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DIFFERENTIATION AND WEAK INTEGRATION FOR
CONE-VALUED CURVES

Davood AYASEH!,Asghar RANJBARI?

Locally convex cones are a generalization of locally convex topological
vector spaces which are not necessarily embedded in vector spaces. We define the
concepts of differentiation and weak integration for cone-valued curves. Also, we
prove the Fundamental Theorems of Calculus for this type of functions. We find
some conditions for the existence of weak integral in locally convex cones.
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1. Introduction

The theory of locally convex cones as developed in [4] and [5], uses an
order theoretical concept or convex quasiuniform structure to introduce a
topological structure on a cone. Examples of locally convex cones contain classes
of functions that take infinite values and families of convex subsets of vector
spaces. These types of structures are not vector space and also may not even
be embedded into a larger vector spaces in order to apply technics from
topological vector spaces. These structures are studied in the general theory of
locally convex cones.

A cone is a set P endowed with an addition and a scalar multiplication
for nonnegative real numbers. The addition is supposed to be associative and
commutative, and there is a neutral element 0 €P. For the scalar multiplication
we must have a(fa) = (af)a, (a + B)a = aa+ pa, a(a+ b) = aa + ab,
la=aand 0a = Oforalla,b e Panda, B = 0.

Let P be a cone. A collection U of convex subsets UC P2 = P X P is
called a convex quasiuniform structure on?, if the following properties hold:
(Ul)A<c UforeveryU €U (A= {(a,a): a € P},

(U2)forall U,V € U thereisaW € U suchthat W C U NV,
(U3) AUopU < (A+ U forall U € U and 4, n > 0;
(U4) aU € U for all U € U and a >0.
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Here, for U,V S P?, by UoV we mean the set of all (¢, b) EP? such that there is

some ¢ € P with (a,c) € U and (¢c,b) € V.

Let P be a cone and U be a convex quasiuniform structure on P. We shall say

(P,U) is a locally convex cone if

(US) foreacha € P and U € U there is some p >0 such that (0,a) € pU.

With every convex quasiuniform structure U on P we associate two

topologies: The neighborhood bases for an element a in the upper and lower

topologies are given by the sets

Ula)={b €P:(b,a) €U}, resp. (@U={beP: (a,b)e U}, UelU

The common refinement of the upper and lower topologies is called symmetric

topology. A neighborhood base for a €2 in this topology is given by the sets
Ul@U = U(a) n (a)U, UeU.

Let U and W be convex quasiuniform structures on P. We say that U is

finer than W if for every W € W thereis U € U suchthat U S W.

The extended real number system R = R U {+o0} is a cone endowed
with the usual algebraic operations, in particular @ + o = +oo for all a €R,
a-(+x) =+4oo foralla > 0 and 0.(+) = 0. Weset V = {&:& > 0},
where & = {(a,b) € R*: a < b + €}. Then V is a convex quasiuniform
structure on R and (R, V) is a locally convex cone. For @ € R the intervals
(—o0,a + €] are the upper and the intervals [@ — & +o0] are the lower
neighborhoods, while for a =+ the entire cone R
is the only upper neighborhood, and {+o0} is open in the lower topology. The
symmetric topology is the usual topology on R with as an isolated point +oo.

For cones P and Q, a mapping T : P — Q is called a linear operator if
T(a + b)=T(a) + T(b) andT(aa) = aT(a) hold for all a,b € P and
a > 0. If both (P,U) and (Q, W) are locally convex cones, the operator T is
called (uniformly) continuous if for every W € W one can find U € U such that
T X T(U) € W. A (uniformly) continuous linear operator is continuous with
respect to upper, lower and symmetric topologies.

A linear functional on P is a linear operator i: P — R. We denote the
set of all linear functional on P by L(%P) (the algebraic dual of P). For a subset
F of P?% we define polar F’as below

F={ueL®P: ua < wb) + 1,Y(a,b) EF}.
Clearly ({(0,0)}) = L(®). A linear functional u on (P,U) is (uniformly)
continuous if there is U € U such that p € U’. The dual cone P* of a locally
convex cone (P, U) consists of all continuous linear functionals on 2 and is the
union of all polars U’of neighborhoods U € ‘U. Foe example, the dual cone R*
of R consists of all nonnegative reals and the singular functional 0 such that
0 (x)=0 forall x € Rand 0(+®) = +oo.
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We shall say that a locally convex cone (P,U) has the strict separation
property if the following holds:

(SP) For all a,b € P and U € U such that (a,b) & pU for some p >1,there is a
linear functional p € U’such that u(a) > u(b) + 1 ([4], 11, 2.12).

The locally convex cone (P, U) is called separated whenever its symmetric
topology is Hausdorff. Also, we say that PP separates the points of P, whenever
for a,b € P we have a = b if and only if p(a) = u(b) for all p € P*. If
P* separates the points of P, then (P, U) is a separated locally convex cone.
Indeed, if a,b € P and a # b, then there is p € P* such that p(a) # u(b).
Since the symmetric topology of (R, V) is Hausdorff, there is ¢ >0 such that
£(a)gNg(b)e=0. Now, by the continuity of u, there is U € U such that
(0 X W) € & and we have U(a)U NnU(b)U = Q.

The convex subset U € P is called uniformly convex if

(1) foreacha € P, (a,a) € U,

2)fora,p > 0, (aU)o (BU) € (a + B)U.

Also, we shall say that the subset F of P? has the property (CP) if the
following holds:

(CP) if(a,b) € F, then there is p € P* such that u(a) > w(d) + 1 and
u(c) < p(d) +1forall (c,d) € F.

In [4], a dual pair is defined as follows: A dual pair (P, Q) consists of two
cones P and Q with a bilinear mapping (a,x) >< a,x >:P x Q@ > R
Suppose that (P,U) is a locally convex cone. We shall say that F € P? is u-
bounded (uniformly-bounded) if it is absorbed by each U € U. A subset 4 of P is
called bounded above(below) whenever A X {0}(res.{0} X A) is u-bounded
(see [2]).

If (P,Q) is a dual pair, then every x € Q is a linear mapping on P. We
denote the coarsest convex quasiuniform structure on P that makes all x € Q
continuous by U, (P, Q). In fact, (P, U,(P,Q)) is the projective limit of (R, V)
by x € Q as linear mappings on P (projective limits of locally convex cones
were defined in [3]).

Let (P,Q) be a dual pair. We shall say that a subset B of P is Uy (P, Q)-
bounded below whenever it is bounded below in locally convex cone
(P, Us(P, Q).
Let B be a collection of (P, U,(P, Q))-bounded below subsets of P such that
(a)aB € Bforall B € Band a > 0,
(b) Forall X, Y €B thereis Z €B suchthat XU Y c Z.
(c) P is spanned by Ugep B.
For B € B we set

Ug ={(x,y) € Q> :< b,x ><< b,y > +1,forallb € B}
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and

Up(P,Q) = (Up: B € BY.
It is proved in [4], page 37, that Ug(P,Q) is a convex quasiuniform structure
on Q and (Q,Ug(P,Q)) is a locally convex cone. If b € B for B € B, then b €
BcS Uy . Now P S (Q,(Q,Us(P,Q))* by (c). This shows that Ug(P,Q) is
finer than U, (P, Q).

2. Differentiation and weak integration for cone-valued curves

We define the concept of differentiation for cone-valued curves.
Definition 2.1.Let (P, U) be a separated locally convex cone. We consider
on P and [0,+), the symmetric topology and the usual Euclidean topology,
respectively. A P-valued continuous map v, defined on an interval I = (a,b) €
[0, ) for some a,b € [0,+®) and a < b, is called a C°-curve. A C°-curve
y : I > P is called a C'-curve, whenever
(1) for every t € I there is y'(t) € P such that for each U € U there is 6 >0
such that s <& implies that(y(t+s),y(t)+sy'(t)) € sU and (y(t)+
sy'(t),y(t +s)) € sU,
(2) themapy': 1 - P : t - y'(t) is continuous.
We set Yy =y and y® = (&Y. Recursively, fork €N, we call y,
C*-curve if y is a C* Y-curve and y*=V is Cl-curve. We note that for each
t €1, ify'(t) exists, then it is unique, since (P, W) is a separated locally convex
cone.

It is easy to see that if y:I - P and ¢ :I — P are C*-curve, then
y + ¢ and ay, are Ck-curve for a > 0. Therefore the collection of all P-valued
C*-curves on the interval / is a cone denoted by C*(I,P). Obviously, we have
C**1(1,P) € C*(I,P) forall k € N.

The cone C*(I,P): Let (P, U) be a separated locally convex cone. Then
the collection of P-valued infinitely differentiable functions on 7/ is a cone
denoted by C*(I,P). For y,n € C*(I,P), U € Uand n €N, we set (y,n7) €

% if and only if (y™(x),n™ (x)) € U for all x € I. The collection of all
neighborhoods 97 is a base for a convex quasiuniform structure on C*(I,P),
denoted by U,. The collection of all bounded below functions in €% (I, P),
with respect to U, is a cone, denoted by Cp (I, P). Therefore (Cp (I, P), Us)
is a locally convex cone. For each x €I, n € N and p € P*, we claim that
the linear functional p? : €y (I,P) - R, u2(y) = u(y™(x)) is an element of
(Cy (I,P) , Uy)". Indeed, there is U € U such that p € U . Now, if (y,n) € 97,
then (y™(x),n™(x)) € U. Therefore p(y™(x)) < u(n™(x)) + 1. This
shows that p® € (9%)". In the special case, for the linear functional pg :

Cy(LP) > R (y) = p(y(x), we have i@ € (97)"
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Example 2.1.We consider the locally convex cone (R,V). The constant curve
¥ :(0,+%) > R, y(t) = +0 is a C®-curve. We have y®(t) = +oo for each
k € N. This function acts similar to the exponential function f(x) = e* in the
classical calculus. If we consider constant curvey : (0,+») - R, y(s) = b,
where b € R, then we have y'(t) = 0.

Theorem 2.2.Let (P, U) and (Q,W)be locally convex cones and T:P — Q
be a continuous linear mapping. If y : I — P is a C'-curve, then Toy is also
a C-curve and (Toy)' = Toy'.

Proof. Let W € W be arbitrary. There is U € U such that (a, b) € U implies that
(T(a),T(b)) EW for each a,b € P. Now, since y is Cl-curve, there
is 6 >0 such that for s < d, we have (y(t + s),y(t) +sy'(t) € sU and
(r(@®) + sy'(),y(t + s)) €sU. Then (T(y(t + s)),T(¥(t) + sy'(1))) €
sW and (T(y(t) + sy'(t)), T(y(t + s))) € sW. The linearity of T implies that

(T(y(s+ ), T(y(®) + sT(Y'(t)) € sW and (T(y(t)) +sT(¥ (), T(y(s+
t))) € sW. Then we have (Toy)" = Toy'.

Lemma 2.3. Consider the locally convex cone (R V)endowed with its symmetric
topology. For every continuous curve y:1— R, we have y(x)= o for
all x € I or y(x) < oo forall x €l

Proof. Let the assertion is false. Then there is x €&/ such that y(x) = o and
y(y) < o for ally € I\{x}. We choose the sequence (x)neny in I\{x}such
that x,, = x. Now the continuity of yyields that (y(x,))nen 1S convergent to
y(x) = +oo. Since +oo is an isolated point in the symmetric topology of (R, V),
we realize that there is m € N such that y(x,,) = +oo for all n > m. This is a
contradiction. Therefore, the assertion is true.

Now, by considering the Lemma 2.3, we introduce the integral f: y(t)dt
for a continuous curvey: I - R: if y(x) < oo for all x €I, we mean

f: y(t)dt the usual Riemann integral and when y(x) = +oo for all x € I, we set
fab y(t)dt:=+oo for a # b and fab y(t)dt = 0 for a = b.

Definition 2.4. Let (P, U)be a locally convex cone such that P* separates the
points of P, and y : I - P be aC’-curve, and a, b € I with a < b. If there is
P € P such that for each n € P~,

b
u(p) = f u(y(@®)dt,

a

P € P is called the weak integral of the v, from a to b, and denoted by
b
p:= f y(t)dt.
a
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In Definition 2.4, if a = b, then f: u(y(t))dt=0=u(0) for all p € P*.

This shows that f: y(t)dt = 0 for a,b € I, with a = b. Also, we note that the

element p € P in Definition 2.4 is uniquely determined if it exists, since P*
separates the points of P.

Lemma 2.5. Let (P, U)be a locally convex cone such that P* separates the
points of P. Suppose y: I — Pand ¢: I — P are continuous curves such

that the weak integrals faby(t)dt and f:q)(t)dt exist for a,b €1. Then the
followings hold.

@ [, (r® + p(®)dt = [ y(O)dt + [; p(O)dt,

(b)fora = 0, [T ay(tydt = a [, y(t)dt,

(c) if for a, b, ¢ €I, with a < ¢ < b, the integrals fac y(t)dt and fcb y(t)dtexist,
then [ y(t)dt + fcb y(tdt = f: y(t)dt.

Proof. For (a), let p = f: y(t)dt and q = f:(p(t)dt. Then for each pu € P*,
we have u(p) = f: u(y(@®))dtand p(q) = f: u(e@(t))dt. This yields that for
every u € P,

f,f ny (@) + @()dt = f: uy(®)dt + ff we®)dt = u(p) +u(q) = n@ + @.
Therefore f:(y(t) +@())dt=p + q, by definition of weak integral.
For (b), let p = f: y(t)dtand a > 0. Then for each pu € P*, u(p) =
f: u(y(t))dt. Now, we have

b b
w(ap) = au(p) = (aw) () = f (@) (y(©)dt = f w(ay(®)dt.

Now, by the definition of weak integral, we have f: ay(t)dt = a f: y(t)dt.

For (c), let m = [ y()dt,n = [ y(t)dtand p = [, y(t)dt. Then for
u e P,

c b b
W(m + 1) = p(m) + p(n) = f Wy @®)de + f W(r(®) dt = f Wy (©)dt

= uwp).
Since P* separates the points of P, we have m +n = p.
Theorem 2.6 (The First Fundamental Theorem of Calculus).Let (P, U) be
a locally convex cone such that P* separates the points of P, y: I — P be
a continuous curve and a € 1. Also assume that the weak integral @(t) =

f; y(m)dm exists for each t € I. Then ¢ : I — P is a Cl-curve and ¢’ =y.
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Proof. Since the weak integral ¢@(t) = f: y(t)dtexists, we have

u(e(t)) = f: u(y(m))dm, for all p € P*. For p € P*, if p(y(m)) < oo for all
m € I, the usual First Fundamental Theorem of Calculus yields that (u(¢e(t))' =
u(y(t)). Then we have p(e'(t) =pu(y(t)) by Lemma 2.2. Now, since
P*separates the points of P, we have @'(t) = y(t). If u(y(t)) = o forall t € I,
Example 2.1 shows that the relation (u(e(t))"' = u(y(t)) is true. Then the
assertion holds.

Theorem 2.7 (The Second Fundamental Theorem of Calculus). Let(P,U) be a
separated locally convex cone such that P* separates the points of P, and y: 1 =

P be a Cl-curve, and a,b € I. Then y(b) = y(a) + p, wherep = f: y'(t)dt.
Proof. Let p € P*. By Lemma 2.2, poy : I —» R is a Cl-curve and we have
(uoy)= noy'. By Lemma 2.3, (noy)'(x) = oo for all x €I or (uoy)'(x) <
for all x € I. Let (u0y)'(x) < o for all x € I. Now the Classical Fundamental
Theorem of Calculus yields that

b b
quY'(t)dt = f (noy)' (®dt = u(y (b)) — u(y(a)).
This shows tﬁat ¢

b
wp +v(@) =up@) +uy(a) = f u(@'(@)dt + p(y(a)) = u(y(b)).

Now, since P* separates the points of P, we conclude that p + y(a) = y(b).
If (woy)'(x) = o for allx €I, then(puoy)(x)= cofor all x €I by
Example 2.1. Then the relation p(p) + u(y(a)) = u(y(b)) holds too in this
case. Therefore p + y(a) = y(b), since P* separates the points of P.

Proposition 2.8.Let (P, U)be a locally convex cone such that P* separates the
points of P, y : I — P be a continuous curve and a, b € I with a < b. Suppose

that the weak integral f: y(t)dt exists, and V is a uniformly convex subset of
P2? with (CP) such that y(I) SV (0)V = {m €P : (m,0) €V,(0, m) €V }. Then
[Ly®ydte (b — a)V (0)V.

Proof. We remember that V (0) = {m: (m,0) €V} (0)V={m: (0, m) € V}
and V(O)V=V0)nV(0). If a=b>b, then f:y(t)dt € (b—a)V (0)V.
Suppose @ # b and p = [, y(t)dt & (b — a)V (0)V. Then p & (b — @)V (0)
orp € (b — a)(0O)V.Letp € (b — a)V (0). Then (p,0) & (b — a)V. Since
V has (CP), there is p € P*such that u(p) > b — aand u(m) < u(n) + 1 for all (m,

n) €V. This shows that u(y(t)) < p(0)+1 for all ¢t €1. Then for each
t €I, u(y(t)) < 1. Therefore, we have
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b b
u®) = | wr@yde < [dat=b-a
a a
This contradiction yields that

b
f y(©)dt € (b — a)V (0).

We can prove that f: y(t)dt € (b —a)(0)Vin a similar way. Therefore
[Pytydt € (b—aV(0)V.
Example 2.2.Let X be a topological space, and let F(X,R)be the cone of
all R-valued lower semicontinuous functions on X, where Ris endowed with
the usual, that is, the one-point compactification topology. The cone F(X,R)
is considered endowed with the pointwise operations. For p >0, we set p =
((f.g) EP?: f(x) < g(x) + p}. The collection W= {p: p > 0} is a
convex quasiuniform structure on F(X,R). We denote the subcone of all bound
below elements of F(X,R) with respect to W by P. Then (P, W)is a locally
convex cone. If x € X and n € R*, then p,: P - R, defined by p,(f) =
u(f(x)) is a continuous functional on P. The dual cone P*separates the
points of P. Consider the continuous curvey :[0,+0)—->P, y() = f;
where fr: X > R, fo(x) = t for each x €X. We claim that y'(t) = f,. Let
p >0. Then we have t+s <t+s+sp for each s €1. This shows that
fras(X) = fe(x) +sf1(x) +sp and fu(x) +5f1(X) < feis(x) +5p. This
yields that (fevs, fe + Sf1) € sp and (f¢ + Sf1,fers) € sP.
Therefore y'(t) = f1. If @(t) = f;2, we can prove that @'(t) = f3, and by
theinduction if @(t) = f, form €N, then @'(t) = f, n-1. Now, we conclude
that[, '(s)ds = @(b).
Remark 2.9. Let P be a locally convex cone such that P* separates the
points of P. We claim that for the constant curve y(t) = ¢, where ¢ € P,
we have ac + faby(t)dt = bc for a, b €[0, ) with a # b (in the case a = b,
the relation is obvious). Indeed, if for p € P*, p(y(t) = p(c) = oo, then
b b .
J, n(y(®))dt = o0 and by(c) = oo. Therefore ac + [ y(t)dt = bc is true. If
for p € P*, u(y(t) = p(c) < oo, then by the classical integration, we have
fab nu(c)dt = (b — a)u(c) = u((b —a)c). Therefore for each u € P*, u(ac) +
fab n(y(t))dt = p(bc). Since P* separates the points of P, we conclude that

ac +faby(t)dt = bc.

The concept of completion for locally convex cones has been established
in [1]. Tt is proved in [4] that if (P, U) is a locally convex cone with (SP), then
for B= {U’: U € U}, the convex quasiuniform structure Ug(P,P*) and U are
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equivalent. For a locally convex cone (P,U) with (SP), the completion P of
P, is the subcone Nyey(P + ({0} x U)") of L(P*) endowed with the convex
convex quasiuniform structure U = Ug(P,P*), where B = {U: U € U}. For
details see [1].

Theorem 2.10.Let (P, U)be a locally convex cone such that P* separates
the points of P, and y : [0,+) > Pbe a continuous curve. Then there is
a unique differentiable curve @ : [0,+0) — P, where P is the completion of
Psuch that @' (t) = y(t) for each t € [0, +)and @(0) = 0.

Proof. Firstly, we show uniqueness. Let ¢ : [0,+%) — P be a curve with
derivative y and ¢(0) = 0. For every p € P* the composition po@is an
antiderivative of poy with initial value 0, so it is uniquely determined, and since
P*separates the points of P, ¢ is also uniquely determined. Now, we show the
existence of ¢. For each t € [0, +), we define @, : (P*, Uz(P",P)) - (R, V),
0. () = fot(uoy)(s)ds. For each t € [0, +00), @, is a linear functional on P*.
Then @ (€ L(P*) for all t € [0,+). Now, we define ¢:[0,+) - L(P"),
@(t) = @; We claim that ¢’ = y. Let u € P*. Then we have poy(t) = oo or
poy(t) < oo for each t € [0,00) by the Example 2.1. If for each t € [0, o),
Hoy(t) = oo, then for >0, we have @, (1) = [ poy(s)ds = [, cods = oo
This shows that ¢@(t) = oo. Therefore the assertion holds in this case by the
Example 2.1. Now, let for each t € [0, ), poy(t) < oo. We identify a € P
with the linear mapping P, : P* > R, Pqa(1) = u(a). Let U €U, t € [0, )
and s >0. There is §; > 0 such that y(m) € (8,U)(y(t))(6.U), for each m €
[t,t + s] by the continuity of y. We set V = §,U. Clearly, we have Uy €
Ug(P*,P)Now, fort € [0,0),s < Sand p € V'we have

uiy(m)) < u(y@®) + 1,

forallm € [t,t + s]. Therefore
t+s

f u(y(m))dm < f (u(y(®) + 1)dm.
This shows that
[ (oy) (mydm. < su(y(®) + s.
Then
fo (noy)(m)dm — fo (uoy)(m)dm < su(y(t)) + s.

This shows that
| wopamydm < [ qoyymydm + su(r(®) + 5
0 0

Therefore
Pess(W) +s() < @() + sp(y (@) + s.
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This yields that

(p(t + 5), @)+ sy(t)) esUy -.
In a similar way we can prove that

(p(t) + sy(D), @t + 5)) € sU-.
Then we have ¢’ = y by the definition of differentiation. It remains to show
that ¢, € P for all t € [0,0). If t = 0, it is clear. For each t € (0,00) there
is &; such that y([0,t]) < (6,U)(0)(8,U) by the continuity of y. We claim
that @, € ({0} x (t8,U)")". Let y€ (t8,U)". Then p € —U". For s € [0, ],

t

since, (0,8l y(s)) € U, we have (tStu)(sl yY(s)) = —1. Then for s € [0, ],
t t
u(y(s)) = — 7 This yields that

t t
1
0 = [ woy(s)ds = [ - ds = -1
0 0
Then 0 < ¢@,(pn) + 1. In fact, for ({0},pn) € 0 X (t8,U) we have @,(0) =

0 < ¢.(1) + 1. This shows that @, € ({0} x (t8,U)")". Then ¢, € P for all
t € [0,00).

Corollary 2.11.Let (P, U)be an upper complete locally convex cone such that
P*separates the points of P, and y : [0,0) — P be a continuous curve. Then

the weak integral f: y(®)dt exists. In fact, if (P, U)is upper complete,
then(P,U) = (P,U) and therefore @, € P for each t € [a,b], by Theorem
2.10.Also, we have f: y(®dt + @(a) = @(b) by Theorem 2.7.
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