
U.P.B. Sci. Bull., Series C, Vol. 81, Iss. 4, 2019                                                      ISSN 2286-3540 

PSO OPTIMIZED SVM PARAMETERS FOR FAR INFRARED 

PEDESTRIAN DETECTION 

Yang YU1, Lin KONG2, Yanju LIU3*, Jianhui SONG4 

Aiming at the problem that the uncertainty of manual selection of penalty 

factor C and Gauss kernel parameter γ of support vector machine (SVM) in OpenCV 

leads to the unsatisfactory accuracy of infrared pedestrian detection, an infrared 

pedestrian detection method based on particle swarm optimization (PSO) optimized 

SVM is proposed. Samples are selected to establish the sample database. HOG 

feature vectors are extracted from the samples to calculate the feature matrix and 

put into SVM for training. Then, PSO is used to optimize the parameters of penalty 

factor and Gauss kernel, and SVM is trained again to get the best pedestrian 

classifier model, which is used to identify pedestrians. The results show that by 

applying PSO optimized SVM parameters to far-infrared pedestrian detection, the 

rate of missed detection and false detection is significantly reduced, the accuracy of 

pedestrian classification is significantly improved, and the operating time is 

shortened. 
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1. Introduction 

In recent years, pedestrian detection technology [1, 2] has matured. 

Compared with visible light, far infrared pedestrian detection has better 

research value. Far infrared pedestrian detection technology generally 

includes two parts: ROIs (Regions of Interest) extraction and pedestrian 

recognition. ROIs extraction is the selection and extraction of features. At 

present, the descriptions of infrared pedestrian features include Histograms of 

Oriented Gradients (HOG) [3], Histograms of Oriented Gradients-Intensity 

Self Similarity (HOG-ISS) [4], Histograms of Local Intensity Differences 

(HLID) [5], and Histograms of Oriented Gradients-Local Binary Patterns 
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(HOG-LBP) [6], etc. Pedestrian recognition is based on the design of 

pedestrian classifier. The commonly used methods of pedestrian classifier are 

SVM [7], various boosting [8] and artificial neural network [9]. In addition, 

combining the optimization algorithm to search for the optimal parameters of 

the penalty factor and Gaussian kernel parameter, the commonly used 

methods are genetic algorithm [10], PSO [11], ant colony algorithm [12] and 

simulated annealing method [13]. The genetic algorithm has good 

convergence, and has the support of mathematical theory. It is suitable for 

solving discrete problems. The ant colony algorithm has the advantage of 

finding the global optimal solution, which is mainly suitable for path search, 

but the computational overhead is large. Simulated annealing algorithm has 

the advantage of strong local search ability, but the global search ability is 

poor, and it is mainly used in image recovery and other work. Compared with 

genetic algorithm, PSO has the advantages of no crossover, mutation 

operation, fewer parameters, easy implementation, and faster convergence to 

the optimal solution. Compared with ant colony algorithm and simulated 

annealing algorithm, PSO has low computational cost. The above advantages 

make it widely used in neural networks, function optimization and other 

fields. 

Aiming at the optimal selection of SVM kernel parameters, this paper 

proposes a pedestrian recognition method based on the selection of HOG 

features and SVM to design pedestrian classifier, which combines PSO to 

optimize the parameters of SVM [14] to obtain pedestrian classifier. This 

method not only obtains the appropriate SVM kernel parameters efficiently, 

but also solves the problem of time-consuming optimization, and improves the 

accuracy of pedestrian detection, which has very important engineering 

significance and application value.  

2. Far infrared pedestrian HOG feature extraction and SVM 

classifier 

Far infrared pedestrian detection methods mainly include probability 

template matching method and statistical analysis method. In this paper, the 

method based on statistical analysis is used for far infrared pedestrian 

detection. Far-infrared pedestrian recognition based on statistical analysis is 

divided into two parts, one is the extraction of ROIs, and the other is the 

training classifier. The recognition process is shown in Fig. 1. 



PSO optimized SVM parameters for far infrared pedestrian detection                   17 

Far infrared 

image

HOG feature 

extraction
SVM classifier Test results

Extraction of ROIs Pedestrian identification

 
Fig. 1. Pedestrian detection system solution 

2.1 HOG feature extraction 

In this paper, HOG feature is extracted from candidate pedestrian area, 

which is a feature descriptor for detecting human targets. The core idea of 

HOG feature extraction is to gray the far infrared image of the target to be 

detected. Gamma correction method is used to normalize the color space of 

the input image. The size and direction of each pixel gradient are calculated. 

The target image area to be detected is scanned by a sliding window of 4×4 

pixels to find the target. The image is divided into a plurality of connected 

areas (called cells) of 4×8 pixels, and the number of statistical cells constitutes 

a descriptor. In order to improve the accuracy, two cells form a block, and the 

gradient features of all cells of a block are combined to form a block 

descriptor. Finally, the HOG features of all blocks are combined to form a 

descriptor of the gray image.  

In the gradient calculation phase, the first-order central gradient 

operator is used, and the gradient operator in the horizontal direction of the 

image is [1, 0, 1]. When the distribution of gradient direction is counted in 

each image, the cell unit is set to a circle and the number of bins in the 

gradient direction is set to 9. All gradients are projected into 0-180 degrees 

(unsigned) interval, forming a gradient direction interval every 20 degrees on 

average. 

2.2 SVM classifier 

The SVM is a two-class classification model whose basic model is 

defined as the linear classifier with the largest interval in the feature space. 

The algorithm defines one or more classification hyper planes by defining a 

distance function between any two points in a high-dimensional space and 

selects different kernel functions to determine the classification hyper plane to 

achieve optimal classification in high-dimensional space. The principle of 

SVM algorithm is as follows [15]: 

The training sample set are set to be ),( ii yx , ni 2,1= ; 
d

i Rx  ; 

2=d  is a two-dimensional space; )1,1( +−y is the category mark. If the sample 

is linearly separable, then: 

nibxwy ii 2,1,01])[( =−−                                               (1) 
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Where:   is the hyper plane normal vector and b  is the hyper plane bias 

value.   

Based on formula (1), the minimum value of 2/)(
2

ww =  is found as 

the optimal classification surface. Thus, the optimal plane problem is 

transformed into a constraint as formula (2): 
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To this end, Lagrange functions can be defined as formula (3) and convert 

it to a dual problem: 
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Where: i  is a Lagrange multiplication operator. 

The obtained )( -minimum value is converted to the values of   and b  

when the Lagrange function is obtained to get the minimum. The decision 

function of the optimal hyper plane is obtained as formula (4): 
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In order to solve the problem of sample linearity and inseparability, the 

relaxation variable 0i  and penalty factor C are introduced, then the constraints 

of the optimal classification hyper plane are as formula (5): 









++

+= 
=

1])[(

2

1
min)(min

1

2

iii

n

i

i

bxwy

Cww




                                     (5) 

Because SVM maps the input feature vector to a high-dimensional plane 

through a non-linear mapping to form an optimal classification hyper plane, 

according to Mercer theorem in the functional, formula (4) is changed to: 
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Where ),( xxK i  is a kernel function. Different kernel functions can be 

selected to implement different support vector machines. In this paper, the radial 

basis kernel function (RBF) is selected as shown in formula (7): 

)exp(),(
2

ii xxxxK −−=                                                       (7) 

Where:   is the Gaussian kernel parameter and 0 . 

Equation (6) is the optimal classification hyper plane, and the optimal 

hyper plane is closely related to the two factors of penalty factor and Gaussian 
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kernel parameter. From formula (5), it can be concluded that the value of C 

weighs the empirical risk and the structural risk. The larger the C value, the easier 

it is to over-fitting. The smaller the C value, the lower the complexity of the 

model. Formula (7) shows that the selection of   is closely related to the fine 

procedure of sample division. The smaller the value of  , the better it can be 

distinguished from other samples. Therefore, it is very important to select suitable 

C and   to get a good classifier. 

3. Far infrared pedestrian detection 

3.1 HOG+SVM far infrared pedestrian detection 

After selecting the far-infrared pedestrian candidate region, the training of 

the far-infrared pedestrian classifier is performed. The training process of the 

pedestrian classifier after the HOG feature vector extraction is described as below. 

(1) The OTCBVS database is downloaded. Pedestrians from Ground Truth 

in OSU Thermal Pedestrian Database are cut as positive samples to extract 

features and marked as 1. The randomly extracted unmanned samples are cut as 

negative samples and marked as -1 after extracting feature. The positive and 

negative samples are shown in Fig. 2. 

              
(a) Positive sample                                      (b) Negative sample 

Fig. 2. Training samples 

(2) The labeled sample matrix is put into SVM for training, and the kernel 

function is RBF. The penalty factor is C=10 and  =8.0. The obtained classifier is 

reloaded to obtain the detection factor.    

(3) The negative factor of the detection factor is re-trained to obtain the 

difficult sample, that is, negative samples with wrong classification. Then difficult 

samples are put into SVM to extract the feature as the negative sample marked as 

-1, and then retrained until the best results are obtained. 

(4) The image is tested, and the best classifier is selected. 

3.2 HOG+PSO+SVM Far Infrared Pedestrian Detection 

From the above, it is very important to search for the best penalty 

factor C and Gauss kernel parameter  . In order to optimize the parameters C 

and   of the classifier, the PSO algorithm is introduced to find the best kernel 

parameters. The principle of PSO is as follows [16]: 
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A population consists of m particles. One of the particles ip  is iterated 

k times in a N-dimensional space to obtain the position, the velocity, 

individual extremum and global extremum as equations (8), (9), (10), (11):  
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Where: m is the number of particles, k is the number of iterations, i

kx  is 

the position vector of particle i after k times iteration, i

kv  is the velocity of the 

particle, i

kP  is the individual extremum, and g

kP  is the global extremum. 

The standard PSO formula can be obtained as formula (12): 
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Where 
1C  and 

2C  are learning factors, which are used to adjust the 

individual optimal value of the particle group and the step size of the group's 

optimal particle direction flight. Choosing the appropriate learning factor can 

speed up the convergence of the algorithm and is not easy to cause local 

optimization. Generally, the value between 0 and 2 is selected. This paper chosen 

0.221 ==CC  to have the best effect; kw  is the weight (also known as the inertia 

factor); 
1 and 

2 are random numbers between 0 and 1.  

The penalty factor obtained by formula (5) and the Gaussian kernel 

parameter obtained by formula (7) are optimized by formula (12). The 

optimization parameter process is shown in Fig. 3.  

(1) The training samples with optimal parameters are selected. The 

positive samples with infrared pedestrians are marked as 1, while the negative 

samples without infrared pedestrians are marked as - 1. The HOG features are 

extracted, and the feature matrix is formed.  

(2) The number of PSO is initialized to 20. The position 
0

ix and velocity 
0

iv  of the PSO, the global extremum Gbest and the individual extremum Pbest are 

initialized. 

(3) Cross validation is carried out. The speed of the initial particle swarm 

and the location of the particle swarm search are put into SvmTrain for training. 

(4) The particle's adaptability is calculated. If it is better than the current 

individual extreme value, the particle's position is set to the Pbest, and the 

individual extreme value is updated. If the optimal individual extremum of all 
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particles is better than the current global extremum, the optimal individual 

extremum is set to Gbest, the serial number of particles is recorded, and the global 

extremum is updated. 

(5) Whether the iteration has reached the maximum number of iterations is 

determined, and if it has been reached, the optimization is completed. The global 

optimum C and γ are returned. Otherwise, the velocity and position of the particle 

are updated. The program returns to step 4 to continue execution.  

Start

Read training samples 

and test samples

Initialize PSO 

parameters

SVM training

Calculated the 

particle's adaptability

End

Y

Update speed and 

location

Update the individual 

extreme and the 
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Meet the 

maximum number 

of iterations

Return the global 

optimum C and γ

N

 
Fig. 3. The parameter optimization process of C and γ 

4.  Experimental results 

The experimental platform of this paper is OpenCV built by VS2013. The 

operating environment is AMD A6-4400M APU with Radeon(tm) HD Graphics; 

clocked at 2.70GHz; memory is 6G; Windows 7 64-bit operating system. 

Using OTCBVS far-infrared pedestrian database, each picture pixel is 

360*240px, compared with visible light picture 720*480px, the picture is 

relatively small, and the pedestrian area is small. 
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Indicators describing pedestrian detection are as follows: 

(1) False alarm rate fa: the ratio of the number of negative samples 

identified as positive samples to those positive and negative samples identified as 

positive samples; 

(2) Precision Pr: the ratio of the number of positive samples identified as 

positive samples to those positive and negative samples identified as positive 

samples; 

(3) Accuracy Ac: the ratio of the sum of positive samples identified as 

positive samples and negative samples identified as negative samples to the 

number of targets marked. 

By selecting different feature dimensions, the accuracy data of pedestrian 

classification is shown in Table 1. The number 1 is the pedestrian classification 

accuracy obtained by HOG feature dimension 3780. The number 2 is the 

pedestrian classification accuracy obtained by HOG feature dimension 144 when 

the number of blocks of the HOG feature dimension is 8×8. The number 3 is the 

pedestrian classification accuracy rate obtained by HOG feature dimension 144 

when the number of blocks of the HOG feature dimension is 4×4. 
Table 1. 

The pedestrian accuracy comparison results corresponding to the feature dimensions of  

different histograms 

 

It can be seen from Table 1 that the classification accuracy corresponding 

to the number 2 and the number 3 after dimension reduction of the number 1 is 

significantly improved. For the selection of the block, the number 2 is obviously 

more ideal than the number 3. Therefore, the ideal simulation parameters are as 

follows: the number of blocks is 8×8, the feature dimension is 144, the sliding 

window is 16×32, and the histogram merge number is 9 for feature extraction. On 

the basis of determining the HOG feature dimension of 144, the OTCBVS 

infrared pedestrian database is used. The number of positive samples is 509, the 

number of negative samples is 926, and the sample of difficult sample is 11675. 

The SVM parameters are : classifier type is C_SVC and the kernel function is 

RBF. 

Document 17 proposed a method for pedestrian recognition based on 

genetic algorithm to optimize SVM parameters in visible light. This method has 

the disadvantage that it does not fall into local extreme points and leads to 

inaccurate optimization. In order to compensate for the shortcomings of only 

obtaining a single extremum in GA, this paper uses PSO to optimize SVM 

parameters for pedestrian recognition. The number of particle swarms is 20 and 

Number bin block Characteristic dimension C   Ac 

1 9 16×16 3780 10 8 13.34% 

2 9 8×8 144 10 8 46.67% 

3 9 4×4 144 10 8 40.0% 
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the number of iterations is 25. This method can search for global extremum and 

local extremum well. Due to the randomness of PSO, the SVM parameters are 

determined by the 5-fold cross-validation method. The optimized penalty factor 

and Gauss kernel parameter obtained by HOG+PSO+SVM are used to test the 

infrared image with resolution 360*240. The experimental results are compared 

with those of HOG+SVM and HOG+GA+SVM. The comparison results of the 

accuracy and operating time for far-infrared pedestrian recognition are shown in 

Table 2. 
Table 2. 

The comparison results of the accuracy and operating time for  

far-infrared pedestrian recognition 

As can be seen from Table 2, the parameters C=10 and  =8 of the SVM 

are the default visible light parameter in OpenCV, and its effect in far infrared is 

not very satisfactory. The accuracy of pedestrian classification of SVM obtained 

by GA optimization is lower than that of SVM obtained by PSO optimization. The 

operating time of the two is similar, which is shortened to one third of the 

traditional HOG+SVM. The number of SVs is reduced, and the accuracy Ac is 

also improved. 

The OSU Thermal Pedestrian Database sequence in the OTCBVS far-

infrared pedestrian database was selected to verify its pedestrian recognition 

accuracy. The accuracy of far-infrared pedestrian recognition is compared by 

using five sequences with the number of 90, 95, 100, 105 and 110, respectively. 

The results are shown in Fig. 4.  

The comparison results show that the pedestrian classifier obtained by 

PSO optimized SVM can improve the accuracy of pedestrian recognition in far 

infrared pedestrian detection. 

The OSU Thermal Pedestrian Database sequence in the OTCBVS far-

infrared pedestrian database was selected for detection. HOG+PSO+SVM 

pedestrian detection is defined as method 1, HOG+SVM is defined as method 2, 

and document 17 method HOG+GA+SVM is defined as method 3. 

The number of test mark targets is 106, 98, 112, 101, 91 and 92 test 

sequences respectively. The results are shown in Table 3. 

 

Classifier type HOG+SVM HOG+GA+SVM HOG+PSO+SVM 

Penalty factor C 10 0.8 1.0 

Gauss kernel parameter   8 0.1 0.25 

Cross validation rate (%) 78.7% 79.2% 79.6% 

Number of SVs 1455 373 353 

Operating time (s) 0.510302s 0.123732s 0.123765s 

Accuracy Ac 46.67% 83.8% 87.7% 
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Fig. 4. The accuracy comparison result 

 

Table 3. 

Sequences detection results of OSU Thermal Pedestrian Database 

From Table 3, it can be seen that after the parameters are optimized by 

method 1 and method 3, the precision of far infrared pedestrian recognition is 

significantly improved, and the false alarm rate fa is greatly reduced compared 

Numbering method 
Number of 

targets marked 

positive 

samples 

identified as 

positive 

samples 

negative samples 

identified as 

positive samples 

fa Pr 

1 

method 1 106 99 2 2.0% 98.0% 

method 2 106 58 41 41.4% 58.6% 

method 3 106 85 14 14.2% 85.8% 

2 

method 1 98 83 2 2.4% 97.6% 

method 2 98 53 44 45.4% 54.6% 

method 3 98 78 15 16.2% 83.8% 

3 

method 1 112 105 3 2.8% 97.2% 

method 2 112 65 43 39.9% 60.1% 

method 3 112 95 13 12.1% 87.9% 

4 

method 1 101 98 1 1.1% 98.9% 

method 2 101 55 36 39.6% 60.4% 

method 3 101 85 14 14.2% 85.8% 

5 

method 1 91 78 2 14.3% 98.7% 

method 2 91 42 43 50.6% 49.4% 

method 3 91 72 16 18.2% 81.8% 

6 

method 1 92 82 3 3.5% 96.5% 

method 2 92 37 53 58.9% 41.1% 

method 3 92 72 16 18.2% 81.8% 
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with method 2. However, compared with Method 1, Method 3 has a slightly lower 

precision of pedestrian recognition. From Table 3, it can be seen that the 

pedestrian detector optimized by PSO achieves over 85% accuracy in far infrared 

pedestrian detection, which proves that the precision of far infrared pedestrian 

detection can be improved by optimizing the parameters of SVM. Through the 

previous experiments, the key codes of HOG feature parameters and SVM 

parameters are as follows:  

HOGDescriptor hog(Size(16, 32), Size(8, 8), Size(8,8), Size(4,8), 9); 

CvSVMParams param(CvSVM::C_SVC, CvSVM::RBF, 10, 0.25, 1.0, 

1.0, 0.5, 1.0, NULL, criteria); The pedestrian classifiers obtained by HOG+SVM 

and HOG+PSO+SVM are used for far-infrared pedestrian recognition, as shown 

in Fig. 5. 

    
(a ) HOG+SVM          (b) HOG+PSO+SVM         (c) HOG+SVM            (d) HOG+PSO+SVM 

Fig. 5. Pedestrian test results comparison chart 
 

It can be seen from Fig. 5 that the far-infrared pedestrian recognition 

precision obtained after optimizing the parameters is effective. This method has a 

good effect in far infrared pedestrian recognition. The ideal parameters obtained 

are put into the SVM for training to obtain a pedestrian classifier.  

5. Conclusions 

Aiming at the accuracy and operating time of far-infrared pedestrian 

detection, an infrared pedestrian detection method based on PSO optimized SVM 

is proposed to find the ideal parameters under the conditions. Compared with the 

pedestrian classifier obtained by the traditional HOG+SVM training, the 

pedestrian classifier obtained by HOG+PSO+SVM not only improves the far 

infrared pedestrian precision and the system running speed, but also reduces the 

false detection rate and increases the accuracy of pedestrian recognition. The 

experimental results show that the method has achieved good results in far 

infrared pedestrian recognition. 
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