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ONE-SIDED TAUBERIAN CONDITIONS FOR THE (N, p)

SUMMABILITY OF INTEGRALS

Ümit Totur1, Muhammet Ali Okur2, İbrahim Çanak3

Let p be a function on R+ := [0,∞) which is integrable in Lebesgue’s sense

over every finite interval (0, x) for 0 < x < ∞, in symbol: p ∈ L1
loc(R+) such that P (x) =∫ x

0 p(t)dt ̸= 0 for each x > 0, P (0) = 0 and P (x) → ∞ as x → ∞. For a real-valued

function f ∈ L1
loc(R+), we set s(x) :=

∫ x
0 f(t)dt and σ

(1)
p (x) := 1

P (x)

∫ x
0 s(t)p(t)dt, x >

0, provided that P (x) > 0.

We say that
∫∞
0 f(x)dx is summable by the weighted mean method determined by the

function P (x) if there exists some s ∈ R such that

lim
x→∞

σ
(1)
p (x) = s.

If the limit lim
x→∞

s(x) = s exists, then so does lim
x→∞

σ
(1)
p (x) = s.

In this paper, we obtain some new Tauberian conditions in terms of the weighted gen-

eral control modulo for the weighted mean method of integrals in order that the converse
implication hold true. Our results generalize some classical type Tauberian theorems
given for Cesàro summability method of integrals.

Keywords: Tauberian theorem, Tauberian condition, weighted mean method of inte-

grals, general control modulo.
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1. Introduction

A number of authors such as Hardy [9], Móricz and Rhoades [12], Tietz [16], Çanak
and Totur [2, 5] obtained Tauberian theorems for the weighted mean method of summability
of sequences. Hardy [9] proved a classical two-sided bounded Tauberian theorem and Móricz
and Rhoades [12] obtained a one-sided bounded Tauberian theorem for (N, p) summability
of sequences. Çanak and Totur [2, 5] introduced some certain general one-sided bounded
Tauberian conditions for this method.

In recent years, there has been an interest on summability method of integrals. Çanak
and Totur [4] proved classical type some Tauberian theorems for the Cesàro summability
method of integrals in parallel with sequences. They also proved some new Tauberian the-
orems by using the general control modulo which was defined by Dik [7] for the numerical
sequences and generalized Hardy-Littlewood type Tauberian theorem in [3]. Moreover, one-
sided and two-sided Tauberian conditions for the weighted mean method of integrals are
given by Móricz [13] and Fekete and Móricz [8]. Móricz and Stadtmüller [14] characterized
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the convergence of weighted means of a function. Totur and Okur [18] have presented alterna-
tive proofs of the Landau-type and Schmidt-type Tauberian theorems for (N, p) summability
of integrals under some certain conditions imposed on the sequence p.

The purpose of this paper is two fold: First, we introduce the weighted Kronecker
identity and weighted general control modulo of integer order. Next, we prove more general
theorems for the weighted mean method of integrals than the classical ones mentioned above.

2. Preliminaries

Let p be a function on R+ := [0,∞) which is integrable in Lebesgue’s sense over every
finite interval (0, x) for 0 < x < ∞, in symbol: p ∈ L1

loc(R+) such that P (x) =
∫ x

0
p(t)dt ̸= 0

for each x > 0, P (0) = 0 and P (x) → ∞ as x → ∞. For a real-valued function f ∈ L1
loc(R+),

the weighted mean of s(x) is defined by

σ(1)
p (x) =

1

P (x)

∫ x

0

s(t)p(t)dt, (1)

where s(x) =
∫ x

0
f(t)dt. If the limit

lim
x→∞

σ(1)
p (x) = s (2)

exists, then the integral ∫ ∞

0

f(x)dx (3)

is said to be summable by the weighted mean method determined by the function P (x), in
short; the (N, p) summable to a finite number s and we write s(x) → s (N, p). We note that
the concept of (N, p) summability here is the integral analogue of the one given in [9, page
57].

It is known that the existence of the integral∫ ∞

0

f(x)dx = s (4)

implies (2) (see [15, page 16]). However, the converse implication is not always true.
Adding some suitable condition on s(x), which is called a Tauberian condition, one

may obtain (4) from (2). Any theorem which states that convergence of (3) follows from the
(N, p) summability of s(x) and a Tauberian condition is said to be a Tauberian theorem.
The purpose of this paper is to investigate the converse implication of (4) ⇒ (2).

The main results of this paper involve the concept of regularly varying of index α > 0
which was introduced by Karamata [11] as follows (see [1] for more details):

Definition 2.1. A positive function P is called regularly varying of index α > 0 if

lim
x→∞

P (λx)

P (x)
= λα, λ > 0. (5)

We remind the reader that if a positive function P is regularly varying of index α > 0
, then the following conditions are cleary satisfied (see [6]):

lim sup
x→∞

P (λx)

P (x)
< 1, for 0 < λ < 1, (6)

and

lim sup
x→∞

P (x)

P (λx)
< 1, for λ > 1. (7)

For integrals, an analogous definition of weighted general control modulo of oscillating
behaviors which is presented by Totur and Çanak [17] for sequence of real numbers is defined
as follows.
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We define the weighted classical control modulo of s(x) by

ω
(0)
p (x) = P (x)

p(x) f(x) and the weighted general control modulo of integer order m ≥ 1 of

s(x) by

ω(m)
p (x) = ω(m−1)

p (x)− σ(1)
p (ω(m−1)

p (x)). (8)

For each integer m ≥ 0, we define σ
(m)
p (x) and v

(m)
p (x) by

σ(m)
p (x) =

{
1

P (x)

∫ x

0
σ
(m−1)
p (t)p(t)dt, m ≥ 1

s(x), m = 0,

and

v(m)
p (x) =

{
1

P (x)

∫ x

0
v
(m−1)
p (t)p(t)dt, m ≥ 1

vp(x), m = 0,

where vp(x) =
1

P (x)

∫ x

0
f(t)P (t)dt.

For a function f , we define(
P (x)

p(x)

d

dx

)
m

f(x) =

(
P (x)

p(x)

d

dx

)
m−1

(
P (x)

p(x)

d

dx
f(x)

)
=

(
P (x)

p(x)

d

dx

)((
P (x)

p(x)

d

dx

)
m−1

f(x)

)
,

where
(

P (x)
p(x)

d
dx

)
0
f(x) = f(x) and

(
P (x)
p(x)

d
dx

)
1
f(x) = P (x)

p(x)
d
dxf(x).

3. Main Results

By the following theorem, we obtain that every (N, p) summable integral is convergent

provided ω
(m)
p (x) is one-sided bounded for sufficiently large x. This theorem generalizes

Theorem 2 in [3].

Theorem 3.1. Let P be regularly varying of index α > 0. If
∫∞
0

f(t)dt is (N, p) summable

to s and ω
(m)
p (x) ≥ −C for some C > 0, sufficiently large x and some nonnegative integer

m, then the integral
∫∞
0

f(t)dt converges to s.

Corollary 3.1. Let P be regularly varying of index α > 0. If
∫∞
0

f(t)dt is (N, p) summable

to s and ω
(m)
p (x) = O(1) for sufficiently large x and some nonnegative integer m, then the

integral
∫∞
0

f(t)dt converges to s.

By choosing p(x) = 1 and m = 0 in Corollary 3.1, we obtain the following integral
analogue of a classical one-sided Tauberian theorem of Landau [10] which states that if a
reel sequence (sn) is Cesàro summable and there exists a positive constant H > 0 such that
k(sk − sk−1) > −H for all k = 1, 2, ..., then (sn) is convergent.

Corollary 3.2. If
∫∞
0

f(t)dt is Cesàro summable to s and xf(x) ≥ −C for some C > 0,

sufficiently large x, then the integral
∫∞
0

f(t)dt converges to s.

We recall that the integral
∫∞
0

f(t)dt is said to be Cesàro summable to s if the limit

limx→∞
1
x

∫ x

0
s(t)dt = s.

If we take (N, p) summability of σ
(1)
p (x) instead that of s(x) as a hypothesis with

same Tauberian condition in Theorem 3.1, then we get the convergence of s(x) again. By
this theorem, we generalize Theorem 3 in [3].

Theorem 3.2. Let P be regularly varying of index α > 0. If σ
(k)
p (x) is (N, p) summable to

s for any nonnegative integer k and ω
(m)
p (x) ≥ −C for some C > 0, sufficiently large x and

some nonnegative integer m, then the integral
∫∞
0

f(t)dt converges to s.
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We may not obtain the convergence of s(x) by weakening the conditions in Theorem
3.2 more. However we obtain (N, p) summability of s(x) by one-sided boundedness condition

of (N, p) mean of ω
(m)
p (x).

Theorem 3.3. Let P be regularly varying of index α > 0. If σ
(k)
p (x) is (N, p) summable to

s for any nonnegative k and σ
(1)
p (ω

(m)
p (x)) ≥ −C for some C > 0, sufficiently large x and

some nonnegative integer m, then the integral
∫∞
0

f(t)dt is (N, p) summable to s.

4. Auxiliary Results

In order to prove our main results, we need the following lemmas.

Lemma 4.1. ([18]) The following identities hold:

(i) For λ > 1,

s(x)− σ(1)
p (x) =

P (λx)

P (λx)− P (x)
(σ(1)

p (λx)− σ(1)
p (x))

− 1

P (λx)− P (x)

∫ λx

x

(s(t)− s(x))p(t)dt.

(ii) For 0 < λ < 1,

s(x)− σ(1)
p (x) =

P (λx)

P (x)− P (λx)
(σ(1)

p (x)− σ(1)
p (λx))

+
1

P (x)− P (λx)

∫ x

λx

(s(x)− s(t))p(t)dt.

Lemma 4.2 is a classical-type Tauberian theorem for the weighted mean method of
integrals.

Lemma 4.2. Let P be regularly varying of index α > 0. If
∫∞
0

f(t)dt is (N, p) integrable
to s and

P (x)

p(x)
f(x) ≥ −C, (9)

for some C > 0 and sufficiently large x, then the integral
∫∞
0

f(t)dt converges to s.

Proof. The condition P (x)
p(x) f(x) ≥ −C implies − d

dxs(x) ≤ C p(x)
P (x) for some C > 0 and suffi-

ciently large x. From Lemma 4.1 (i), we have

s(x)− σ(1)
p (x) ≤ P (λx)

P (λx)− P (x)
(σ(1)

p (λx)− σ(1)
p (x)) + C log

P (λx)

P (x)
,

for λ > 1.
Since P is regularly varying of index α, it is plain that for all λ > 1 and sufficiently

large x,
λα

2(λα − 1)
≤ P (λx)

P (λx)− P (x)
≤ 3λα

2(λα − 1)
. (10)

As the limit of σ
(1)
p (x) exists, we obtain

lim sup
x→∞

(
s(x)− σ(1)

p (λx)
)
≤ lim sup

x→∞

(
C log

P (λx)

P (x)

)
for some C > 0. Taking the limit of both sides as λ → 1+, we get

lim sup
x→∞

(
s(x)− σ(1)

p (x)
)
≤ 0 (11)

by the hypothesis that P is regularly varying of index α.
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In a similar way from Lemma 4.1 (ii), we get

lim inf
x→∞

(
s(x)− σ(1)

p (x)
)
≥ 0. (12)

Therefore, the proof is completed by (11) and (12). �
The following lemma provides an identity which is called the weighted Kronecker

identity.

Lemma 4.3. s(x)− σ
(1)
p (x) = vp(x) where vp(x) =

1
P (x)

∫ x

0
f(t)P (t)dt.

Proof. From (1), we have

σ(1)
p (x) =

1

P (x)

∫ x

0

s(t)p(t)dt =
1

P (x)

∫ x

0

(∫ t

0

f(u)du

)
p(t)dt

=
1

P (x)

∫ x

0

f(u)

(∫ x

u

p(t)dt

)
du

=
1

P (x)

∫ x

0

(P (x)− P (u)) f(u)du

=

∫ x

0

(
1− P (t)

P (x)

)
f(t)dt

=

∫ x

0

f(t)dt− 1

P (x)

∫ x

0

f(t)P (t)dt

= s(x)− vp(x),

which completes the proof. �

Lemma 4.4. For each integer m ≥ 0,
P (x)

p(x)

d

dx
σ(m)
p (x) = v(m)

p (x).

Proof. If we take the derivative of σ
(m)
p (x), we obtain

d

dx
σ(m)
p (x) =

p(x)

P (x)

(
σ(m−1)
p (x)− σ(m)

p (x)
)
.

By Lemma 4.3, we obtain
d

dx
σ(m)
p (x) =

p(x)

P (x)
vmp (x). This completes the proof. �

Lemma 4.5. For each m ≥ 0 integer,

(i)
P (x)

p(x)

d

dx
vp(x) =

P (x)

p(x)
f(x)− vp(x).

(ii) v(m)
p (x)− v(m+1)

p (x) =
P (x)

p(x)

d

dx
v(m+1)
p (x).

Proof. (i) If we take the derivative of the weighted Kronecker identity, then we obtain

f(x)−
(
− p(x)

P 2(x)

∫ x

0

s(t)p(t)dt+
s(x)p(x)

P (x)

)
=

d

dx
vp(x). (13)

Multiplying both sides of (13) by P (x) and using the weighted Kronecker identity, we get

P (x)
d

dx
vp(x) = P (x)f(x)− p(x)vp(x). (14)

Then dividing both sides of (14) by p(x), we have the proof of (i).

(ii) Applying σ
(m)
p (x) to Lemma 4.3 and taking the derivative of both sides, we have

d

dx
σ(m)
p (x)− d

dx
σ(m+1)
p (x) =

d

dx
v(m+1)
p (x). (15)
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Then multiplying both sides of (15) by P (x)
p(x) and using Lemma 4.4, we have the proof of

(ii). �

Lemma 4.6. For each integer k ≥ 1, σ(k)
p

(
P (x)

p(x)

d

dx
vp(x)

)
=

P (x)

p(x)

d

dx
v(k)p (x).

Proof. If we take the weighted mean of order k of the both sides of the identity in Lemma
4.5 (i), we get

σ(k)
p

(
P (x)

p(x)

d

dx
vp(x)

)
= v(k−1)

p (x)− v(k)p (x).

Also taking m = k − 1 in Lemma 4.5 (ii), we obtain v
(k−1)
p (x) − v

(k)
p (x) = P (x)

p(x)
d
dxv

(k)
p (x).

This completes the proof of Lemma. �

In the following lemma, we now give a different representation of the weighted general
control modulo of integer order of functions.

Lemma 4.7. For each integer m ≥ 1, ω
(m)
p (x) =

(
P (x)
p(x)

d
dx

)
m
v
(m−1)
p (x).

Proof. We establish the proof by the method of induction. Taking m = 1 in (8) and using

Lemma 4.5 (i), we get ω
(1)
p (x) = P (x)

p(x)
d
dxvp(x). Assume that the assertion is true for m = k.

Therefore we obtain,

ω(k)
p (x) =

(
P (x)

p(x)

d

dx

)
k

v(k−1)
p (x). (16)

Taking m = k + 1 in (8) and using (16), we get

ω(k+1)
p (x) =

(
P (x)

p(x)

d

dx

)
k

(
v(k−1)
p (x)− v(k)p (x)

)
.

From Lemma 4.5 (ii), we obtain

ω(k+1)
p (x) =

(
P (x)

p(x)

d

dx

)
k

(
P (x)

p(x)

d

dx
v(k)p (x)

)
=

(
P (x)

p(x)

d

dx

)
k+1

v(k)p (x).

Thus, we conclude that Lemma 4.7 is true for each integer m ≥ 1. �

Lemma 4.8. For each integer m ≥ 0 and k ≥ 1, σ
(k)
p (ω

(m)
p (x)) = ω

(m)
p (σ

(k)
p (x)).

Proof. From Lemma 4.4, 4.6 and 4.7 we obtain,

σ(k)
p (ω(m)

p (x)) =

(
P (x)

p(x)

d

dx

)
m

(
P (x)

p(x)

d

dx
σ(m+k−1)
p (x)

)
.

Therefore we get,

σ(k)
p (ω(m)

p (x)) =

(
P (x)

p(x)

d

dx

)
m+1

σ(m+k−1)
p (x). (17)

On the other hand by using Lemma 4.4 and 4.7, we obtain,

ω(m)
p (σ(k)

p (x)) =

(
P (x)

p(x)

d

dx

)
m

(
P (x)

p(x)

d

dx
σ(m−1)
p (σ(k)

p (x))

)
.

Hence we get,

ω(m)
p (σ(k)

p (x)) =

(
P (x)

p(x)

d

dx

)
m+1

σ(m+k−1)
p (x). (18)

Combining (17) and (18), we obtain σ
(k)
p (ω

(m)
p (x)) = ω

(m)
p (σ

(k)
p (x)). �
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5. Proofs

Proof of Theorem 3.1
Suppose that s(x) is (N, p) summable to s. Therefore σ

(1)
p (x) is (N, p) summable to same

value. By the difference of s(x) and σ
(1)
p (x), from Lemma 4.3, we get vp(x) is (N, p) sum-

mable to 0. Using the definition of the weighted general control modulo of integer order
m ≥ 1, we obtain

σ(1)
p (w(m−1)

p (x)) → 0(N, p). (19)

If we use Lemma 4.7 and the hypothesis ω
(m)
p (x) ≥ −C for some C ≥ 0 and sufficiently

large x, then we have

ω(m)
p (x) =

P (x)

p(x)

d

dx

((
P (x)

p(x)

d

dx

)
m−1

v(m−1)
p (x)

)
≥ −C. (20)

Applying Lemma 4.1 (i) to σ
(1)
p (ω

(m−1)
p (x)) we get

σ(1)
p (ω(m−1)

p (x)) − σ(2)
p (ω(m−1)

p (x))

=
P (λx)

P (λx)− P (x)
(σ(2)

p (ω(m−1)
p (λx))− σ(2)

p (ω(m−1)
p (x)))

− 1

P (λx)− P (x)

∫ λx

x

(∫ t

x

d

dz
σ(1)
p (ω(m−1)

p (z))dz

)
p(t)dt.

Using Lemma 4.6 and 4.7 and the condition (20), we get

σ(1)
p (ω(m−1)

p (x)) − σ(2)
p (ω(m−1)

p (x))

≤ P (λx)

P (λx)− P (x)
(σ(2)

p (ω(m−1)
p (λx))− σ(2)

p (ω(m−1)
p (x)))

+C log
P (λx)

P (x)
·

Since P is regularly varying of index α, it is plain that for all λ > 1 and sufficiently large x,

λα

2(λα − 1)
≤ P (λx)

P (λx)− P (x)
≤ 3λα

2(λα − 1)
. (21)

By (19) and (21), for all λ > 1,

lim
x→∞

P (λx)

P (λx)− P (x)
(σ(2)

p (ω(m−1)
p (λx))− σ(2)

p (ω(m−1)
p (x))) = 0. (22)

Taking lim sup of both sides as x → ∞, we obtain

lim sup
x→∞

(
σ(1)
p (ω(m−1)

p (x))− σ(2)
p (ω(m−1)

p (x))
)

≤ lim sup
x→∞

P (λx)

P (λx)− P (x)

(
σ(2)
p (ω(m−1)

p (λx))− σ(2)
p (ω(m−1)

p (x))
)

+ lim sup
x→∞

C log
P (λx)

P (x)
·

Taking (22) into account, we obtain

lim sup
x→∞

(
σ(1)
p (ω(m−1)

p (x))− σ(2)
p (ω(m−1)

p (x))
)
≤ lim sup

x→∞
C log

P (λx)

P (x)
·

Since P is regularly varying, taking the limit of both sides as λ → 1+, we get

lim sup
x→∞

(
σ(1)
p (ω(m−1)

p (x))− σ(2)
p (ω(m−1)

p (x))
)
≤ 0. (23)
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In a similar way from Lemma 4.1 (ii), we get

lim inf
x→∞

(
σ(1)
p (ω(m−1)

p (x))− σ(2)
p (ω(m−1)

p (x))
)
≥ 0. (24)

Combining (23) and (24), we obtain that

σ(1)
p (ω(m−1)

p (x)) = o(1).

Therefore, from (8) we get ω
(m−1)
p (x) ≥ −C1 for some C1 > 0. Using Lemma 4.7, we obtain

ω(m−1)
p (x) =

P (x)

p(x)

d

dx

((
P (x)

p(x)

d

dx

)
m−2

v(m−2)
p (x)

)
≥ −C1. (25)

Using (8), we obtain

σ(1)
p (ω(m−2)

p (x)) → 0(N, p). (26)

Applying Lemma 4.1 (i) and (ii) to σ
(1)
p (ω

(m−2)
p (x)) with similar steps, we get

σ(1)
p (ω(m−2)

p (x)) = o(1).

Continuing in this way, we obtain that

σ(1)
p (ω(1)

p (x)) = o(1).

Since s(x) is (N, p) summable to s, we have σ
(1)
p (vp(x)) = o(1). Also from Lemma 4.5 (ii), 4.6

and 4.7, we get that vp(x) = o(1). Finally, from Lemma 4.3 we conclude that s(x) converges
to s. �

Proof of Theorem 3.2
Assume that σ

(k)
p (x) is (N, p) summable to s. Taking the weighted mean of the both sides

of the identity in Lemma 4.3, then we obtain v
(k)
p (x) is (N, p) summable to 0. Using this

result in (8), we get that

σ(k+1)
p (ω(m−1)

p (x)) → 0(N, p). (27)

From Lemma 4.7 and the hypothesis ω
(m)
p (x) ≥ −C for some C ≥ 0 and sufficiently large

x, then we have

σ(k)
p (ω(m)

p (x)) =
P (x)

p(x)

d

dx
σ(k)
p

((
P (x)

p(x)

d

dx

)
m−1

v(m−1)
p (x)

)
≥ −C. (28)

Applying Lemma 4.2 to σ
(k+1)
p (ω

(m−1)
p (x)) and using Lemma 4.6 and conditions (27), (28),

we obtain
σ(k+1)
p (ω(m−1)

p (x)) = o(1).

By (8), we obtain σ
(k)
p (ω

(m−1)
p (x)) ≥ −C1 for some C1 ≥ 0. Using Lemma 4.7 and the

hypothesis ω
(m)
p (x) ≥ −C for some C ≥ 0 and sufficiently large x again, we get that

σ(k)
p (ω(m−1)

p (x)) =
P (x)

p(x)

d

dx
σ(k)
p

((
P (x)

p(x)

d

dx

)
m−2

v(m−2)
p (x)

)
≥ −C. (29)

From (8), we obtain

σ(k+1)
p (ω(m−2)

p (x)) → 0(N, p). (30)

Applying Lemma 4.2 to σ
(k)
p (ω

(m−2)
p (x)) and using Lemma 4.6, we obtain

σ(k+1)
p (ω(m−2)

p (x)) = o(1).

Continuing in the same vein, we obtain

σ(k+1)
p (ω(1)

p (x)) = o(1).
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Since σ
(k)
p (x) → s(N, p), we get that v

(k+1)
p (x) = o(1). Using Lemma 4.5 (ii), 4.6 and 4.7,

we have v
(k)
p (x) = o(1). Using the weighted mean of order k of the identity in Lemma 4.3,

we get σ
(k)
p (x) → s(N, p). If we do these steps k − 1 times, we obtain σ

(1)
p (x) → s(N, p).

If we take the weighted mean of the both sides of the identity in Lemma 4.3, then we

obtain v
(1)
p (x) is (N, p) summable to 0 and we have

σ(2)
p (ω(m−1)

p (x)) → 0(N, p). (31)

By Lemma 4.7 and the hypothesis ω
(m)
p (x) ≥ −C for some C > 0 and sufficiently large x,

then we have

σ(1)
p (ω(m)

p (x)) =
P (x)

p(x)

d

dx
σ(1)
p

((
P (x)

p(x)

d

dx

)
m−1

v(m−1)
p (x)

)
≥ −C. (32)

Applying Lemma 4.2 to σ
(2)
p (ω

(m−1)
p (x)) and using Lemma 4.6 and conditions (31) and (32),

we obtain that
σ(2)
p (ω(m−1)

p (x)) = o(1).

By (8), we get σ
(1)
p (ω

(m−1)
p (x)) ≥ −C1, for some C1 > 0. By using Lemma 4.7 and the

hypothesis ω
(m)
p (x) ≥ −C, for some C > 0 and enough large x again, we get that

σ(1)
p (ω(m−1)

p (x)) =
P (x)

p(x)

d

dx
σ(1)
p

((
P (x)

p(x)

d

dx

)
m−2

v(m−2)
p (x)

)
≥ −C1. (33)

From (8), we obtain

σ(2)
p (ω(m−2)

p (x)) → 0(N, p). (34)

Applying Lemma 4.2 to σ
(2)
p (ω

(m−2)
p (x)) with using (33), (34) and Lemma 4.6, we obtain

that
σ(2)
p (ω(m−2)

p (x)) = o(1).

If we continue in the same vein, then we get that

σ(2)
p (ω(1)

p (x)) = o(1).

From the (N, p) summability of σ
(1)
p (x) to s and Lemma 4.3, we get σ

(2)
p (vp(x)) = o(1).

Using Lemma 4.5 (ii), 4.6 and 4.7, we get that v
(1)
p (x) = o(1). Finally, using the weighted

mean of the identity in Lemma 4.3 we get σ
(1)
p (x) → s. Therefore the conditions in Theorem

3.1 holds and proof is completed. �

Proof of Theorem 3.3
From Lemma 4.8 and the hypothesis σ

(1)
p (ω

(m)
p (x)) ≥ −C for some C ≥ 0, we obtain

ω(m)
p (σ(k)

p (x)) ≥ −C, (35)

for some C ≥ 0. Since σ
(k)
p (x) is (N, p) summable to s, from Theorem 3.1 and condition

(35), we get

σ(k−1)
p (x) → s(N, p). (36)

Also from Lemma 4.8 and the same hypothesis, we get

ω(m)
p (σ(k−1)

p (x)) ≥ −C, (37)

for some C ≥ 0. Hence, from Theorem 3.1, conditions (36) and (37), we get

σ(k−2)
p (x) → s(N, p). (38)

If we continue in the same vein, then we get

σ(1)
p (x) → s(N, p). (39)
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From Lemma 4.8 and the same hypothesis, we get

ω(m)
p (σ(1)

p (x)) ≥ −C, (40)

for some C ≥ 0. Finally, from Theorem 3.1, conditions (39) and (40), we get s(x) → s(N, p).
This completes the proof. �
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[5] İ. Çanak and Ü. Totur, Extended Tauberian theorem for the weighted mean method of summability,

Ukr. Math. J., 65(2013), No. 7, 1032-1041.

[6] C. Chen and J. Hsu, Tauberian theorems for weighted means of double sequences, Anal. Math.,

26(2000), 243-262.

[7] M. Dik, Tauberian theorems for sequences with moderately oscillatory control moduli, Math. Morav.,

5(2001), 57-94.
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