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In this paper, we study a driven sixth-order Cahn-Hilliard equation, which

as a continuum model for the formation of quantum dots and their faceting. Based

on the Schauder type estimates and Campanato spaces, we prove the global exis-

tence of classical solutions.
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1. Introduction

In this paper, we investigate the driven sixth-order Cahn-Hilliard equation

∂u

∂t
−D2

[
m(u)(kD4u−D2A(u))

]
= νuDu, in QT , (1)

where QT = (0, 1) × (0, T ), D = ∂
∂x and k > 0, ν are constants. From the physical

consideration, we prefer to consider a typical case of the potential H(u), that is
H ′(u) = A(u) = u3 − u, in the following form [7]

(H1) H(u) =
1

4
(u2 − 1)2,

namely, the well-known double well potential.
The equation (1) is supplemented by the boundary value conditions

u|x=0,1 = D2u|x=0,1 = D4u|x=0,1 = 0, t > 0, (2)

and the initial value condition

u(x, 0) = u0(x). (3)

The equation (1) arises naturally as a continuum model for the formation of
quantum dots and their faceting, see [12]. Here u(x, t) denotes the surface slope, and
ν is proportional to the deposition rate. The high order derivatives are the result of
the additional regularization energy which is required to form an edge between two
plane surfaces with different orientations.

The sixth order parabolic equation with constant mobility has been intensively
studied [11, 13]. Korzec, Evans, Münch and Wagner [7] studied the equation (1)
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with m(u) = 1. New types of stationary solutions of a one-dimensional driven sixth-
order Cahn-Hilliard type equation (1) are derived by an extension of the method of
matched asymptotic expansions that retains exponentially small terms. Liu and Liu
[8] proved that the equation (1) with m(u) = 1 possesses a global attractor in the
Hk (k ≥ 0) space, which attracts any bounded subset of Hk(Ω) in the Hk-norm.
Liu, Liu, Tang [9] based on Leray-Schauder fixed point theorem, proved the exis-
tence of time-periodic solutions for the equation (1) with m(u) = 1. However, only
a few works have been devoted to the other sixth order parabolic equation with
concentration dependent mobility [5]. Evans, Galaktionov and King [3, 4] consid-
ered the sixth-order thin film equation containing an unstable (backward parabolic)
second-order term

∂u

∂t
= div

[
|u|n∇∆2u

]
−∆(|u|p−1u), n > 0, p > 1. (4)

By a formal matched expansion technique, they show that, for the first critical
exponent p = p0 = n + 1 + 4

N for n ∈ (0, 54), where N is the space dimension,
the free-boundary problem with zero-height, zero-contact-angle, zero-moment, and
zero-flux conditions at the interface admits a countable set of continuous branches
of radially symmetric self-similar blow-up solutions uk(x, t) = (T − t)−

N
nN+6 fk(y),

y = x

(T−t)
1

nN+6
, where T > 0 is the blow-up time. Liu studied the equation

∂u

∂t
− div

[
m(u)(k∇∆2u+∇(−a(u)∆u− a′(u)

2
|∇u|2 + f(u)))

]
= 0,

and he proved the existence of classical solutions for two dimensions [10].
Our main purpose is to establish the global existence of classical solutions

under much general assumptions. The main difficulties for treating the problem are
caused by the nonlinearity of the principal part and the lack of maximum principle.
The key step is to get a priori estimates on the Hölder norm of D2u. The method
used in [11] seems not applicable to the present situation. Our method is based
on uniform Schauder type estimates for local in time solutions via the framework of
Campanato spaces. To this purpose, we require some delicate local integral estimates
rather than the global energy estimates used in the discussion for the Cahn-Hilliard
equation with constant mobility.

Now, we state the main results in this paper.

Theorem 1.1. Assume that

(H2) m(s) ∈ C2+α(R), M1 ≤ m(s),

where M1, α are positive constants, u0|∂Ω = D2u0|∂Ω = D4u0|∂Ω = 0. Then the prob-

lem (1)-(3) admits a unique classical solution u ∈ C6+α,1+α/6(QT ) for any smooth
initial data u0, where QT = Ω× (0, T ).

This paper is organized as follows. We first present a key step for the priori
estimates on the Hölder norm of solutions in Section 2, and then give the proof of
our main theorem subsequently in Section 3.
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2. Hölder Estimates

As an important step, in this section, we give the Hölder norm estimate on the
local in time solutions. From the classical approach, it is not difficult to conclude
that the problem admits a unique classical solution local in time. So, it is sufficient
to make a priori estimates.

Proposition 2.1. Assume that (H1) holds, and u is a smooth solution of the problem
(1)-(3). Then there exists a constant C depending only on the known quantities, such
that for any (x1, t1), (x2, t2) ∈ QT ,

|u(x1, t1)− u(x2, t2)| ≤ C(|t1 − t2|1/8 + |x1 − x2|3/4), (5)

|Du(x1, t1)−Du(x2, t2)| ≤ C(|t1 − t2|1/12 + |x1 − x2|1/2). (6)

Proof. Let z = kD2u − A(u). Multiplying both sides of the equation (1) by z and
then integrating the resulting relation with respect to x over Ω, we have∫ 1

0

∂u

∂t
(kD2u−A(u))dx−

∫ 1

0
D2(m(u)D2z)zdx

−
∫ 1

0

ν

2
Du2zdx = 0.

After integrating by parts, and using the boundary value conditions,

d

dt

∫ 1

0

(
k

2
(Du)2 +H(u)

)
dx+

∫ 1

0
m(u)|D2z|2dx

=

∫ 1

0

ν

2
u2Dzdx,

using Hölder’s inequality, we have

d

dt

∫ 1

0

(
k

2
(Du)2 +H(u)

)
dx+

∫ 1

0
m(u)|Dz|2dx

≤ ν2

4m1

∫ 1

0
u4dx+m1

∫ 1

0
(Dz)2dx

≤C1

∫ 1

0
H(u)dx+m1

∫ 1

0
(Dz)2dx+ C2.

Applying Poincaré’s inequality and Friedrichs’ inequality [2], we conclude∫ 1

0
|z|2dx ≤ 1

π

∫ 1

0
|Dz|2dx ≤ 1

2π

∫ 1

0
|D2z|2dx.

Owning to the above inequality, we finally arrive at

d

dt

∫ 1

0

(
k

2
(Du)2 +H(u)

)
dx+

1

2

∫ 1

0
m(u)|D2z|2dx

≤C1

∫ 1

0
H(u)dx+ C2.
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The Gronwall inequality implies that∫∫
QT

m(u)(D4u)2dxdt ≤ C, (7)∫ 1

0
|Du|2dx ≤ C, 0 ≤ t ≤ T, (8)∫ 1

0
u4dx ≤ C, 0 ≤ t ≤ T. (9)

By Sobolev imbedding theorem,

sup
QT

|u| ≤ C. (10)

By (8), (9) we have

|u(x1, t)− u(x2, t)| ≤ C|x1 − x2|α, 0 < α <
1

2
. (11)

Multiplying both sides of the equation (1) by D4u and then integrating the result-
ing relation with respect to x over (0, 1), after integrating by parts, and using the
boundary value conditions, we derive

1

2

d

dt

∫ 1

0
(D2u)2dx+

∫ 1

0
m(u)|D5u|2dx

=

∫ 1

0
m(u)(3u2 − 1)D3uD5udx+ 18

∫ 1

0
m(u)uDuD2uD5udx

+ 6

∫ 1

0
m(u)(Du)3D5udx−

∫ 1

0
m′(u)kD4uDuD5udx

+ 6

∫ 1

0
m′(u)u(Du)3D5udx+

∫ 1

0
m′(u)(3u2 − 1)DuD2uD5udx.

Using (10) and the Hölder inequality, we have

1

2

d

dt

∫ 1

0
(D2u)2dx+

∫ 1

0
m(u)|D5u|2dx

≤k

2

∫ 1

0
(D5u)2dx+ C

∫ 1

0
(D3u)2dx+ C

∫ 1

0
|Du|4dx

+ C

∫ 1

0
|D2u|4dx+ C

∫ 1

0
(Du)6dx+ C sup |Du|2

∫ 1

0
(D4u)2dx+ C.

By (8) and the Hölder inequality, we see that∫ 1

0
(D3u)2dx =

∫ 1

0
DuD5udx ≤ C∥D5u∥.
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On the other hand, using the Gagliardo-Nirenberg inequality, we have

∥Du∥∞ ≤ C∥D5u∥
1
8 ∥Du∥

7
8 ≤ C∥D5u∥

1
8 ,∫ 1

0
(Du)4dx ≤ C

(∫ 1

0
(D5u)2dx

) 1
8
(∫ 1

0
(Du)2dx

) 15
8

≤ C

(∫ 1

0
(D5u)2dx

) 1
8

,

∫ 1

0
(Du)6dx ≤ C

(∫ 1

0
(D5u)2dx

) 1
4
(∫ 1

0
(Du)2dx

) 11
4

≤ C

(∫ 1

0
(D5u)2dx

) 1
4

,

∫ 1

0
(D2u)4dx ≤ C

(∫ 1

0
(D5u)2dx

) 5
8
(∫ 1

0
(Du)2dx

) 11
8

≤ C

(∫ 1

0
(D5u)2dx

) 5
8

.

Hence, we obtain

d

dt

∫ 1

0
(D2u)2dx+

∫ 1

0
m(u)|D5u|2dx ≤ C.

Therefore ∫ 1

0
|D2u|2dx ≤ C, 0 ≤ t ≤ T, (12)∫∫

QT

m(u)(D5u)2dxdt ≤ C. (13)

By Sobolev imbedding theorem,

sup
QT

|Du| ≤ C. (14)

(8) and (9) imply that

|u(x1, t)− u(x2, t)| ≤ C|x1 − x2|3/4. (15)

Integrating the equation (1) with respect to x over (y, y + (∆t)1/6) × (t1, t2),
where 0 < t1 < t2 < T , ∆t = t2 − t1, we see that∫ y+(∆t)1/6

y
[u(z, t2)− u(z, t1)]dz

=

∫ t2

t1

[(m(u)(kD5u−D3A(u))(y′, s) +m′(u)Du(kD4u−D2A(u))(y′, s))

− (m(u)(kD5u−D3A(u))(y, s) +m′(u)Du(kD4u−D2A(u))(y, s))]ds. (16)

Set

N(s, y) =(m(u)(kD5u−D3A(u))(y′, s) +m′(u)Du(kD4u−D2A(u))(y′, s))

− (m(u)(kD5u−D3A(u))(y, s) +m′(u)Du(kD4u−D2A(u))(y, s)),

where y′ = y + (∆t)1/6.
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Then (16) is converted into

(∆t)1/6
∫ 1

0
[u(y + θ(∆t)1/6, t2)− u(y + θ(∆t)1/6, t1)]dθ

=

∫ t2

t1

N(s, y)ds.

Integrating the above equality with respect to y over (x, x+ (∆t)1/4), we get

(∆t)1/3(u(x∗, t2)− u(x∗, t1)) =

∫ t2

t1

∫ x+(∆t)1/6

x
N(s, y)dyds.

Here, we have used the mean value theorem, where x∗ = y∗ + θ∗(∆t)1/6, y∗ ∈
(x, x + (∆t)1/6), θ ∈ (0, 1). Hence by Hölder’s inequality and (10), (7), (12), (13),
(14), we get ∣∣∣u(x∗, t2)− u(x∗, t1)

∣∣∣ ≤ C(∆t)1/8.

Similar to the discussion above, we have

|Du(x1, t1)−Du(x2, t2)| ≤ C(|x1 − x2|1/2 + |t1 − t2|1/12).

The proof is complete. �

3. Proof of the Result

To prove the Theorem 1.1, the key estimate is the Hölder estimate for D2u.
We consider the following linear problem

∂u

∂t
−D4(a(x, t)D2u) = D4f +D2g, (17)

u
∣∣
x=0,1

= D2u
∣∣
x=0,1

= D4u
∣∣
x=0,1

= 0, (18)

u(x, 0) = 0. (19)

Here we do not restrict the smoothness of the given functions a(x, t), b(x, t) and
f(x, t), but simply assume that they are sufficiently smooth. Our main purpose is
to find the relation between the Hölder norm of the solution u and a(x, t), b(x, t),
f(x, t).

The crucial step is to establish the estimates on the Hölder norm of u. Let
(x0, t0) ∈ (0, 1)× (0, T ) be fixed and define

φ(ρ) =

∫∫
Sρ

(
|u− uρ|2 + ρ6|D3u|2

)
dxdt, (ρ > 0),

where

Sρ = Bρ(x0)× (t0 − ρ6, t0 + ρ6), uρ =
1

|Sρ|

∫∫
Sρ

u dxdt

and Bρ(x0) = (x0 − ρ, x0 + ρ).
Let u be the solution of the problem (17), (18), (19). We split u on SR into

u = u1 + u2, where u1 is the solution of the problem

∂u1
∂t

− a(x0, t0)D
6u1 = 0, (x, t) ∈ SR, (20)
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u1 = u, Du1 = Du, D2u1 = D2u, x ∈ ∂BR(x0), (21)

u1 = u, t = t0 −R6, x ∈ BR(x0), (22)

and u2 solves the problem

∂u2
∂t

− a(x0, t0)D
6u2 = −D4

[
(a(x0, t0)− a(x, t))D2u

]
+D4f +D2g, (x, t) ∈ SR, (23)

u2 = 0, Du2 = 0, D2u2 = 0, (x, t) ∈ ∂BR(x0)× (t0 −R6, t0 +R6), (24)

u2 = 0, t = t0 −R6, x ∈ BR(x0). (25)

By classical linear theory, the above decomposition is uniquely determined by u.
We need several lemmas on u1 and u2.

Lemma 3.1. Assume that

|a(x, t)− a(x0, t0)| ≤ aσ

(
|t− t0|σ/6 + |x− x0|σ

)
,

|b(x, t)− b(x0, t0)| ≤ bσ

(
|t− t0|σ/6 + |x− x0|σ

)
,

where (x, t) ∈ BR(x0)× (t0 −R6, t0 +R6). Then

sup
(t0−R6,t0+R6)

∫
BR(x0)

u22(x, t) dx+

∫∫
SR

(D3u2)
2 dxdt

≤CR2σ

∫∫
SR

(D3u)2 dxdt+ C

∫∫
SR

|Df |2dxdt+ C

∫∫
SR

|g|2dxdt.

Proof. Multiply the equation (23) by u2 and integrate the resulting relation over
(t0 −R6, t)×BR(x0). Integrating by parts, we have

1

2

∫
BR

u22dx+ a(x0, t0)

∫ t

t0−R6

ds

∫
BR

(D3u2)
2dx

=

∫ t

t0−R6

ds

∫
BR

[a(x0, t0)− a(x, s)]D3uD3u2dx

−
∫ t

t0−R6

ds

∫
BR

Da(x, t)D2uD3u2dx

+

∫ t

t0−R6

ds

∫
BR

DfD3u2dx+

∫ t

t0−R6

ds

∫
BR

gD2u2dx.

Noticing that ∣∣∣∣∫ t

t0−R6

ds

∫
BR

[a(x0, t0)− a(x, s)]D3uD3u2dx

∣∣∣∣
≤ε

∫∫
SR

(D3u2)
2dxds+ Cεa

2
σR

2σ

∫∫
SR

(D3u)2dxds,
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t0−R6

ds

∫
BR

Da(x, t)D2uD3u2dx

∣∣∣∣
≤ε

∫∫
SR

(D3u2)
2dxds+ CR2σ

∫∫
SR

(D2u)2dxds

≤ε

∫∫
SR

(D3u2)
2dxds+ Cεa

2
σR

2σ

∫∫
SR

(D3u)2dxds,

∣∣∣∣∫ t

t0−R6

ds

∫
BR

DfD3u2dx

∣∣∣∣ ≤ ε

∫∫
SR

(D3u2)
2dxds+ Cε

∫∫
SR

|Df |2dxdt,

and ∣∣∣∣∫ t

t0−R6

ds

∫
BR

gD2u2dx

∣∣∣∣ ≤ ε

∫∫
SR

(D3u2)
2dxds+ Cε

∫∫
SR

|g|2dxdt,

hence we obtain the estimate and the proof is complete. �

Lemma 3.2. For any (x1, t1), (x2, t2) ∈ Sρ,

|u1(t1, x1)− u1(t2, x2)|2

|t1 − t2|1/6 + |x1 − x2|

≤C sup
(t0−ρ6,t0+ρ6)

∫
Bρ(x0)

(Du1(x, t))
2 dx+ C

∫∫
Sρ

(D4u1)
2 dxdt.

Proof. From the Sobolev embedding theorem, we have for any (x1, t), (x2, t) ∈ Sρ,

|u1(x1, t)− u1(x2, t)|2

|x1 − x2|
≤ C sup

(t0−ρ6,t0+ρ6)

∫
Bρ(x0)

(Du1(x, t))
2 dx. (26)

Integrating the equation with respect to x over (y, y + (∆t)
1
6 ) × (t1, t2), where 0 <

t1 < t2 < T , ∆t = t2 − t1, we see that∫ y+(∆t)
1
6

y
[u1(z, t2)− u1(z, t1)]dz + a(x0, t0)

∫ t2

t1

[D5u1(y
′, s)−D5u1(y, s)]ds = 0,

where y′ = y + (∆t)1/6.
That is

(∆t)1/6
∫ 1

0
[u1(y + θ(∆t)1/6, t2)− u1(y + θ(∆t)1/6, t1)]dθ

+ a(x0, t0)

∫ t2

t1

[D5u1(y + (∆t)1/6, s)−D5u1(y, s)]ds = 0.

Integrating the above equality with respect to y over (x, x+ (∆t)1/4), we get

(∆t)1/3(u1(x
∗, t2)− u1(x

∗, t1))

=a(x0, t0)

∫ t2

t1

∫ x+(∆t)1/6

x
[D5u1(y + (∆t)1/6, s)−D5u1(y, s)]dyds.
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Hence,∣∣∣u1(x∗, t2)− u1(x
∗, t1)| ≤ C|t1 − t2|1/6

[∫∫
Sρ

(D4u1)
2 dxds+

∫∫
Sρ

(D2u1)
2 dxds

]
,

where x∗ = y∗ + θ∗(∆t)1/6, y∗ ∈ (x, x+ (∆t)1/6), θ ∈ (0, 1). This and (26) yield the
desired conclusion and the proof is complete. �

Lemma 3.3. (Caccioppoli type inequality)

sup
(t0−(R/2)6,t0+(R/2)6)

∫
BR/2(x0)

|u1(x, t)− (u1)R|2 dx+

∫∫
SR/2

|D3u1|2 dxdt

≤ C

R6

∫∫
SR

|u1(x, t)− (u1)R|2 dxdt,

sup
(t0−(R/2)6,t0+(R/2)6)

∫
BR/2(x0)

|Du1|2 dx+

∫∫
SR/2

|D4u1|2 dxdt

≤ C

R6

∫∫
SR

|Du1|2 dxdt ≤
C

R8

∫∫
S2R

|u1(x, t)− (u1)R|2 dxdt.

Proof. For simplicity, we only prove the first inequality, since the other can be shown
similarly. Choose a cut-off function χ(x) defined on (x0 − R, x0 + R) such that
χ(x) = 1 in (x0 − R

2 , x0 +
R
2 ) and

|Dχ| ≤ C

R
, |D2χ| ≤ C

R2
,

|D3χ| ≤ C

R3
, |D4χ| ≤ C

R4
.

Let g(t) ∈ C∞
0 (t0,+∞) with 0 ≤ g(t) ≤ 1, 0 ≤ g′(t) ≤ C

R6 and g(t) = 1 for

t ≥ t0 − (R2 )
6. Multiplying the equation (20) by g(t)χ6[u1(x, t) − (u1)R] and then

integrating the resulting relation over (t0 −R6, t)× (x0 −R, x0 +R), we have∫ t

t0−R6

g(s)ds

∫
BR(x0)

∂u1
∂t

χ6[u1(x, t)− (u1)R]dx+

− a(x0, t0)

∫ t

t0−R6

g(s)ds

∫
BR(x0)

D6u1χ
6[u1(x, t)− (u1)R]dx = 0.

It follows from integrating by parts and using the boundary value condition (21),

1

2

∫
BR(x0)

g(s)χ6|u1(x, t)− (u1)R|2 dx

+ a(x0, t0)

∫ t

t0−R6

g(s)ds

∫
BR(x0)

D5u1D[χ6[u1(x, t)− (u1)R]] dx

=
1

2

∫ t

t0−R6

g′ ds

∫
BR(x0)

χ6|u1(x, t)− (u1)R|2 dx, t ∈

[
t0 −

(
R

2

)6

, t0 +

(
R

2

)6
]
.
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Thus

1

2

∫
BR(x0)

g(s)χ6|u1(x, t)− (u1)R|2 dx

+ a(x0, t0)

∫ t

t0−R6

g(s)ds

∫
BR(x0)

χ6(D3u1)
2 dx

+ a(x0, t0)

∫ t

t0−R6

g(s)ds

∫
BR(x0)

18χ5χ′D2u1D
3u1dx

+ a(x0, t0)

∫ t

t0−R6

g(s)ds

∫
BR(x0)

[(18χ5χ′′ + 90χ4χ′2)Du1D
3u1

+ (6χ5χ′′′ + 90χ4χ′χ′′ + 120χ3χ′3)(u1(x, t)− (u1)R)D
3u1] dx

=
1

2

∫ t

t0−R6

g′ ds

∫
BR(x0)

χ6|u1 − (u1)R|2 dx.

By Cauchy inequality, we have∣∣∣∣∣18
∫ t

t0−R6

∫
BR(x0)

g(s)a(x0, t0)χ
5χ′D2u1D

3u1dxds

∣∣∣∣∣
≤1

4
a(x0, t0)

∫ t

t0−R6

∫
BR(x0)

g(s)χ6(D3u1)
2dxds

+ C

∫ t

t0−R6

∫
BR(x0)

g(s)χ4(χ′)2(D2u1)
2dxds,

∣∣∣∣∣
∫ t

t0−R6

∫
BR(x0)

g(s)a(x0, t0)(18χ
5χ′′ + 90χ4χ′2)Du1D

3u1 dxds

∣∣∣∣∣
≤1

4
a(x0, t0)

∫ t

t0−R6

∫
BR(x0)

g(s)χ6(D3u1)
2dxds

+ C

∫ t

t0−R6

∫
BR(x0)

g(s)χ4χ′′2(Du1)
2 dxds

+ C

∫ t

t0−R6

∫
BR(x0)

g(s)χ2χ′4(Du1)
2 dxds,

and ∣∣∣∣∣
∫ t

t0−R6

∫
BR(x0)

g(s)a(x0, t0)(6χ
5χ′′′ + 90χ4χ′χ′′ + 120χ3χ′3)

·(u1(x, t)− (u1)R)D
3u1 dxds

∣∣
≤1

4
a(x0, t0)

∫ t

t0−R6

∫
BR(x0)

g(s)χ6(D3u1)
2dxds

+
C

R6

∫ t

t0−R6

∫
BR(x0)

(u1(x, t)− (u1)R)
2 dxds.
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Combining the above these expressions yields∫
BR(x0)

g(s)χ6|u1(x, t)− (u1)R|2 dx

+
1

2
a(x0, t0)

∫ t

t0−R6

g(s)ds

∫
BR(x0)

χ6(D3u1)
2 dx

≤
∫ t

t0−R6

g′ ds

∫
BR(x0)

χ6|u1 − (u1)R|2 dx

+ C

∫ t

t0−R6

∫
BR(x0)

χ2χ′4(Du1)
2 dxds+ C

∫ t

t0−R6

∫
BR(x0)

χ4χ′′2(Du1)
2 dxds

+ C

∫ t

t0−R6

∫
BR(x0)

χ4(χ′)2(D2u1)
2dxds

+
C

R6

∫ t

t0−R6

∫
BR(x0)

(u1(x, t)− (u1)R)
2 dxds

≡
∫ t

t0−R6

g′ ds

∫
BR(x0)

χ6|u1 − (u1)R|2 dx+ C(I1 + I2 + I3 + I4).

As for I1, we get

I1 = −
∫ t

t0−R6

∫
BR(x0)

u1D(χ2χ′4Du1)dxds

=−
∫ t

t0−R6

∫
BR(x0)

χ2χ′4u1D
2u1dxds−

∫ t

t0−R6

∫
BR(x0)

(χ2χ′4)′u1Du1dxds

≤ε1I3 + C

∫ t

t0−R6

∫
BR(x0)

χ′6u21dxds+
1

2

∫ t

t0−R6

∫
BR(x0)

(χ2χ′4)′′u21dxds

≤ε1I3 + CI4. (27)

As for I2, we have

I2 =−
∫ t

t0−R6

∫
BR(x0)

u1D(χ4χ′′2Du1)dxds

=

∫ t

t0−R6

∫
BR(x0)

χ′D(χ4χ′′u1D
2u1)dxds+

1

2

∫ t

t0−R6

∫
BR(x0)

(χ4χ′′2)′′u21dxds

≤
∫ t

t0−R6

∫
BR(x0)

χ′(χ4χ′′)′u1D
2u1dxds

+

∫ t

t0−R6

∫
BR(x0)

χ4χ′χ′′(Du1D
2u1 + u1D

3u1)dxds+ CI4

=ε2I3 + CI4 + ε3

∫ t

t0−R6

∫
BR(x0)

χ6(D3u1)
2dxds

− 1

2

∫ t

t0−R6

∫
BR(x0)

(χ4χ′χ′′)′(Du1)
2dxds
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=ε2I3 + CI4 + ε3

∫ t

t0−R6

∫
BR(x0)

χ6(D3u1)
2dxds− 1

2
I2

− 1

2

∫ t

t0−R6

∫
BR(x0)

(χ4χ′χ′′′ + 4χ3χ′2χ′′)(Du1)
2dxds,

that is,

I2 ≤ε2I3 + CI4 + ε3

∫ t

t0−R6

∫
BR(x0)

χ6(D3u1)
2dxds

− 1

3

∫ t

t0−R6

∫
BR(x0)

(χ4χ′χ′′′ + 4χ3χ′2χ′′)(Du1)
2dxds.

On the other hand,

−
∫ t

t0−R6

∫
BR(x0)

(χ4χ′χ′′′ + 4χ3χ′2χ′′)(Du1)
2dxds

=

∫ t

t0−R6

∫
BR(x0)

(χ4χ′χ′′′ + 4χ3χ′2χ′′)u1D
2u1dxds

+

∫ t

t0−R6

∫
BR(x0)

((χ4χ′χ′′′)′ + 4(χ3χ′2χ′′)′)u1Du1dxds

≤εI3 + CI4.

Combining the above two yields

I2 ≤ ε4I3 + CI4 + ε3

∫ t

t0−R6

∫
BR(x0)

χ6(D3u1)
2dxds. (28)

Noticing that

I3 =−
∫ t

t0−R6

∫
BR(x0)

χ4χ′2Du1D
3u1dxds

−
∫ t

t0−R6

∫
BR(x0)

(4χ3χ′3 + 2χ4χ′χ′′)Du1D
2u1dxds

≤ε5

∫ t

t0−R6

∫
BR(x0)

χ6(D3u1)
2dxds+ C(ε5)I1 +

1

4
I3 + CI1 +

1

4
I3 + CI2,

that is,

I3 ≤ 2C(ε5)I1 + CI2 + 2ε5

∫ t

t0−R6

∫
BR(x0)

χ6(D3u1)
2dxds. (29)

Finally, from (27), (28) and (29), choose ε1, ε3, ε4 enough small, we see that

Ii ≤ ε

∫ t

t0−R6

∫
BR(x0)

χ6(D3u1)
2dxds+ CI4, i = 1, 2, 3.

We obtain immediately the desired first inequality of the lemma and the proof
is completed. �
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Lemma 3.4. Assume that

|a(x, t)− a(x0, t0)| ≤aσ

(
|t− t0|σ/6 + |x− x0|σ

)
,

t ∈ (t0 −R6, t0 +R6), x ∈ BR(x0).

Then for any ρ ∈ (0, R),

1

ρ8

∫∫
Sρ

(|u1 − (u1)ρ|2 + ρ6|D3u1|2) dxdt

≤ C

R8

∫∫
SR

(|Du1 − (Du1)R|2 +R6|D3u1|2) dxdt.

Proof. One needs only to check the inequality for ρ ≤ R
2 . From Lemma 3.2 and

Lemma 3.3, we have

1

ρ8

∫∫
Sρ

|u1 − (u1)ρ|2 dxdt

≤C sup
(t0−(R

2
)4,t0+(R

2
)4)

∫
BR

2
(x0)

|Du1|2 dx+ C

∫∫
SR

2

|D4u1|2 dxdt

≤ C

R8

∫∫
SR

|u1 − (u1)R|2 dxdt.

On the other hand,∫∫
Sρ

ρ6|D3u1|2 dxdt

≤C1

∫∫
Sρ

ρ8(D4u1)
2dxdt+ C2

∫∫
Sρ

ρ2(Du1)
2dxdt

≤C1ρ
8

∫∫
SR

2

(D4u1)
2dxdt+ C2ρ

8 sup
(t0−(R

2
)6,t0+(R

2
)6)

∫
BR

2
(x0)

(Du1)
2dx

≤C
( ρ

R

)8 ∫∫
SR

2

R2(Du1)
2dxdt

≤C
( ρ

R

)8 [∫∫
SR

R6(D3u1)
2dxdt+

∫∫
SR

(Du1 − (Du1)R)
2dxdt

]
.

The conclusion of the lemma follows at once. �

Lemma 3.5. For λ ∈ (5, 6),

φ(ρ) ≤ Cλ

(
φ(R0) + sup

SR0

|f |2
)
ρλ, ρ ≤ R0 = min

(
dist(x0, ∂Ω), t

1/4
0

)
,

where Cλ depends on λ, R0 and the known quantities.

Proof. By Lemma 3.4,

φ(ρ) =

∫∫
Sρ

(|u− (u)ρ|2 + ρ6|D3u|2) dxdt
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=

∫∫
Sρ

(|u1 − (u1)ρ|2 + ρ6|D3u1|2) dxdt

+

∫∫
Sρ

(|u2 − (u2)ρ|2 + ρ6|D3u2|2) dxdt

≤C

(
ρ

R

)8 ∫∫
SR

(|u− (u)R|2 +R6|D3u|2) dxdt

+ C

∫∫
SR

(|u2|2 +R6|D3u2|2) dxdt

≤C

[(
ρ

R

)8

+R2σ

]
φ(R) + C

(∫∫
SR

|Df |2dxdt+
∫∫

SR

|g|2dxdt
)
R6.

The conclusion follows immediately from [6]. �

Similar to the discussion about the Campanato spaces in [6], we first conclude
from Lemma 3.5 that

Theorem 3.1. Let f(x, t) be appropriately smooth function, and u be the smooth
solution of the problem (17)-(19). Then for any α ∈ (0, 12), there exists a coefficient

K depending only on α, aσ, bσ,
∫∫

QT
u2dxdt and

∫∫
QT

(D3u)2dxdt, such that

|u(x1, t1)− u(x2, t2)|

≤K

(∫∫
SR

|Df |2dxdt+
∫∫

SR

|g|2dxdt
)
(|x1 − x2|α + |t1 − t2|

α
6 ). (30)

Proof of Theorem 1.1. Let w = D2u−D2u0. w satisfies


∂w

∂t
−D4(a(x, t)D2w) = D4f +D2g,

w|x=0,1 = D2w|x=0,1 = D4w|x=0,1 = 0,
u(x, 0) = 0,

where a(x, t) = km(u), f = m(u)(kD4u0 − A′(u)(D2u −D2u0) − A′′(u)|Du|2) and
g(x, t) = νuDu. Hence, using (11)-(13) and Theorem 3.1, we conclude that

|D2u(x1, t1)−D2u(x2, t2)| ≤ C(|x1 − x2|α/2 + |t1 − t2|α/12). (31)

The conclusion follows immediately from the classical theory, since we can
transform the equation (1) into the form

∂u

∂t
+ a1(x, t)D

6u+ b1(x, t)D
5u+ a2(x, t)D

4u+ b2(x, t)D
3u

+ a3(x, t)D
2u+ b3(x, t)Du = 0,



A driven sixth-order Cahn-Hilliard equation 57

where the Hölder norms on

a1(x, t) = −km(u)(x, t), b1(x, t) = −2km′(u(x, t))Du(x, t),

a2(x, t) = m(u(x, t))A′(u(x, t))− km(u)D2u− km′(u)(Du)2,

b2(x, t) = 4m(u)A′′(u)Du+ 2m′(u)A′(u)Du,

a3(x, t) = m(u)(3A′′(u)D2u+ 6A′′′(u)(Du)2)

+m′(u)(A′(u)D2u+ 7A′′(u)(Du)2) +m′′(u)A′(u)(Du)2,

b3(x, t) = m′′(u)A′′(u)(Du)3 − νu

have been estimated in the above discussion. The proof is complete. �
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