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SPLIT FIXED POINT PROBLEMS FOR QUASI-NONEXPANSIVE MAPPINGS
IN HILBERT SPACES

Shagun Sharma1 and Sumit Chandok2

 In this paper, we introduce an algorithm that converges to a solution of the split 
fixed point problem under some conditions. We apply our main results for solv-ing the 
split best proximity point problem. The main results of Suantai and Tiammee [J. 
Nonlinear Convex Anal. 22(2021) 2661-2670] related to the study of convergence of best 
proximity points for best proximally nonexpansive non-self mappings can be directly con-
cluded from the convergence results of fixed points for quasi-nonexpansive self mappings. 
Therefore, these findings are not real generalizations. Furthermore, we apply our results to 
the common best proximity point problem in real Hilbert spaces. Finally, we give numerical 
results to demonstrate its convergence.
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1. Introduction

Many optimization problems can be reformulated as best approximation problems.
Due to this optimization theory plays a key role in several areas such as variational inequal-
ities problems, fixed point problems, split feasiblity problems so on. On the other hand,
study of nonself mappings is also fascinating because in this case best approximation exists
by Ky Fan [7] technique. In this case we find a point x is an approximate solution such
that the error ||x−T x|| is minimum, that is, the point x is close proximity to T x. However,
when U is mapped into another subset C of X by T , the problem extends to determining a
point that estimates the distance between these two subsets. These are referred to as best
proximity points. If T : U → C is nonself mapping on a norm space, then a point x ∈ U is
known as the best proximity point of a nonself mapping T , satisfying the condition

||x−T x||= ||U −C||= inf{||x− y|| : x ∈U,y ∈C}
where U and C are non-empty subsets of X such that U ∩C = /0. Best approximation is an
invariant approximation in the case of self mappings.
The split feasibility problem (SFP), which is mathematically, formulated as:

find a point u ∈U such that Au ∈C, (1)

where U and C are non-empty convex and closed subsets of the Hilbert spaces H1 and H2
and A : H1 → H2 is a bounded linear operator. This problem was first proposed by Censor
and Elfving [3] in Euclidean spaces.
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In the recent years, the best proximity point problem for nonself nonlinear mappings is an
interesting topic in the optimization theory, see [1, 2, 4, 8, 11, 12, 14]. In nonlinear analysis,
the convergence of iterative procedures has long been a fascinating problem. In 2017, G.K.
Jacob et al. [9] gave a new iteration method and proved the iterative process converges
strongly to the best proximity point of any non-expansive mapping.

A. Moudafi [15] investigated the split fixed point (SFP) problem for two operators:

find a point u ∈U ′ such that Au ∈C′, (2)

where U ′ = F(S) and C′ = F(T ) are non-empty convex and closed subsets of the Hilbert
spaces H1 and H2 repectively, S : H1 → H1, T : H2 → H2 are mappings, A : H1 → H2 is a
bounded linear operator and F(S),F(T ) denote the set of fixed point of the mappings S and
T respectively. The solution set of the SFP problem is denoted by

S =
{

u ∈U ′ : Au ∈C′} .
In 2020, Dadashi et al. [6] gave a forward-backward splitting algorithm for fixed point prob-
lem and proved some results. In 2022, Y. Yao et al. [19] gave iterative algorithms for split
equilibrium problems of monotone operators, fixed point problems of pseudo-contractions
and proved some results. Recently, Y. Yao et al. [20] gave approximation algorithm for
solving a split problem of fixed point, variational inclusion problems and proved strong
convergence theorems.

In 2021, Suantai and Tiammee [15] investigated the split best proximity point (SBPP)
problem for two operators:

find a point u ∈ BestU S such that Au ∈ BestCT, (3)

where U , V , C and D are non-empty convex and closed subsets of the Hilbert spaces H1
and H2 repectively, S : U → V , T : C → D are mappings, A : H1 → H2 is a bounded linear
operator and BestU S,BestCT denote the set of best proximity point of the mappings S,T
respectively. The solution set of the SBPP problem is denoted by

S ∗ = {u ∈ BestU S : Au ∈ BestCT} .

In this paper, we introduce an algorithm which converges to solution of split fixed point
problem under some conditions. We apply our main results for solving the split best proxim-
ity point problem. Also the main results of the paper [Suantai and Tiammee, split best prox-
imity point problems for best proximally nonexpansive mappings in a real Hilbert space, J.
Nonlinear Convex Anal. 22(2021), 2661-2670] which are related to study of convergence
of best proximity points for best proximally nonexpansive non-self mappings can be con-
cluded directly, from the convergence results of fixed points for quasi-nonexpansive self
mappings and so they are not real generalizations. We also apply our results to the common
best proximity point problem in real Hilbert spaces. Finally, we give numerical results to
demonstrate its convergence.

2. Preliminaries

In this section, we give basic definitions, results and notations to be used in the sequel.
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For two non-empty subsets A1 and A2 of a norm space X and non-self map S′ : A1 →
A2 define

A10 = {x ∈ A1 : there exists some y ∈ A2 such that ||x− y||= ||A1 −A2||} ;

A20 = {y ∈ A2 : there exists some x ∈ A1 such that ||x− y||= ||A1 −A2||} ;

||z−A1||= inf{||x− z|| : x ∈ A1 and z ∈ X} ,
PA1(z) = {x ∈ A1 : ||x− z||= ||z−A1|| and z ∈ X} ,
BestA1S′ =

{
x ∈ A1 : ||x−S′x||= ||A1 −A2||

}
.

Let H be a real Hilbert space with inner product ⟨., .⟩ and the norm ||.||. A mapping
T : H → H is said to be

(I) nonexpansive [17] if

||T x−Ty|| ≤ ||x− y|| for all x,y ∈ H;

(II) quasi nonexpansive [5] if F(T ) ̸= /0 and

||T x−q|| ≤ ||x−q|| for all x ∈ H,q ∈ F(T );

We denote by F(T ) = {x ∈ H : T x = x}.

Example 2.1. Let R denotes the real numbers with the usual norm and A1 = [0,1). Assume
that T : A1 → A1 is defined by T (x) = x2, for all x ∈ A1. Clearly F(T ) = {0}. T is a
quasi-nonexpansive mapping since if x ∈ [0,1] and z = 0, then

||T x− z||= ||T x−0||= |x2| ≤ |x|= ||x−0||.

If we take x = 1
2 and y = 1 then we get

||T x−Ty||= |T x−Ty|= 3
4
>

1
2
= ||x− y||.

This shows that T is not nonexpansive mapping.

Remark 2.1. If T : H → H is quasi nonexpansive then the set of fixed point a mapping T is
closed and convex on which T is continuous (see [5]).

Definition 2.1. Let (A1,A2) be a pair of non-empty subsets of a norm space X. Then the
pair (A1,A2) is said to have P-property [13] if for any x,x′ ∈ A1 and y,y′ ∈ A2,

||x− y||= ||A1 −A2||,
||x′− y′||= ||A1 −A2||,

implies ||x− x′||= ||y− y′||.
Remark 2.2. It was proved that every non-empty, closed and convex pair in Hilbert spaces
has the P-property (see [13]).

Definition 2.2. (see [15, 16]) Let A1 and A2 be two non-empty subsets of a real Hilbert
space H and C be a subset of A1. A mapping T : A1 → A2 is said to be C-nonexpansive if

||T x−Ty|| ≤ ||x− y|| for all x ∈ A1 and y ∈C.

If C = BestA1T , we say that T is a best proximally nonexpansive mapping.

Remark 2.3. It is note that if T is nonself nonexpansive, then it is C-nonexpansive for every
subset C of A1, and if C = F(T ) ̸= /0, then every C-nonexpansive is quasi-nonexpansive (see
[16]).
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Definition 2.3. Let A1 be a subset of a Hilbert space H, satisfy Opial’s condition [21] if
{xn} converges weakly to a point p implies limsupn→∞ ||xn − p||< limsupn→∞ ||xn − l|| for
all l ∈ A1 with p ̸= l.

Lemma 2.1. [16] Let A1 and A2 be two non-empty subsets of a Hilbert space X such that A1
is closed and convex. Suppose that T : A1 → A2 is a best proximally nonexpansive mapping
such that T (A10)⊆ A20 . Then PA1T |A10

is a quasi-nonexpansive mapping.

Lemma 2.2. [18] Let C be a non-empty closed convex subset of a real Hilbert space H.
Then, for any x,y ∈ H, the following assertions hold:

(i) ⟨x−PCx,z−PCx⟩ ≥ 0 for all z ∈C;
(ii) ||PCx−PCy||2 ≤ ⟨PCx−PCy,x− y⟩ for all x,y ∈ H;

(iii) ||PCx− z||2 ≤ ||x− z||2 −||PCx− x||2 for all z ∈C.

Lemma 2.3. [10] Let T be a quasi nonexpansive mapping, and set Tα ′ = (1−α ′)I +α ′T
for α ′ ∈ (0,1]. Then, the following assertions hold for all (x,q) ∈ H ×F(T ):

(i) ⟨x−T x,x−q⟩ ≥ 1
2 ||x−T x||2 and ⟨x−T x,q−T x⟩ ≤ 1

2 ||x−T x||2;
(ii) ||Tα ′x−q||2 ≤ ||x−q||2 −α ′(1−α ′)||T x− x||2;

(iii) ⟨x−Tα ′x,x−q⟩ ≥ α ′

2 ||x−T x||2.

3. Main results

In this section, we introduce an algorithm that converges to a solution of the split
fixed point problem under some conditions. Let x0 ∈ H1 be arbitrary. Define

xn+1 = (1−ηn)yn +ηnSyn

yn = (1− γn −δn)zn +(γn +δn)Szn

zn = xn +αβA∗(T − I)Axn

(SS)

where ηn,γn,δn,(γn + δn) ∈ (0,1), n ∈ N, β ∈ (0,1) and α ∈ (0, 1
λβ

) with λ being the
spectral radius of A∗A.

Remark 3.1. If we take (γn+δn)= 0 then algorithm (SS) reduces to the algorithm presented
by Moudafi [10] as follows: {

xn+1 = (1−ηn)zn +ηnSzn

zn = xn +αβA∗(T − I)Axn
(M)

where ηn ∈ (0,1), n ∈ N, β ∈ (0,1) and α ∈ (0, 1
λβ

) with λ being the spectral radius of
A∗A.

Theorem 3.1. Let H1, H2 be two real Hilbert spaces, A : H1 → H2 be a bounded linear
operator and S : H1 → H1, T : H2 → H2 be continuous quasi-nonexpansive mappings. Then
F(S) = U ′ and F(T ) = C′ are closed and convex subsets of H1 and H2, respectively. Fur-
thermore, if U ′ is compact, S ̸= /0, and sequence {xn} generated by algorithm (SS), then

(i) {xn} is Fejer monotone with respect to S , that is, for every z ∈ S ,

||xn+1 − z|| ≤ ||xn − z||,n ∈ N.

(ii) {xn} converges strongly to a point x∗ ∈ S .
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Proof. Let z ∈ S , by Lemma 2.3, we get

||xn+1 − z||2 ≤ ||yn − z||2 −ηn(1−ηn)||Syn − yn||2.

Similarly

||yn − z||2 ≤ ||zn − z||2 − (γn +δn)(1− γn −δn)||Szn − zn||2. (4)

On the other hand, we have

||zn − z||2

=||xn +αβA∗(T − I)Axn − z||2

=||xn − z||2 +α
2
β

2||A∗(T − I)Axn||2 +2αβ ⟨xn − z,A∗(T − I)Axn⟩
=||xn − z||2 +α

2
β

2 ⟨(T − I)Axn,AA∗(T − I)Axn⟩+2αβ ⟨xn − z,A∗(T − I)Axn⟩ . (5)

Since λ is the spectral radius of A∗A,

α
2
β

2 ⟨(T − I)Axn,AA∗(T − I)Axn⟩ ≤ λα
2
β

2 ⟨(T − I)Axn,(T − I)Axn⟩
= λα

2
β

2||(T − I)Axn||2. (6)

By Lemma 2.3, we obtain

2αβ ⟨xn − z,A∗(T − I)Axn⟩
=2αβ ⟨A(xn − z),(T − I)Axn⟩
=2αβ ⟨A(xn − z)+(T − I)Axn − (T − I)Axn,(T − I)Axn⟩
=2αβ (⟨A(xn − z)+(T − I)Axn,(T − I)Axn⟩− ||(T − I)Axn||2)
=2αβ (⟨TAxn −Az,TAxn −Axn⟩− ||(T − I)Axn||2)

≤2αβ

(
||(T − I)Axn||2

2
−||(T − I)Axn||2

)
=−αβ ||(T − I)Axn||2. (7)

Using (6) and (7) in (5), we obtain

||zn − z||2 ≤ ||xn − z||2 −αβ (1−λαβ )||(T − I)Axn||2. (8)

By equations (4) and (8), we get

||xn+1 − z||2 ≤||xn − z||2 −αβ (1−λαβ )||(T − I)Axn||2−
(γn +δn)(1− γn −δn)||Szn − zn||2 −ηn(1−ηn)||Syn − yn||2

≤||xn − z||2 −αβ (1−λαβ )||(T − I)Axn||2−
(γn +δn)(1− γn −δn)||Szn − zn||2. (9)

By (9), we get

||xn+1 − z||2 ≤||xn − z||2 −αβ (1−λαβ )||(T − I)Axn||2. (10)

It follows that

||xn+1 − z|| ≤||xn − z||.
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Hence {xn} is Fejer monotone with respect to S and {||xn − z||} is monotonically decreas-
ing. So, assume that lim

n→∞
||xn − z||= l for some l ≥ 0. It follows from (10) that

lim
n→∞

||(T − I)Axn||= 0. (11)

Since the sequence {xn} is Fejer monotone, hence the sequence {xn} is bounded. As U ′ is
compact, there exists a subsequence {xnk} of {xn} such that xnk → x∗ ∈U ′. Then it follows
from (11) that TAx∗ = Ax∗. This shows Ax∗ ∈C′.

On the other hand, by setting zn = xn +αβA∗(T − I)Axn, we have

||znk − x∗||=||xnk +αβA∗(T − I)Axnk − x∗||
≤||xnk − x∗||+αβ ||A∗||||(T − I)Axnk ||
→ 0 as k → ∞.

From (9), (11) and the convergence of the sequence {||xn − z||}, we obtain

lim
n→∞

||Sznk − znk ||= 0. (12)

it follows from that Sx∗ = x∗. Hence x∗ ∈ S . Assume that another subsequence {xn j} of
{xn} converges to x1 ∈ S . Assume that x∗ and x1 are distinct, then by Opial’s condition,

lim
n→∞

||xn − x∗||= lim
k→∞

||xnk − x∗||< lim
k→∞

||xnk − x1||= lim
n→∞

||xn − x1||

= lim
j→∞

||xn j − x1||< lim
j→∞

||xn j − x∗||= lim
n→∞

||xn − x∗||,

which is contradiction so x∗ = x1. Consequently, sequence {xn} generated by algorithm
(SS) converges strongly to a point x∗ ∈ S . □

Corollary 3.1. (see [10]) Let H1, H2 be two real Hilbert spaces, A : H1 → H2 be a bounded
linear operator and S : H1 →H1, T : H2 →H2 be continuous quasi-nonexpansive mappings.
Then F(S) = U ′ and F(T ) = C′ are closed and convex subsets of H1 and H2, respectively.
Furthermore, if U ′ is compact, S ̸= /0, and sequence {xn} generated by algorithm (M), then

(i) {xn} is Fejer monotone with respect to S , that is, for every z ∈ S ,

||xn+1 − z|| ≤ ||xn − z||,n ∈ N.

(ii) {xn} converges strongly to a point x∗ ∈ S .

4. Consequences

Now we apply our main result to obtain an algorithm for solving the (SBPP) problem.
Let x0 ∈U0 arbitrary. Define

xn+1 = (1−ηn)yn +ηnPU Syn

yn = (1− γn −δn)zn +(γn +δn)PU Szn

zn = PU [xn +αβA∗(PCT − I)Axn]

(SS’)

where ηn,γn,δn,(γn + δn) ∈ (0,1), n ∈ N, β ∈ (0,1) and α ∈ (0, 1
λβ

) with λ being the
spectral radius of A∗A.
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Remark 4.1. If we take (γn + δn) = 0 then algorithm (SS’) reduces to the algorithm pre-
sented by Suantai [15] as follows:{

xn+1 = (1−ηn)zn +ηnPU Szn

zn = PU [xn +αβA∗(PCT − I)Axn]
(SU)

where ηn ∈ (0,1), n ∈ N, β ∈ (0,1) and α ∈ (0, 1
λβ

) with λ being the spectral radius of
A∗A.

Theorem 4.1. Let H1 and H2 be two real Hilbert spaces and U,V ⊂ H1, C,D ⊂ H2 be non-
empty closed convex subsets of H1 and H2, respectively. Let A : H1 →H2 be a bounded linear
operator such that A(U) ⊆ C and S : U → V , T : C → D be best proximally nonexpansive
mappings with non-empty BestU(S) and BestC(T ). Suppose that S(U0)⊆V0 and T (C0)⊆D0
and S ∗ ̸= /0. If BestU(S) is compact and {xn} is a sequence generated by algorithm (SS’),
then

(i) {xn} is Fejer monotone with respect to S ∗ , that is, for every z ∈ S ∗,

||xn+1 − z|| ≤ ||xn − z||,n ∈ N.

(ii) {xn} converges strongly to a split best proximity point x∗ ∈ S ∗.

Proof. Since S : U → V be best proximally nonexpansive mapping and S(U0) ⊆ V0 by
Lemma 2.1 PU S is quasi-nonexpansive mapping on U0. Next, we prove that set of fixed
point of a mapping PU S is equal to best proximity point of S. Let x∗ ∈ F(PU S). Since
PU S is a quasi-nonexpansive mapping on U0, we have PU S(x∗) ∈ U0. So there exists
Sx∗ ∈ V such that ||PU S(x∗)− Sx∗|| = ||U −V ||. If Sx̂ ∈ V is another point such that
||PU S(x∗)−Sx̂||= ||U −V ||. Also by Remark 2.2 the pair (U,V ) has P-property we have
||PU S(x∗)−PU S(x∗)||= ||Sx∗−Sx̂||. This shows Sx∗ = Sx̂. Thus

||x∗−Sx∗||= ||PU S(x∗)−Sx∗||= ||U −V ||,

where x∗ ∈ F(PU S). This shows that F(PU S)⊆ BestU(S). Similar arguments shows that
BestU(S) ⊆ F(PU S). Hence F(PU S) = BestU(S). Similarly we can prove that PCT is
quasi- nonexpansive mapping and set of fixed point of a mapping PCT is equal to best
proximity point of T . By Theorem 3.1, {xn} is Fejer monotone with respect to W and
converges strongly to a point x∗ ∈ W where

W = {x∗ ∈ F(PU S) : Ax∗ ∈ F(PCT )} .

Since F(PU S) = BestU S and F(PCT ) = BestCT . This shows {xn} converges strongly to a
point x∗ ∈ S ∗. □

If we take U is compact in Theorem 4.1 then we have following result:

Theorem 4.2. Let H1 and H2 be two real Hilbert spaces and U,V ⊂ H1, C,D ⊂ H2 be non-
empty closed convex subsets of H1 and H2, respectively. Let A : H1 →H2 be a bounded linear
operator such that A(U) ⊆ C and S : U → V , T : C → D be best proximally nonexpansive
mappings with non-empty BestU(S) and BestC(T ). Suppose that S(U0)⊆V0 and T (C0)⊆D0
and S ∗ ̸= /0. If U is compact and {xn} is a sequence generated by algorithm (SS’), then

(i) {xn} is Fejer monotone with respect to S ∗ , that is, for every z ∈ S ∗,

||xn+1 − z|| ≤ ||xn − z||,n ∈ N.

(ii) {xn} converges strongly to a split best proximity point x∗ ∈ S ∗.
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Corollary 4.1. [15] Let H1 and H2 be two real Hilbert spaces and U,V ⊂ H1, C,D ⊂ H2
be non-empty closed convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a
bounded linear operator such that A(U)⊆C and S : U →V , T : C → D be best proximally
nonexpansive mappings with non-empty BestU(S) and BestC(T ). Suppose that S(U0) ⊆
V0 and T (C0) ⊆ D0 and S ∗ ̸= /0. If U is compact and {xn} is a sequence generated by
algorithm (SU), then

(i) {xn} is Fejer monotone with respect to S ∗ , that is, for every z ∈ S ∗,

||xn+1 − z|| ≤ ||xn − z||,n ∈ N.
(ii) {xn} converges strongly to a split best proximity point x∗ ∈ S ∗.

Remark 4.2. Theorem 3.2 of Suantai ([15], p. 2665) is a straightforward consequence of
Theorem 2.1 of Moudafi ([10], p. 4086).

Theorem 4.3. Let U,V ⊂ H be two non-empty closed convex subsets of a real Hilbert
space H with U is compact and S : U →V , T : U →V be two best proximally nonexpansive
mappings with non-empty BestU(S)∩BestU(T ). Suppose that S(U0)⊆V0 and T (U0)⊆V0.
Then the sequence {xn} generated by algorithm (SS’), converges strongly to a common best
proximity point x∗ ∈ BestU(S)∩BestU(T ).

Theorem 4.4. (see [15]) Let U,V ⊂ H be two non-empty closed convex subsets of a real
Hilbert space H with U is compact and S : U → V , T : U → V be two best proximally
nonexpansive mappings with non-empty BestU(S)∩ BestU(T ). Suppose that S(U0) ⊆ V0
and T (U0)⊆V0. Then the sequence {xn} generated by algorithm (SU), converges strongly
to a common best proximity point x∗ ∈ BestU(S)∩BestU(T ).

Proof. This is a consequence of Theorem 4.3 by taking H1 = H2 = H, A = I, U = C and
V = D. □

5. Examples

In this section, we give some examples to validate our results.

Example 5.1. Let H1 = H2 = R2 with Euclidean distance. Let S : H1 → H2 be defined by
S(x,y) = (5− x,y), for all (x,y) ∈ H1. Let T : H2 → H2 be defined by T (x,y) = (10− x, y

3)
and A : H1 → H2 be defined by A(x,y) = (2x,2y) for all (x,y) ∈ H1. It is clear that both S

and T are quasi-nonexpansive mappings and S has a fixed point (
5
2
,0) and A(

5
2
,0) = (5,0)

is fixed point of T . All the conditions of Theorem 3.1 are satisfied, so sequence generated

by algorithm (SS) converges to (
5
2
,0).

Example 5.2. Let H1 = H2 = R2 with Euclidean distance. Let U = [0,2]× [0,2] and
V = [3,5]× [0,2]. Let C = [0,4]× [0,4] and D = [6,10]× [0,4]. Let S : U → V be defined
by S(x,y) =

(
5− x, y

2

)
, for all (x,y) ∈U. Let T : C → D be defined by T (x,y) = (10− x,y)

for all (x,y) ∈ C. Let A : H1 → H2 be defined by A(x,y) = (2x,2y) for all (x,y) ∈ H1. It is
clear that U0 = {2}× [0,2],V0 = {3}× [0,2],C0 = {4}× [0,4],D0 = {6}× [0,4],d(U,V ) =
1,d(C,D) = 2,BestU S = {(2,0)} ,BestCT = {4}× [0,4],S = (2,0) and S, T are nonex-
pansive mappings such that S(U0) ⊆ V0,T (C0) ⊆ D0. Clearly S has best proximity point
(2,0) and A(2,0) = (4,0) is a best proximity point of T . All the conditions of Theorem 4.1
are satisfied, so the sequence generated by algorithm (SS’) converges to (2,0) see (Table 1).
Take γ ′n =

4n+1
12n and δ ′

n =
1

n+25 .
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n x̂n Ax̂n
0 (2,2) (4,4)
1 (2,1.006173e+00) (4,2.0123)
2 (2,5.473394e−01) (4,1.0947)
3 (2,3.056327e−01) (4,0.6113)
4 (2,1.729776e−01) (4,0.3460)
...

...
...

37 (2,1.177434e−08) (4,0.0000)
38 (2,6.994626e−09) (4,0.0000)
39 (2,4.156611e−09) (4,0.0000)

Table 1

6. Conclusion

In this paper, we introduce an algorithm which converges to solution of split fixed
point problem under some conditions. We apply our main results for solving the split best 
proximity point problem. As a consequence, we obtain some fixed point and best proximity 
point results. Finally, we give numerical results to demonstrate there convergence.
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