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PRACTICAL ANALYSIS OF CLOUD OFFLOADING
STRATEGIES FOR HEAVY Al PROCESSING MOBILE
GAMES

Adriana DRAGHICI', Andrei VOINESCU?, Nicolae TAPUS®

Modern mobile devices, such as smartphones and tablets, are offering a wide
range of entertainment applications that require an increasing amount of
computational and storage resources. To address such needs, developers transfer
the load from the mobiles to remote resources, usually in a Cloud infrastructure.
The focus of our work is to find policies for balancing the load between devices and
remote resources using offloading techniques. We apply these techniques on a
popular artificial intelligence intensive mobile game, OpenTTD and seek to reduce
the server-side load by leveraging the devices computing capabilities.
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1. Introduction

Mobile devices, such as smartphones and tablets in particular have become
ubiquitous and are transforming our daily activities and even our education
process due to their vast application domain. Most applications rely on
connectivity and remote storage, and those from the gaming category make a lot
of use also of the computational power of mobile devices or remote servers. While
the number of users increases, the games must maintain the quality of experience
and provision more remote resources. Completely moving the load to a remote
platform leads to greater costs, so we investigate a way of running parts of the
application on devices while preserving the user experience.

Our contributions include several offloading policies and an evaluation
testbed we designed and implemented for conducting game profiling and
offloading scenarios. We have chosen to apply and test our offloading research on
OpenTTD’s mobile version because it is an open-source real-time strategy (RTS)
game which follows a clear game loop with several stages and loosely coupled
components which may be executed remotely. The benefits we look for in our
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policies and mechanisms fall into two criteria: improvement of in-game
experience and reduced resource consumption which can lead to lower energy
costs.

We address the issue of computational mobile offloading [1] [2], a
technique used for sending heavy computations to servers and then waiting for
their results and applying them in the applications. Researchers have transferred
computations at different levels, from methods [3] and chuncks of code to threads,
processes [4] and virtual containers [5] [6] [7]. Our technique proposes the
offloading of certain game components, in particular OpenTTD’s artificial
intelligence components.

OpenTTD [8] is an open source simulation game based on Transport
Tycoon Deluxe, in which players develop their own transport company. The goal
of the game is to build a successful company, and in order to do that the players
need to use modes of transportation for goods and passengers in an efficient way,
which generates high revenue. The players can choose between several types of
transport and a lot of possible scenarios, each with a specific map size, landscape,
industries and settlements. The game supports several operating systems,
including Android. Users can compete with each other or against artificial
intelligence (AI) components, in multiplayer sessions supporting up to 255
players. In multiplayer mode, there are a maximum of 15 companies, so the
players can cooperate in the development of a company and compete against the
companies controlled by other players (including Al players). There is also an
interest from the community in how the Als compete with each other, and several
Al tournaments have been organized in the last few years.

1.1. OpenTTD Offloading

OpenTTD offers a dynamic game environment, in which the objects on the
map continuously evolve - towns grow, vehicles age and may need repair or
replacement etc. Moreover, when several companies share the same map, the
environment becomes a competitive one, so the planning must be made
considering the other companies’ actions (a rival company may finish a road that
we intended to build etc). This means that Als must take planning decisions fast
in order to remain competitive. While the users play, the game has built-in
mechanisms that control the evolution of the environment that consists in towns,
industries and vehicles, but they are not very complex and some work poorly
without more guidance from the user, the vehicle movement for instance. The
more interesting part of this game are the artificial intelligence agents that can
compete with the real players, or work along them.

These agents, especially the competitive ones, must employ strategies and
algorithms for efficiently building their company and obtaining more income than
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the other players, which make them a more appropriate choice for computation
offloading. Moreover, in multiplayer mode, players compete on the same map, so
they influence one another (one player ends up connecting a specific industry
faster than the others who wanted to do the same), which also means that the
planning must be done fast. This planning speed requirement is another reason in
favor of offloading, permitting the Al to run its algorithms faster. Moreover,
profiling has shown [9] that their route planning algorithms need significant
amounts of processing power, and coupled with the fact that route decisions must
be taken as fast as possible, it seems that they would benefit from offloading.

After identifying our target elements, we need to establish the
mechanism(s) we employ for offloading them. Research on mobile offloading
mostly focuses on sending application threads to servers in the cloud. There are
also fine- grained methods [10] which decide through static and dynamic profiling
the methods that will be run remotely, on cloned devices. In the next section we
will describe our current method, which is based on OpenTTD’s features.

1.2. OpenTTD’s Als

The purpose of artificial intelligence (AI) components in OpenTTD, but
also in other games, is to provide a challenge for users in single-player mode. The
players compete with one or several Als on the same map in order to have the
most profitable company. It is a way for the players to improve their game
strategies, but also to learn from the Als approaches. Therefore these com-
ponents are an important part of OpenTTD and their underlying algorithms also
make them an appropriate target for offloading.

There are currently approximately 40 Als, most of them being
competitive. The non-competitive ones practically build or control elements on
the player’s map, such as WmDOT, which just builds a highway network. While
some Als are complex and control many features in an efficient way, some are
specialized, being created for a specific purpose, such as just controlling trains, or
building complex networks of roads and efficiently using road vehicles. The
challenge for a competitive Al is to use intelligent strategies and algorithms for
creating and controlling vehicles in such way that it generates a lot of income and
obtains greater profit than the competitors.

In our AI analysis we focused on what vehicles it can control, what it can
transport, what strategies it uses in order to make profit, how it adapts to the
dynamic environment and what path algorithms it uses. We also considered what
the users seem to want from an Al (based on the discussions on the official
forums), which are vehicle diversity, how stable it is and its competitive results.

A game feature that we must consider in our policies and experiments is
the map we use and its characteristics. The community offers many predefined
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scenarios, most of them based on real world geographical regions, varying from
continents and countries to small regions and islands. We are interested in the size
of these scenarios, in the number and density of resources and towns
(sparse/dense) and in the terrain type (very flat, flat, hilly, mountainous). The
game performance and also the Als’ performance are closely related to the map’s
characteristics. Some Als can’t work well on large maps, nor when a map is
dense, it has a lot of possible resources that the game must render and control and
the AI must consider in their planning algorithms. The terrain type influences the
costs of roads, leveling areas being expensive, some structures such as airports
must be built on flat ground, so the Al must include all these factors in its decision
mechanism in order to remain profitable.

2. Offloading Mechanism

Olteanu A. [9] [11] proposes four types of offloading mechanisms for
loop-based applications such as OpenTTD: offloading various components,
intermittent offloading, offloading with partial data and parallel offloading. Our
implementation currently supports serial and parallel offloading of components
at a coarse-grained level (we do not offload methods and threads, but entire
game elements). For OpenTTD we have identified the AI agents as candidates
for offloading. Als are computationally intensive elements, and require more
complex algorithms than the usual game mechanics.

An Al’s structure follows a game loop in which it plans the actions to perform
on existing vehicles, what new vehicles to buy, and what roads to build in order
to connect industries and towns and generate a greater income. Usually, for
each of these tasks we have separate management components (different
”Manager classes”). For example, AdmiralAl, in each game-loop iteration, calls
the managers for aircrafts, trucks, trains and buses, which perform the actual
computations and decisions of which route to build, which vehicles to buy etc.
In such cases we could consider offloading the manager’ classes functions, but
this is an approach that depends on the structure of the AI’s code, and it
requires static analysis and observation of each AI’s design.

We currently have a simple approach for our offloading mechanisms, which
takes advantage of the OpenTTD’s multiplayer capability. Therefore, instead of
having specially designed containers that run chunks of code remotely, we could
consider running the entire AI on non-mobile OpenTTD instances on cloudlet
machines or in the cloud. Since in the multiplayer mode, the transport
companies share the same map, having an Al that runs on a cloudlet and
connects to the same server as the device client, will look the same for users as
an Al running locally. What will differ will be the in-game performance, the
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device’s resource consumption and the requirement to have an active Internet
connection.

Our aim is to make the offloading process transparent to the user, such that
when a command to start an Al is given, the application connects to a re- mote
resource which will start an OpenTTD instance for the given Al. On the
cloudlet/cloud side we need to start an OpenTTD server and several clients,
one for each Al we want to offload. This strategy is not very cost effective and
does not scale well.

Why partial Al offloading? Previous research [9] has focused only on total
offloading of Al components, but empirical analysis of Als performance have
shown that some Als are not computationally intensive, and there is no visible
in-game time advantage between their execution remotely and that on the de-
vice. Some of these Als don’t support many features or use simpler algorithms.
In these cases, there is no need to increase the load on the remote resources
by offloading these Als.

3. Offloading Policies

We intend to evaluate how offloading affects OpenTTD’s performance
and resource consumption on Android. We have first identified which game
com- ponents would bring the most benefits by not being executed on the
device, in this case the Al agents, and then we chose a method for offloading
them.

In previous work [9] the policy is to offload all Als. This process requires many
server-side resources, since for each Al we should start a separate OpenTTD
instance. In order to optimize both our device-side application performance
and resource consumption, but also the number of remote resources we use, we
intend to partially offload the Als.

We propose the following offloading policies, classified based on an in-depth
analysis of all available Als both from a technical point of view but also from
a popularity and usage standpoint.

To proceed in designing Al-based partial offloading strategies, we performed an

in-depth analysis of all available OpenTTD’s AIs4, considering not only their
technical aspects but also their usage and popularity. Based on this evaluation,
we propose the following offloading policies: User-centric offloading, Feature-
centric offloading, Random offloading and No Offloading.

For User-Centric offloading the system chooses the Als that are the most
important to the user. In Feature-centric offloading the system chooses the Als
based on the features they support and we have implemented two policies, one

% the available Als in 2013-2014
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based on the types of features and one on the number of features. For Random
offloading we choose randomly one to keep on the device and offload the rest. In
the No offloading policy we do not offload the Al if it is the only one started on
the device.

3.1. User-centric offloading

This policy is focused on increasing the user experience, and works
under the assumption that the most popular and interesting Als should have
priority for offloading than the simpler, less popular ones.

What does interesting mean? Currently it is difficult to estimate which Als are
the most popular or the most appreciated by the community. We have chosen a
few metrics and applied them on 37 Als in order to obtain a list of 10 main
ones. We consider that this policy would benefit if we had an in-game system
to receive feedback from users by rating a few game aspects.

The metrics we considered are: downloads ranking, the number of features, the
results during Al competitions, the community interest and their implementation
complexity.

The list of Als and their current number of downloads is available on

OpenTTD’s BaNaNaS5 content service. We have observed that this ranking is
not very relevant for their popularity, because 5 Als that were old, abandoned
and inactive were in top 15. Moreover, the Als with the most downloads are
also the oldest around. There are a few good Als, such as FastPTPAI,
DictatorAl, appre- ciated by the community, which are quite new (less than 3
years), but their number of downloads is, of course, small in comparison with
the more than 3 years old Als. To make this a more relevant popularity
criteria it would have been useful to have annual or monthly download
rankings.

Users are also interested in the diversity offered by an Al, referring to
the dif- ferent vehicles they can control. There are a few competitive Als
(AdmiralAl, AIAI, Dictator AI, NoCAB, SimpleAl, TerronAl, TransAl) that
can control most or all types of vehicles available, but usually the Als are
specialized in using a certain type of transport and offer support for another 1-
2. The Als which are highly competitive, usually qualify or win the finals of
Al tournaments, and employ more complex strategies and algorithms.

The Als we have chosen for now are the following: AdmiralAl, DictatorAl,
NoCAB, PathZilla, Roadrunner, Rondje, SimpleAl, TerronAl and trAlns.

The policy we propose is the following: for each Al, start it remotely if it is in
the list of user-centric Als. If the number of remaining Als is still higher than

* https://bananas.openttd.org/en/ai
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the maximum number of Als permitted on device, choose randomly the ones
to offload.

3.2. Feature-centric offloading

The main purpose of OpenTTD’s Als is to permit the users to

challenge themselves by competing against them in single-player mode.
Therefore, the community has an active interest in implementing competitive Als,
some specialized in a certain type of vehicles, some in fast route planning,
some in maintaining large fleets of various vehicles and so on.
When performing partial Al offloading, which means that we run remotely just
some of the Als the user plays against, we could also consider to prioritize
those with more costly features. Our analysis of the 37 Als identifies several
features that we consider important for an Al. By feature we mainly refer to
the type of vehicles it can control. There are advantages and disadvantages in
favor of each type of vehicle, which play an important role in the complexity
of an Al. The downside of our approach in classifying the Als based on their
features is that we don’t consider the exact behavior of an Al. As an example,
OtviAl is the “perfect copy-cat” of other Als behavior, so, its performance
depends on the other Als, not on its own strategies.

We consider two directions for offloading Als based on their

characteristics: use the AI’s main feature as offloading criteria or make
offloading decisions based on the number of features it supports.
The feature-type policy is the following: when given a set of Als, we offload
them considering the priority of each type of feature. First we offload the multi-
feature Als, then the train Als, road Als, air, ships and non-competitive Als.
This policy has the disadvantage that some Als can be specialized in one vehicle
type, but also support other types, and are more complex than Als specialized
in that particular type, but not supporting other vehicles. Therefore, we can
employ a policy based on the AI’s number of features to distinguish between
Als that fall in the same category, or use it stand-alone, instead of other Al
offloading policies.

The policy based on the number of features an Al supports, is the
following: when given a set of Als, we offload them considering the number
of features they offer, from the higher to the lower number. If two or more Als
have the same number and we need to choose just some of them to offload, we
choose them randomly.
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4. Evaluation

4.1. Experimental Setup

In sections 2 and 3 we describe our policies and mechanisms for
offloading components of OpenTTD. We are currently offloading just the
artificial intelligence agents, which require more computation than the game’s
environment control. In order to perform a wide range of experiments and to
test all the Als, we have developed an automated evaluation testbed. This
system allows us to easily run experiments, measure and plot the resources
consumption. It is capable of starting instances of OpenTTD on various
platforms (on Android devices or on desktops and servers), of controlling the
offloading mechanism and of monitoring the running games and their hosts. The
researcher just describes the scenario in terms of which Al to load, the map,
which devices to use and the running time and the system takes this file,
starts and controls the experiment and outputs its performance measurements
and plots.

In our experiments we have used a slightly modified OpenTTD’s
Android port by Pelya®, which has more than 1 million installs and tens of
thousands of active users. On the cloudlet side, we used OpenTTD’s 1.3.3
version with some changes that allow us to offload the Als.

We conducted our tests on an Asus TF101 2-core@1GHz running Android
4.0.3, for the device clients and on a 2-core@2.4Ghz desktop running Linux
Mint 15, for the server and the offloaded instances.

4.2. Scenarios and Results

In our OpenTTD Als analysis we have looked into the user-centric and

feature- centric characteristics of 37 Als. For each of the policies we
proposed, we created a list of Als that have priority for offloading. We have
tested several combinations of Als and applied our policies on them. We defined
experiments consisting of complex Als, specialized Als and simpler Als, we
varied their number, their combinations and their maps. The duration for each of
our tests varies between 7 and 15 minutes, depending on the test scenario.
We have observed that our policies are highly dependent on the subset of Als
we choose to play against, so, after this empirical analysis, we implemented a
mechanism that chooses the most suitable offloading policy for the Als the
user chooses to start.

® https://play.google.com/store/apps/details?id=org.openttd.sdl
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As metrics, we used both device-related ones such as the CPU load and
the memory consumption but also a game-specific metric, the in-game time.
The in-game time metric is relevant because its evolution depends on how fast
the Al performs its operations. This is the type of game where the player
builds and observes the evolution of its economy, and the bigger the in-game
time the better. For example, between a slow device with no offloading and a
device where Als run remotely the in-game time can differ by days and even
weeks in an interval of a few real time minutes, and the users are interested in
not wasting time in seeing their companies evolve.

Before starting the policies evaluations, we used our testbed to benchmark each

Al in a single-Al on device scenario, without offloading. We have first
conducted these tests in order to observe each AIl’s performance and used these
results as a metric in our Al dependent policies. Unfortunately, the outcome
was less helpful than expected, most of the Als having similar resource
consumption and identical in-game time evolution, as shown in Fig. 1. We
have also identified an interesting aspect, that without an Al the game uses
significantly more memory than when having at least one Al (we have run the
experiment several times to assure that those values for the No-Al test are not
outliers). So far, we have no official explanation for this behavior from the
game contributors we contacted.
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Fig. 1. Comparison of average CPU load and used memory for 24 Als for a period of 15
minutes.

We approached the evaluation by comparing the partial offloading policies
between them and also against a baseline, when all Als run on device. Due to
OpenTTD’s restrictions we cannot currently keep more than one Al on the
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device in multi-player mode. This affects us not only in our policy enforcement,
but also in our performance comparison, since the baseline’s Als don’t run in
multi-player mode.
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Fig. 2. Comparison of in-game time for two experiments.
”exp3”: NoCAB, Terron, trAlns, Convoy, Chopper, WrightAl, MogulAl . "exp4”: AIAI,
SimpleAl, trAlns, Convoy, PathZilla, WormAI

The tests we conducted for partial offloading varied the number of Als
from 1 to 15 running simultaneously for a period of up to 15 minutes. We have
also monitored the Als behavior during the experiments, they all started
correctly and started to grow their companies (building vehicles, stations,
roads etc). From the metrics we used, the more relevant for our comparison
was the in- game time. Even for tests with fewer Als (three, four or five) it
showed clear and consistent differences between our policies. For example, in
Fig. 2 we show two experiments involving seven and six Als, which were
repeated for each of our policies, depicted in the plot as: “random-ai”, where
we choose a randomly which and how many Als to offload, “feature-type”,
where we choose based on their features, “feature-num”, based on the number
of features supported by each Al and “ai-importance”, the user-centric policy.
The in- game time for these experiments varied by 2 days, the best policy in this
case being the user-centric one. On the other hand, for the CPU load and
memory consumption metrics, the performance differences were not so clear,
as evidenced in Figs. 3 and 4.

Seeing how little the CPU and memory load differ during the
experiments in which we applied our policies on various combinations of Als,
made us look a bit further into the Al-on device benchmarking, and we
performed several tests, ranging from one to seven Als running simultaneously
on the device, for various combination of Als (both simple and complex ones).
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We observed no resource performance penalty imposed by increasing their
number or varying the type of Al, as shown in an example in Figs. 5 and 6.
We believe that this behavior occurs because of the multi-player restrictions
imposed by the game’s mobile version.
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Fig. 5. CPU load for an experiment with one Al running locally and for an experiment
with five Als running locally
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5. Conclusions

Computational offloading research seeks to improve both the user
experience and infrastructure costs for mobile devices applications. A category
of applications that may benefit from such techniques are the real-time strategy
games, which have an important user base and market share [12] and make
intensive use of computational resources. Its loosely coupled artificial
intelligence components and clear game loop make OpenTTD a suitable
candidate for our offloading policies and mechanisms.

We have classified and evaluated offloading policies of Al components
and proposed policies for balancing the load between the device and the servers
while not altering the user’s experience. To evaluate these policies and the
offloading mechanisms we designed and implemented an evaluation testbed
capable of starting and controlling game instances on mobile devices and on
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servers, monitoring both device and in-game metrics and providing specific plots.
We have identified some improvements, such as in-game time evolution, but we
could not empirically identify any significant advantage in terms of resource
consumption on the devices. We consider this fact to be caused by the baseline
of our experiments: due to current Android OpenTTD implementation
restrictions, we could run any number of Als in parallel on a single device, but
in single player, not multiplayer mode.

The current work focuses on Al offloading and all the policies and
mechanisms we propose can be applied only to it. A finer-grained direction for
our research would be to offload parts of the application’s computations,
including parts of an Al code. We have identified a loop model for the
application execution and for the Als, in how they update their game
components, how they plan and apply strategies. This would lead us to
implement the method distribution offloading mechanism, in which
computational intensive methods are executed by a different machine and
their results and application state is sent over the network. Another
improvement of the current research would be to perform the evaluations of Al
policies and mechanism on machines in the cloud and study the impact of
partial and total Al offloading on their load.
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