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A DRIVEN SIXTH-ORDER CAHN-HILLIARD EQUATION WITH
CONCENTRATION DEPENDENT MOBILITY
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In this paper, we study a driven sixth-order Cahn-Hilliard equation, which
as a continuum model for the formation of quantum dots and their faceting. Based
on the Schauder type estimates and Campanato spaces, we prove the global exis-
tence of classical solutions.
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1. Introduction

In this paper, we investigate the driven sixth-order Cahn-Hilliard equation

0
a—?: — D? [m(u)(kD*u — D*A(u))] = vuDu, in Qr, (1)
where Q7 = (0,1) x (0,T7), D = a% and k > 0,v are constants. From the physical

consideration, we prefer to consider a typical case of the potential H(u), that is
H'(u) = A(u) = u? — u, in the following form [7]
1
(H1) H(u) = (e = 1)?,
namely, the well-known double well potential.
The equation (1) is supplemented by the boundary value conditions

ulp—0,1 = D*uly—01 = D*uly—01 =0, t > 0, (2)
and the initial value condition

u(z,0) = up(z). (3)

The equation (1) arises naturally as a continuum model for the formation of

quantum dots and their faceting, see [12]. Here u(x,t) denotes the surface slope, and

v is proportional to the deposition rate. The high order derivatives are the result of

the additional regularization energy which is required to form an edge between two
plane surfaces with different orientations.

The sixth order parabolic equation with constant mobility has been intensively
studied [11, 13]. Korzec, Evans, Miinch and Wagner [7] studied the equation (1)
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with m(u) = 1. New types of stationary solutions of a one-dimensional driven sixth-
order Cahn-Hilliard type equation (1) are derived by an extension of the method of
matched asymptotic expansions that retains exponentially small terms. Liu and Liu
[8] proved that the equation (1) with m(u) = 1 possesses a global attractor in the
H* (k > 0) space, which attracts any bounded subset of H*(Q) in the H*-norm.
Liu, Liu, Tang [9] based on Leray-Schauder fixed point theorem, proved the exis-
tence of time-periodic solutions for the equation (1) with m(u) = 1. However, only
a few works have been devoted to the other sixth order parabolic equation with
concentration dependent mobility [5]. Evans, Galaktionov and King [3, 4] consid-
ered the sixth-order thin film equation containing an unstable (backward parabolic)
second-order term

% = div [|u|”VA2u] — A(lulP u),n > 0,p > 1. (4)
By a formal matched expansion technique, they show that, for the first critical
exponent p = pg = n+ 1+ % for n € (0, %), where N is the space dimension,
the free-boundary problem with zero-height, zero-contact-angle, zero-moment, and
zero-flux conditions at the interface admits a countable set of continuous ]l\[])ranches
of radially symmetric self-similar blow-up solutions uy(x,t) = (T — t)” »N+6 fr.(y),

y=—"2L+5— where T > 0 is the blow-up time. Liu studied the equation
(T,t)m
ou . 2 a'(u) 2
i div [m(u)(kVA®u + V(—a(u)Au — T\VU’ + f(w))| =0,

and he proved the existence of classical solutions for two dimensions [10].

Our main purpose is to establish the global existence of classical solutions
under much general assumptions. The main difficulties for treating the problem are
caused by the nonlinearity of the principal part and the lack of maximum principle.
The key step is to get a priori estimates on the Holder norm of D?u. The method
used in [11] seems not applicable to the present situation. Our method is based
on uniform Schauder type estimates for local in time solutions via the framework of
Campanato spaces. To this purpose, we require some delicate local integral estimates
rather than the global energy estimates used in the discussion for the Cahn-Hilliard
equation with constant mobility.

Now, we state the main results in this paper.

Theorem 1.1. Assume that
(H2) m(s) € C*T*(R), M; < m(s),

where My, a are positive constants, ug|aaq = D*uolaq = D*uglaq = 0. Then the prob-
lem (1)-(8) admits a unique classical solution u € COT1+/6(Q.) for any smooth
initial data ug, where Qr = Q x (0,T).

This paper is organized as follows. We first present a key step for the priori
estimates on the Holder norm of solutions in Section 2, and then give the proof of
our main theorem subsequently in Section 3.
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2. Holder Estimates

As an important step, in this section, we give the Hélder norm estimate on the
local in time solutions. From the classical approach, it is not difficult to conclude
that the problem admits a unique classical solution local in time. So, it is sufficient
to make a priori estimates.

Proposition 2.1. Assume that (H1) holds, and u is a smooth solution of the problem
(1)-(3). Then there exists a constant C' depending only on the known quantities, such
that for any (x1,t1), (z2,t2) € Qr,

(a1, t1) — u(za, ta)| < C|tr — ta|/® + |x1 — 2o>/), (5)
|Du(a1,t1) — Du(w, t2)| < C(Jty — ta /12 + a1 — 25| '/?). (6)

Proof. Let z = kD?u — A(u). Multiplying both sides of the equation (1) by z and
then integrating the resulting relation with respect to x over €2, we have

1 u 1
i a(chzu—A(u))dI —/0 D?(m(u)D?z)zdx

1
—/ ZDuzzdmzo.
0 2

After integrating by parts, and using the boundary value conditions,

2

1
:/ zUQDde,
0 2

using Hélder’s inequality, we have

& [ (b s ) o+ [ meip*ras

d [! <k(Du)2 + H(u)> dx + /Olm(U)!DZ\zdx

dt Jo \2

L2l 1
S/ u4d:n—|—m1/ (Dz)?dx

4my Jo 0

1 1
<Cy / H(u)dx +my / (Dz)?dx + Cy.
0 0
Applying Poincaré’s inequality and Friedrichs’ inequality [2], we conclude

1 1 1 1 1
/ |z2dx < / |Dz|?dx < / |D?z|?dzx.
0 ™ Jo 2m Jo

Owning to the above inequality, we finally arrive at

4 1 <k(Du)2 + H(u)) dx + ! /1 m(u)|D?z|*dx
dt J, \2 2 J,

1
<0 / H(u)dz + Co.
0
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The Gronwall inequality implies that
/ / V2dxdt < C,
T
/ |Dul?dz <C, 0<t<T,
0
1
/ utde <C, 0<t<T.
0

By Sobolev imbedding theorem,

sup |u| < C.

T

By (8), (9) we have

1
lu(z1,t) —u(ze, t)| < Clxy — 22|, 0<a< 7

(10)

(11)

Multiplying both sides of the equation (1) by D*u and then integrating the result-
ing relation with respect to = over (0,1), after integrating by parts, and using the

boundary value conditions, we derive

1d

1
D2u2daz+/muD5u2dm
Sq (D) ; (u)| Dl

1
:/ m(u)(3u? — 1)D3uD5udm—|—18/ m(uw)uDuD*uD’udz
+6/ m( Du)3D5udx—/ m’ (u)kD*uDuD’udzx
+6/ m/' (u)u(Du) 3D5udx+/ m’(u)(3u® — 1) DuD*uD’udz.

Using (10) and the Holder inequality, we have

1d
2.dt

1 1
§I;/ (D%u)?dx + C/ (D3u)?dx + C/ | Du|*dz
0 0

0

1
(D2u)2dx+/ m(u)|DPul?dx
0

1 1 1
+ C/ |D?ul*dz + C/ (Du)bdx + C sup | Dul? / (D*u)?dx + C.
0 0

0

By (8) and the Holder inequality, we see that

1 1
/ (D3u)?dx = / DuD’udz < C||Dul.
0 0
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On the other hand, using the Gagliardo-Nirenberg inequality, we have

|Dulle < C||D3ul|5||Dul/s < C||Dul5,

9]

/O (Dwydr < € ( /0 I(D%)?d:c)é ( /O I(Du)de> <c ( /O 1(D5u)2dw>é :
/0 (Dupdr < 0 ( /0 1(D5U)2dff>éi < /Ol(D “)de> =¢ </01(D5u)2dx>411 7
/01(D2u)4d:v <C </01(D5u)2dx>g (/ol(Du)de> i =¢ </01(DBU)QOZ$>g

Hence, we obtain

o=

N o

d

7 (D2 daz+/ m(u)|D%ul?dz < C.

Therefore

/|D2u|dx<C 0<t<T, (12)

/ / T Vdadt < C. (13)

By Sobolev imbedding theorem,

sup |Du| < C. (14)
T
(8) and (9) imply that
lu(z1,t) — u(za, )| < Clog — 2o/, (15)

Integrating the equation (1) with respect to z over (y,y + (At)Y/6) x (t1,t3),
where 0 < t1 < t9 < T, At =ty — t1, we see that

y+(At)1/6
/ [u<27t2) _u(z7t1)]dz
Yy

= / 2[(rrL(u)(l’f:DE’u — D3A(w)(y, s) + m/ (uw)Du(kD*u — D*A(u))(y/, 5))

— (m(u)(kD?u — D3A(u))(y, 8) + m/(u) Du(kD*u — D*A(u))(y, s))|ds.  (16)
Set
N(s,y) =(m(u)(kD’u — D’ A(u))(y', s) + m'(u) Du(kD*u — D*A(u))(y', 5))
— (m{u)(kDPu — DPA())(y, ) + () Du(kD'u — D A(w) (3, ),

where ' = y 4 (At)'/S.
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Then (16) is converted into
1
(A)H° / [u(y +6(ADY, t5) — uly + (A4S, 1)
0

1)
= N(s,y)ds.

t1

Integrating the above equality with respect to y over (z,z + (At)Y/*), we get

1/6

to £E+(At)
(At)l/?’(u(x*,tg) —u(x*, t1)) = / / N(s,y)dyds.
t1 x

Here, we have used the mean value theorem, where z* = y* + 9*(At)1/6, y* e
(z,2 4+ (At)Y/6), 6 € (0,1). Hence by Holder’s inequality and (10), (7), (12), (13),
(14), we get

u(z*, ty) — u(:v*,tl)‘ < O(AD)YE,
Similar to the discussion above, we have
|Du(z1,t1) — Du(xa, t2)| < C(|lz1 — x2|Y? + [t — t2]/12).
The proof is complete. O

3. Proof of the Result

To prove the Theorem 1.1, the key estimate is the Holder estimate for D?u.
We consider the following linear problem

ou

i D*(a(z,t)D?*u) = D*f + D?g, (17)
2 4

u‘w:O,l =D u‘x:O,l =D “‘x:0,1 =0, (18)

u(x,0) = 0. (19)

Here we do not restrict the smoothness of the given functions a(z,t), b(x,t) and
f(z,t), but simply assume that they are sufficiently smooth. Our main purpose is
to find the relation between the Holder norm of the solution v and a(x,t), b(z,t),
f(z,t).

The crucial step is to establish the estimates on the Holder norm of u. Let
(x0,to) € (0,1) x (0,T) be fixed and define

o(p) = // <|u - up|2 + pﬁ\D3u2> dzdt, (p>0),
Sp

1
S, = By(xg) x (to — p%,to + p%), Up = 75— // udxdt
Sp

where

5]

and B,(zo) = (zo — p, zo + p).
Let u be the solution of the problem (17), (18), (19). We split u on Sg into
u = u1 + ue, where u; is the solution of the problem

au a(xo,to)D6U1 =0, (x,t) € Sg, (20)
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up =u, Duy = Du, D2U1 = Dzu, S aBR(CCO), (21)

and ug solves the problem

% — a(z, tg)D%uy = —D*|(a(zo, to) — alx,t))D?u
+ D*f + D%, (x,t) € Sg, (23)
uy = 0, Dug = 0, D*uy = 0, (x,t) € dBpr(xo) x (to — RS, to + RP), (24)

upg =0, t=19— R6, x € BR(.CI}Q). (25)

By classical linear theory, the above decomposition is uniquely determined by wu.
We need several lemmas on w1 and us.

Lemma 3.1. Assume that

lale,t) — alo, to)] < %(t ol 4 | — :corf),

b, 1) — blaro, to)] < ba(w ol 4 | — |>

where (z,t) € Br(xo) x (to — R%,tg + R%). Then
2 3, \2
sup / us(x,t) de + // (D ug)” dzdt
(to—RS,to+RS) J/ Br(20) Sk

gCR2U// (D3u)2dxdt+0// |Df|2dxdt+6’// \g|*ddt.
SR Sr SR

Proof. Multiply the equation (23) by us and integrate the resulting relation over
(to — RS,t) x Br(zo). Integrating by parts, we have

1 t
/ u%dw—i—a(wo,to)/ ds/ (Duy)?dx
2 Br to—RS Br

t
:/ ds/ [a(zo,to) — a(z, s)| D*uD?usdx
to—RS Br

t
- / ds Da(z,t) D*uDuydx
to— RS Bgr

t t
+ / ds [ DfD3usdx + / ds / gD*usdz.
to— RS Br to— RS Br

Noticing that

t
/ ds/ [a(zg,to) — a(z, s)| D*uD?usda
to—RS Br

<e // (D3uy)?dxds + C-aR* // (D3u)?dxds,
Sr SR
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t
/ ds Da(z,t)D*uDuydx
to— RS B

R
<e // (D*u)?dzds + CR* // (D?u)?dzds
SR SR
<e // (D3u9)?dzds + C.a2R* // (D3u)%dzxds,
SR SR

t
/ ds [ DfD3uydx <g// (D3uy)?dzds + C. // |Df|2dadt,
to—RS Br Sr Sr

and
¢
/ ds/ gD?*usdz| < 5// (D3ug)?dxds + C. // |g|*dzdt,
to— RS Br Sk SR
hence we obtain the estimate and the proof is complete. O

Lemma 3.2. For any (x1,t1), (x2,t2) € S,

|u (t1, 21) — wa(tz, 22)[?
|t1 — tg’l/ﬁ + |561 — 1‘2‘

<C sup / (Duy(z,t))* dx + C // (D*uy)? dadt.
(to—pS,to+p®) + Bp(zo) Sp

Proof. From the Sobolev embedding theorem, we have for any (x1,t), (z2,t) € S,,

o 2
|U1($1at) U1($2at)| < C sup / (Dul(x,t))z da. (26)
‘xl - x2| (to—p%,to+p®) J Bp(z0)

Integrating the equation with respect to x over (y,y + (At)%) X (t1,t2), where 0 <
t1 <ty < T, At =ty — t1, we see that

YA s
/ [Ul(Z,tQ) _ul('z?tl)]d’z—{_a(l‘o’t())/ [D5U1(y,,5) - D5ul(y,8)]d5 = 07
Y t1

where i = y + (At)'/S.
That is

(At)1/6 /l[ul(y + O(AD)YS t9) — ur(y + (A0 £1)]do
0

+ alzo, to) /tQ [DPur(y + (ADYS, ) — DPuy(y, s)]ds = 0.

t1
Integrating the above equality with respect to y over (x,z + (At)1/4), we get
(A3 (ur (27, t2) — wi (2%, 11))

ta  pr+(At)L/6 ‘
:a(aro,tg)/ / [DPuy (y + (A1)YC, ) — Douy (y, s)|dyds.
t1 x
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//Sp(D4u1)2 dads + //Sp(D2u1)2 dxds] ,

where z* = y* + 0*(A)/6, y* € (x,2 4 (At)/5), 6 € (0,1). This and (26) yield the
desired conclusion and the proof is complete. [l

Hence,

uy(z*,t9) — up(z*, t1)| < Clty — to]/°

Lemma 3.3. (Caccioppoli type inequality)

sup / luy (z,t) — (u1)g|* dz + // D3uy |2 dzdt
(to (R/2)8,t0+(R/2)¢) /BRr/a(z0) SRry2
_R6 // luy(z,t) — (u1)g|* dzdt,
sup / | Dy |2 dx—}—// Dy |? dzdt
(to (R/2)%,to+(R/2)%) BR/2(370)

// | Duy | dzdt < // luy(x,t) — (u1)g|* dedt.

Proof. For simplicity, we only prove the first inequality, since the other can be shown
similarly. Choose a cut-off function x(z) defined on (z9 — R,zo + R) such that
x(z)=1in (vo — &, 29 + &) and

C C
|DX|§E7 ’D2X|<R27
C
|D?x| < ek |D*x| < R

Let g(t) € C5°(to,+o0) with 0 < g(t) < 1, 0 < ¢'(t) < % and g(t) = 1 for
t > to — (4)5. Multiplying the equation (20) by g(t)x%[u1(z,t) — (u1)r] and then
integrating the resulting relation over (tg — R%,t) x (vg — R, zo + R), we have

t
0
/ g(s)ds/ ﬂ)(6[u1(ar:,t) — (u1)gldz+
to— RS BR($O) 8t
¢
- CL(IEU,to)/ g(s)ds/ DSy x®[uy (2, ) — (uy)g]dz = 0.
to—RS Br(z0)

It follows from integrating by parts and using the boundary value condition (21),

1
5[ ol - () ds
Br(zo)

+ a(z0, to) /t a(s)ds /B ( )D5u1D[X6[u1(:L‘,t)—(ul)R]]daz

1 t R 6 R 6
:/ q ds/ X6|u1($,t) — (ul)RIQda:, te |ty — <> Jto + <) .
2 to— RS Br(o) 2 2
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Thus
1
5[ ottt ~ () ds
Br(wo)
t
+a($0,t0)/ g(s)ds/ 8 (D3uy)? dz
to— RS Br(o)

¢
+a($0,t0)/ g(s)ds/ 18x°x' D*uy D3uydx
to—RS Br(zo)

t
+ alao,to) / o(s)ds / [(18x°" + 90x* ) Dur DPuy
—RS Br(zo)

+ (6x5 " 4+ 90x N\ + 1203y )(ul(:zj,t) — (ul)R)D?’ul] dx

1 t
:2/ g’ds/ Clur — (un)rl? da.
tofRG BR(.'Eo)

By Cauchy inequality, we have

18/ / a(xg, to)X°x' D*uy D3uydzds
to— RS BR xo

a(xo,to)/ / g(s)x®(D3uq)?dzds
to—RS BR(x())

t
e / / 9(5)x ()2 (DPuy ) ?drds,
to— RS BR(w())

g(s)a(mo, to) (18x° X" + 90x*x'?) Duy D?uy dzds

—RS J Bg(z0)

xo,to/ / 3u1)2dxds

to—R6 BR(CCO

—|—C/ / g(s)x*X"?(Duy)? dzds
t()—R6 BR(CC())

t
+ C/ / g(s)x2xl4(Du1)2 dxds,
t()—R6 BR(SC())

and
/ / x07t0)(6x5 /,/+90X4 / ,/+120X X/3)
to—RS BR
(up(z,t) (u1 r)D3uy dxds‘
§f a(zo,to) / / (D3uy)?dxds
4 to—RS BR xo

+ 6/ / (w1 (2, t) — (u1)g)? duds.
R® Jio—ro J Br(as)
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Combining the above these expressions yields

/ () (2 £) — (u)l? da
Bpr(zo)

1 t
+palento) [ glds [ \S(DUwda
2 to—R6 BR(mo)

t
§/ g' ds/ X6‘U1 — (ul)R|2daj
to— RS Br(zo)
t t
+C/ / X2X14(Du1)2 dzds + C / X4X”2(DU1)2 dxds
to— RS BR(LL‘U) to— RS BR(LI:())
t
+ C/ / X2 (D*uy)?dxds
to— RS BR(:I?[))

C t
+ 6/ / (ui(z,t) — (u1)g)? dzds
R to—RG BR(QJ())
t
E/ g/ds/ X6’U1—(Ul)RPdl’—l—C(Il—|—I2—|—Ig+[4).
to—R Br(

As for I, we get

t
N / / ur DX Duy)dwds
to— RS BR ;Uo
/ / X ulD uld:vds—/ / 2 ' Yuy Duydxds
to— RS BR .To to— RS BR zo

<51I3+C/ / X ulda:ds—l— / / X2 '4 "uldzxds
—RS J Br(z0) to—RS BR($0

<e1l3+ Cly. (27)

As for Is, we have

t
—/ / w1 D X4 "2 Duy)dzds
to— RS BR 1‘0
1 t
/ / X" u1 D*uy ) dads + - / / (") i dads
to— RS BR Io 2 to—RS BR(IO)

/ / 4 " u1D2u1dmds
to— RS BR Io

/ / X X" (Dui D*uy + wy D?uq )dads + CI4
to— RS BR 1‘0

—62[3 + CI4 + €3 / / U1)2dxd8
—RS JBgr(=o)

— / / (XX (Duy)?dxds
to—RS BR(.Z‘()
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1
=eol3 + Cly + 63/ / U1)2d$ds — =D
—RS JBRr(=o) 2

— / / X4X/X/”+4X3X/2X”)(DU1)2d$dSa
to— RS BR(IO

that is,

Iy <eggls +Cly + 83/ / 3u1)2d$d8
R6 BR (EO

_ 3/ / X4X/X/// +4X3xl2x”)(Du1)2dxds.
to—R6 BR(CEQ)
On the other hand,
t
_/ / X4X/Xm+4X3X/2X”)(DU1)2ded3
to—RS J Br(zo)

t
:/ / X4X/X/”+4X3 12 ”)ulD2u1dxds
to—RS J Br(zo)

t
+ / / (XY + 403N X") Juy Dug dds
to RS Br(xo
S&“Ig + CI4

Combining the above two yields

I <eyls+ Cly +e3 / / (D3uy)%dzxds. (28)
—RS JBgR :C())

Noticing that

t
— / / X4X/2DU1D3u1dxds
to —R6 Br (wo)

t
—/ / (4X3X + 2x*x'x") Duy D*u1dxds
to— RS BR(wo

t 1 )
§€5/ / x8(D3uy)?dxds + Cles)Iy + ~ I3 + CI, + I3 + Cls,
to—RS J Br(wo 4 4

that is,
I3 < 2C(e5) I + CIy + 2e5 / / (D3uy)?dxds. (29)
—RS JBRr xo)
Finally, from (27), (28) and (29), choose €1, €3, €4 enough small, we see that
I < 5/ / D3uy)?dxds + Cly, i=1,2,3.
to— RS BR xo

We obtain immediately the desired first inequality of the lemma and the proof
is completed. ]
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Lemma 3.4. Assume that

lale,t) — a(o, to)] gaa(u o]/ 4 | — wol”>,

t e (to—Rﬁ t0+R6) $EBR($0).

0,R),
// (Jur = (u1),* + p°| D3us|?) dwdt

§// (|Dut — (Duq)g|?* + R®|D3uq |?) dadt.
R8 Sk

Then for any p € (

Proof. One needs only to check the inequality for p < £. From Lemma 3.2 and

2
Lemma 3.3, we have

1 / 9
— up — (ug dzxdt
# s, Jur — (u1),|
<C sup / |Duy | da + C // | DYy |? dadt
(t Fhto+(3)4) /B (20) Sk

0—
_R8 / \ul (u1 R|2 dxdt.

On the other hand,

// P | D3uy|? dadt
<Cy // u1 dxdt—i—Cg // Dul) dxdt

<Cip® // )2dadt 4 Cyp® sup / (Duy)?dx
(to—(%)ﬁ,to-i-(g)s) B%(l“o)
<C / R%*(Duy )*dzdt
<c [ / / R%(D3uy)?dxdt + / / (Duy — (Duy)g )Qda:dt]
Sr Sr
The conclusion of the lemma follows at once. O

Lemma 3.5. For )\ € (5,6),
w(p) < Cy (@(Ro) + sup |f|2> o, p < Ry= mm<dzst(mo,8§2) t1/4>,

Ro

where Cy depends on A\, Ry and the known quantities.

Proof. By Lemma 3.4,

=[] (= 2+ 10 o
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:// (Jug — (u1),* + p%| D3us|?) dzdt
Sp
+ // (Jug — (uz2),|* + p°| D3us|?) dzdt

<C< )//SR lu — (u)g|? + R®|D3u|?) dadt

+0// (Jus|? + B¥| DPus|?) dadt
Sr

<C Kg)g - R%] o(R)+C (//SR |Df2dadt + //SR ]g]zdxdt> RS

The conclusion follows immediately from [6]. O

Similar to the discussion about the Campanato spaces in [6], we first conclude
from Lemma 3.5 that

Theorem 3.1. Let f(x,t) be appropriately smooth function, and u be the smooth
solution of the problem (17)-(19). Then for any « € (0, %), there exists a coefficient
K depending only on a, ag, by, foT u?dzdt and foT(D3u)2dxdt, such that

u(zr,t1) — u(ze, t2)]

<K <//SR |Df] dxdt+// \g\zdxdt> (|z1 — @o]® +]t1—t2| ). (30)

Proof of Theorem 1.1. Let w = D?u — D?uq. w satisfies

O DMa(s,)D%w) = D' + D,

Wwy=01 = D*wl|y—01 = D*wl|y—01 = 0,
u(x,0) =0,

where a(z,t) = km(u), f = m(u)(kD*ug — A’ (u)(D?*u — D?*ug) — A”(u)|Dul?) and
g(z,t) = vuDu. Hence, using (11)-(13) and Theorem 3.1, we conclude that

|D?u(z1,t1) — D?u(za, ts)] < C|ay — 22]%? + |t — to]*/1?). (31)

The conclusion follows immediately from the classical theory, since we can
transform the equation (1) into the form

gltL + ay(z,t) D% + by (z,t) Dou + as(x, t) D*u + by (x, t) D3u

+ a3(x7t)D2u + bg(.%,t)DU =0,
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where the Holder norms on

ai(z,t) = —km(u)(z,t), bi(x,t) = —2km/(u(x,t))Du(x,t),
as(xz,t) = m(u(z,t)) A (u(z,t)) — km(u)D?*u — km/(u)(Du)?,
bo(z,t) = 4m(u) A" (u)Du + 2m/(u) A’ (u) Du,

az(x,t) = m(u)(3A" (u) D*u + 6 A" (u)(Du)?)

+m/ (u)(A'(u) D*u + TA" (u)(Du)?) + m” (u) A’ (u)(Du)?,
bs(z,t) = m" (u) A" (u)(Du)3 — vu

have been estimated in the above discussion. The proof is complete. O
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