, the
average execution time increases with the matrix dimension, even if there are
more threads invoked when the input matrix has a greater size and the parallel
computation level is higher. On a GeForce GTX480 (from the FERMI
architecture), execution times in our experimental tests have varied between
0.170977 ms (corresponding to a symmetric matrix 16x16) and 913.889898 ms
(corresponding to a symmetric matrix 32760x32760), which is 5345 times greater
than the first measurement, but still under 1 second.

10. Conclusions and future work

In this paper, after we have depicted the main features of the Compute
Unified Device Architecture, we have briefly described some mathematical
aspects regarding the computation of eigenvalues and afterwards we have
presented an original approach: a bisection algorithm useful in computing
eigenvalues for a tridiagonal symmetric matrix of arbitrary size, using the
computing capabilities of the latest graphics processing units that incorporate the
parallel Compute Unified Device Architecture developed by NVidia. The
implemented algorithm was based on an efficient parallel prefix sum algorithm
designed and implemented in CUDA. The computation of the eigenvalues for a
tridiagonal symmetric matrix of arbitrary size starts by obtaining the Gerschgorin
interval that contains all the eigenvalues of the input matrix. After applying a
recursive bisection process, we obtain a tree, which contains in each leaf an
approximation of an eigenvalue, with a desired accuracy. The obtained algorithm
can be successfully applied to arbitrary large matrices.

The novel approach developed in this paper is related to the efficiency of
the algorithm’s implementation, which is based on the improvement of the shared
memory management and on the optimization of the scan algorithm. Therefore,
the algorithm for computing the eigenvalues of a tridiagonal symmetric matrix is a
powerful and useful tool, able to facilitate the work of specialists in both pure and
applied mathematics. The eigenvalues computation is useful in many domains
like: in the Schrodinger equation in quantum mechanics; in atomic and molecular
physics; in geology and glaciology; in the principal component analysis and factor
analysis in structural equation modeling; in vibration analysis; in image
processing and sound processing; in mechanics; in spectral graph theory; in
medical studies etc.

The implementation depicted in this paper can be further improved using
different approaches. A first solution is to increase the level of parallelism in the
computations. In perspective, the study in this article can be developed and
enhanced by executing the computations on multiple GPUs connected in parallel,
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using the Scalable Link Interface (SLI), a multi-GPU solution developed to link
two or more graphics processors together, so that they can process as a whole. A
second possible method to improve significantly the performance obtained in our
implementation is to store both the active intervals and the input matrix in shared
memory, avoiding the access to the global memory in the step of counting the
eigenvalues. Our implementation can be improved by processing multiple
intervals per thread. Another possible improvement is to find an enhanced method
for dividing the Gerschgorin interval, the best choice being if the number of
intervals matches the number of parallel processors on the device.

A frequently encountered problem when computing eigenvalues is that
they are not always well distributed and this might cause an unbalanced load of
the processors. Therefore, an improvement to the above-described algorithm is
first to find the initial intervals using the device memory, which would help obtain
equilibrated workloads for all the multi-processing units. A series of studies in
this field already exists, but problems still remain open to further research.
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