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THE IN-SILICO OPTIMIZATION OF A BATCH REACTOR IN 

THE 2ND STEP OF CETUS PROCESS FOR D-FRUCTOSE 

PRODUCTION 

Daniela GHEORGHE1, Gheorghe MARIA*2, Cristiana Luminita GÎJIU 3,           

Laura RENEA4 

Cetus technology is a well-known two steps enzymatic conversion of D-

glucose to D-fructose with a high yield and selectivity. In the first step, a 

commercial pyranose 2-oxidase (P2Ox) is used to catalyze the oxidation of beta-D-

glucose to keto-glucose (kDG). To avoid the fast P2Ox inactivation by the in-situ 

produced H2O2, catalase is added to decompose the continuously produced 

hydrogen peroxide. In the second Cetus step, kDG is reduced to D-fructose by using 

a commercial (recombinant human) aldose reductase (ALR) as biocatalyst, and 

NADPH as a donor of protons. A kinetic model of this 2-nd enzymatic step, adopted 

from literature, allowed optimization of the used batch reactor (BR). The BR 

optimal initial load is determined by using a nonlinear programming (NLP) 

procedure seeking for the D-fructose production maximization. Application of the 

Pareto optimal front technique (with considering multiple opposed objectives), 

proved to also offer a promising optimal operation of the analysed BR. 

Keywords: keto-glucose reduction to fructose; aldose reductase; kinetic model; 

NADPH; batch reactor; production maximization; Pareto optimal 

front 

1. Introduction 

 Recent advances in obtaining genetically modified enzymes allowed 

developing a lot of biosynthesis of industrial interest, which tend to replace the 

classical fine chemical synthesis processes, due to the advantages of the 

enzymatic processes: a) produce fewer by-products; b) consume less energy; c) 

generate less environmental pollution; d) use smaller catalyst concentrations and 

much moderate reaction conditions [1].  
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 However, to optimally solve the associated engineering problems (process 

design, operation, control, and optimization) it is essential to know an adequate 

mathematical (kinetic) model of the process. This model should preferably be 

based on the process mechanism, to ensure interpretable predictions of the process 

behavior under variable running conditions, easy to be compared with the 

literature data [2-4]. 

 Despite their larger volumes, enzymatic reactors operated in BR (batch), 

or FBR (fed-batch) modes, are the most used because they ensure a high diffusion 

rate of compounds in the liquid phase, and an easy control of temperature/pH.  

 Concerning the reactor, an essential engineering problem refers to the 

development of optimal operating policies seeking for production maximization, 

raw-material consumption minimization, with obtaining a product of high quality 

(less by-products). This problem depends on the 1) adopted technology (chemical, 

biochemical, or biological catalysis), but 2) also on the used of engineering 

analysis to optimize the reactor operation (this paper).  

 In the BR case, its optimal operation problem can be in-silico solved in 

two alternatives: (a) off-line (‘run-to-run’), the optimal operating policy being 

determined by using an adequate deterministic kinetic model previously identified 

based on experimental data (this paper; [5-12]); (b) on-line, by using a simplified, 

often empirical mathematical model to obtain a state-parameter estimator based 

on the on-line recorded data (such as the classical Kalman filter) [9,13-20]. 

 Even if the enzymatic process kinetic model is known, in-silico solving 

this off-line engineering problem is not an easy task, due to multiple contrary 

objectives, and a significant degree of uncertainty of the model/constraints 

[13,21]. The reactor optimal operating policy is usually determined by using an 

effective optimization rule [10,14,22-24]. In the deterministic alternative (this 

paper), single-/multi-objective criteria, including the product selectivity / yield 

maximization, (raw-)materials consumption minimization, are usually used to get 

feasible optimal operating strategies for the analyzed reactor [21] by using 

specific numerical algorithms [11,15,20,25]. 

 Typical optimization objective functions were reviewed by [26,27]. The a-

priori in-silico analysis allows comparing performances of various bioreactor 

constructive / operating alternatives, as follows [23].  

 BRs are commonly used for slow processes, because they are highly 

flexible and easy to operate in various alternatives [23]: (i).- simple BR, when 

substrate(s), biocatalyst, and additives initially loaded in recommended amounts 

[28-30]. Usually, a single- or multi-objective BR optimization is off-line 

performed to determine the best batch time, and substrate/biocatalyst initial load 

[13,16,22,30,31-35]; (ii).- a batch-to-batch (BR-to-BR) optimization, by including 

a model updating step based on acquired information from the past batches to 

determine the optimal load of the next BR [6-8,14,25,36-38]; (iii).- a sequence of 
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BRs of equal volumes linked in a series (SeqBR) [38]. For every BR, its content 

is transferred to the next one, with adjusting the reactants and biocatalyst 

concentrations of the latter, at off-line determined levels, to ensure its optimal 

operation [8,25]. (iv).- The Semi-Batch Reactor (SBR) or fed-batch reactor 

(FBR), with an optimally varied feeding policy of biocatalyst/substrate(s) is not 

discussed here [21,23,37,39]. Despite the FBRs better performances, they are 

difficult to operate, because they need previously prepared stocks of biocatalyst, 

and substrate(s), of different concentrations (a-priori in-silico determined), to be 

fed for every ‘time-arc’ of the batch (that is a batch-time equal division in which 

the feeding composition is constant) [23,24,40,41]. The time-step-wise variable 

optimal feeding policy of the FBR are determined off-line [23], or on-line [19].  

 D-fructose is a sweetener of high value in the food industry and medicine. 

As other polyols largely used as sweeteners (e.g. sorbitol, mannitol, xylitol, 

erythritol), it is produced on a large scale by using chemical or biochemical 

catalysis [42,43]. However, the chemical catalysis (that is hydrogenation of 

glucose on Ni, Fe, or Fe-Ni alloy catalysts) presents the critical disadvantage of 

significant energy consumption, occurring at high pressures (30 bar) and 

temperatures (140oC). One alternative is the beta-D-glucose isomerization to D-

fructose on Fe/CarbonBlack catalyst [43]. Similarly, starting from the high-

fructose syrup (HFCS) obtained from starch [44], after rough/fine filtration, ion 

exchange, and evaporation, a beta-D-glucose isomerization step leads to a high 

fructose syrup (HFS, of 42-55% D-fructose) [44-47].  

 
 

 
Step no. 1 

 
Step no. 2 

Fig. 1. A simplified representation of the 

reaction pathway for beta-D-glucose enzymatic 

oxidation to kDG (D-glucosone) by using PO2x 

and catalase, proposed by Maria et al. [48]. 

Perpendicular dash arrows indicate the catalytic 

activation [+], repressing or inhibition [-] 

actions. Adapted from [48,49]. 

Fig. 2. A simplified representation of the 

reaction pathway proposed by Maria and Ene 

[50] for keto-D-glucose (kDG) enzymatic 

reduction to D-fructose, by using NADPH 

and ALR. Notations are given in the 

abbreviation list. Adapted from [50], with 

the courtesy of CABEQ Jl. 
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 By far, the biocatalytic route to produce D-fructose is more convenient due 

to a large number of advantages: it consumes less energy; by occurring at 

ambiental conditions, it produces less waste due to its high yield and selectivity, 

the product being free of allergenic compounds.  

 The two-step Cetus process for production of high purity D-fructose with 

high yields, are the followings [51,52]: 

STEP 1).- Beta-D-glucose is firstly converted to kDG in the presence of pyranose 

2-oxidase (P2Ox) at 25-30oC and pH=6-7, with a high conversion and selectivity 

[48,49]. Catalase is added to decompose the resulted H2O2 (Fig. 1), thus avoiding 

the quick P2Ox inactivation. More details are given by [49,53,54]. 

STEP 2).- The kDG (D-glucosone) is then reduced to D-fructose by using a 

commercial (recombinant human) aldose reductase (ALR) (EC 1.1.1.21), and 

NAD(P)H as co-factor (proton donor), at 25oC and pH=7 [50]. The resulted 

NAD(P)+ will be continuously regenerated (in-situ or externally) and re-used [55-

57] (Fig. 2). According to our results, the use of NADH instead of NADPH is 

preferable because NADPH deactivates very quickly, and it is more expensive 

than NADH [55].  The co-factor (NADPH or NADH) regeneration can be done in 

several ways [29,55,58-61]. For instance, Gijiu et al. [62] took this step, using the 

in-situ version, at the expense of the enzymatic degradation of ammonium formate 

[62]. More details about this process are given by [50]. 

 This paper is aiming at optimizing the STEP-2 of the Cetus process, which 

is the kDG reduction to D-fructose (Fig. 2). 

 Thus, by adopting an adequate kinetic model from the literature the in-

silico analysis will evaluate and compare the performances of several optimal 

operating policies of a BR. The BR optimal initial load will be determined by 

using a nonlinear programming (NLP) procedure seeking for the D-fructose 

production maximization in the presence of various technological constraints to 

limit de raw-materials consumption. Alternatively, the derived Pareto-optimal 

fronts (by considering multiple opposed objectives), proved to also offer a 

promising optimal operation policy of the analyzed BR. 

 The paper presents a significant number of novelty aspects, as following: 

(i) The engineering evaluation of this process is a premiere in the literature. (ii) 

The way by which this difficult multi-objective optimization problem was 

successfully solved is a model that can be followed to solve similar enzymatic 

processes. (iii) The present engineering analysis can be easily exploited in the 

development of this process (reactor design, control). (iv) The in silico (model-

based) engineering analysis of a complex enzymatic process, leading to obtain a 

Pareto-optimal operating policy of the approached BR is an approach seldom used 

in the literature. (v) Confirmation that the Pareto-front ‘break-point’ choice 

proposed technique reported “fairly good” performances for a BR, from a multi-

objectives’ perspective. (vi) Before this paper, there are very few enzymatic 
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processes analyzed in the literature from the engineering point of view by also 

accounting the cofactor during the optimization procedure. (vii) The scientific 

value of this paper is not virtual, as long as the numerical analysis is based on the 

kinetic model of Maria and Ene [50] constructed and validated by using the 

extensive experimental data sets of (Fig. 7). (viii) The in-silico analysis suggests 

that an optimally operated BR with a policy determined from applying a NLP 

procedure, or the Pareto-optimal ‘break-point’ technique of [63-67] can lead to 

high performances. 

 

 2. The experimental enzymatic reactor 

 

 The analyzed BR here is those used by Maria [48,49] to derive the kinetic 

model of the Cetus first-step-process, and by Maria and Ene [50] to derive the 

kinetic model of the Cetus second-step process. The BR characteristics are 

presented in Table 1 [68]. The reactor operation is completely automated, with a 

tight control of the dissolved oxygen (DO) concentration (for the oxidative 

processes, or for biological ones), of the pH, temperature, and of the mixing 

intensity [69].  

 In the BR operation mode, an optimal initial load will be determined by 

solving an optimization problem (product maximization here) in the presence of 

multiple technological constraints.  

 

 3. Bioprocess kinetics and bioreactor dynamic model 

 

 To model the dynamics of the key-species in the BR, a classical simple 

model was adopted, of ideal type [70], developed with the following main 

hypotheses: (i) Isothermal, iso-pH; (ii) The liquid phase is perfectly mixed (with 

no concentration gradients), by using continuous mechanical mixing. (iii) The 

liquid volume is quasi-constant, its increase due to the pH controlling additives 

being negligible.  
 

Table 1. 

Nominal (not-optimal) operating conditions (SPBR) of the experimental BR with 

suspended ALR and NADPH used to investigate the kDG conversion to D-fructose, by 

Maria and Ene [50]. DSn = data set number “n”. Notations: [S = substrate (kDG); P = 

product (D-fructose); A = NADPH; A(+) = NADP+; E = ENZ= ALR] 
 

Parameter Nominal initial value Remarks 

[S]o = [kDG]o 

DS1, DS2, and DS3 (35 

mM);  

DS4 (15 mM) To be optimized within imposed limits 

(this paper) 

[A]o = [NADPH]o 

DS1, DS2, and DS4 (35 

mM);  

DS3 (6 mM) 
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[E]o = [ALR]o 

DS1 (0.0048 U/mL), DS3 

(0.0055 U/mL) 

DS2 (0.00257 U/mL) 

DS4 (0.006 U/mL) 

[P]o (D-fructose) 0 Final [P] is to be maximized 

[A(+)]o = 

[NADP(+)]o  
0  

[EA]o  0  

Temperature, pH 

(buffer) 
25oC, 7 

 

Optimization tight 

limits (OTL), (mM) 

[S]o  [5-50]; [NADPH]o  [5-50];  

[E]o  [0.003-0.1] [50] 

Optimization wide 

limits (OWL), (mM) 
[S]o  [5-100]; [NADPH]o  [5-80];  

[E]o  [0.003-0.1] [50] 

Reactor volume  
1 L 

(up to 3 L capacity) 
 

Batch time (tf) 24-76 h DS1, DS2, DS4 (24 h); DS3 (24-76 h) 

Beta-D-glucose (or 

kDG) solution 

solubility 

Solubility 5-7M (25-30oC) [71] 

Beta-D-glucose (or 

kDG) solution 

viscosity 

Ca. 1-3 cps (for up to 300 

mM) 

1000 cps (4.5M, 30oC), 

Vs. 1094 cps (molasses, 

38oC) 

[72] 

Wikipedia (molasse), 2024 

 

The enzymatic BR dynamic model is presented in Eq.(1) with including the mass 

balances of 6 key-species of the process, that is (Fig. 2): [S = substrate (kDG); P = 

product (D-fructose); A = NADPH; A(+) = NADP+; E = ENZ= ALR, AE* ], most of 

them being observable, with a measurable concentration.  

 

( ) ( )0=== tCC  ;  r  
dt

)t(dC
ioi,i

i t  k, ,Co  (1) 

Where Co is the vector of initial concentrations; k = rate constants vector. Species 

index “i” = [kDG, P, NADPH, NADP(+), ALR, E*A]. 

 The process kinetic model is that proposed by Maria and Ene [50], based 

on the adopted reaction pathway of Fig. 2. The overall main reaction of Table 2, 

that is rP, follows a successive Bi-Bi mechanism. The reaction rate expressions, 

and the associated 9 rate constants are those identified by Maria and Ene [50].  
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Table 2.  

The overall reactions considered by the kinetic model of Maria and Ene [50] (with the 

reaction scheme of Fig. 2) for (kDG) reduction to D-fructose by using commercial 

recombinant ALR (obtained by expressing human 1-316aa plasmids in E. coli; enzyme 

source: ATGEN, Cat. no. ALR-0901).  

Overall reactions: 
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Rate expressions (see also the reaction scheme of Fig. 2). Successive Bi-Bi mechanism. 
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 An extensive and reasoned/documented discussion regarding derivation of 

this complex kinetic model starting from the reaction pathway of (Fig. 2) is given 

by Maria and Ene [50], and it is not repeated here. 

 The overall reduction reaction rP of Table 2 is thus obtained, being 

accompanied by a reversible binding of ALR to the NADPH to form an inactive 

complex (E*Ay), and by the enzyme ALR deactivation. To estimate the 9 rate 

constants of this kinetic model (not given here), Maria and Ene [50] conducted a 

set of four batch experiments, presented in Fig. 3. To maximize the obtained 

kinetic information, these runs were carried out for large batch times of 24-76 h, 

and by varying the enzyme/reactant/cofactor initial ratios, in the range of: kDG  

[15-35] mM; NADPH  [6-35] mM; ALR  [0.0026-0.006] U/mL.  

 The model rate constants have been estimated from using these four sets of 

experimental kinetic curves (Fig. 3). A weighted least square criterion has been 

used as statistical estimator, because the standard measurement error of species 

are very different [73]. The obtained kinetic model by Maria and Ene [50] was 

proved to be very adequate, the model predictions being in a fair agreement with 

the experimental data (Fig. 3). More details about the estimation step, and on the 

estimate statistical quality tests are given by Maria and Ene [50].  
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Fig. 3.  Comparison of the kinetic model predictions (continuous line), vs.- the eperimental kinetic 

data (circles). Species dynamics concerns the observable species concentrations, that is for kDG(S), 

NADPH, D-fructose (P), and the enzyme E (suspended ALR). The initial conditions are the followings 

(phosphate buffer, pH = 7; 25oC):  

Data set # 1 -  35 mM kDG, 35 mM NADPH, 0.0048 U/mL ALR; 

Data set # 2 -   35 mM kDG, 35 mM NADPH, 0.00257 U/mL ALR; 

Data set # 3 -   35 mM kDG, 6 mM NADPH, 0.0055 U/mL ALR; 

Data set # 4 -   15 mM kDG, 35 mM NADPH, 0.006 U/mL ALR. 

 

 4. BR optimization problem 

 4.1. Control variables selection  

 By analyzing the process main reactions of Table 2, Fig.2, the chosen 

control variables are those related to the reactor initial load. 
 

 4.2. Single objective function optimization (NLP)  
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Optimization of the BR operation translates in finding its initial load with the key-

species [S]o = [KDG]o, [A]o = [NADPH]o, [E]o = [ALR]o (that is 3 unknowns 

here). In the present case, for a single objective function, this optimization 

problem can be referring to maximization of the [P] (D-fructose) production, that 

is:  
 

 

Find [KDG]o, [NADPH]o, [ALR]o, such that: 

Max Ω, where:  Ω = [P(C(t),Co,k)(t)] 
 

(2) 

 

The problem Eq. (2) can be solved by using a common nonlinear programming 

(NLP) optimization rule [3,73,74], seeking to determine the extreme of the 

objective function in the presence of multiple constraints.  

 In Eq. (2), the time-varying P(t) is in fact a multi-variable function P(C(t), 

Co,k)(t), evaluated by using the process/reactor model Eq. (1) over the whole 

batch time (t)  [0, tf ], with the initial condition of Cj,0 = Cj(t=0) searched during 

optimization iterative numerical rule.  

 Because the enzymatic process kinetic model Eq. (1), the optimization 

objective Eq. (2), and the problem constraints Eq. (4) are all highly nonlinear, the 

formulated problem Eq. (2) translates into a difficult NLP with a multimodal 

objective function and a non-convex searching domain. To obtain the global 

feasible solution with enough precision, the multi-modal optimization solver 

MMA of Maria [73-75] has been used, being proved to be very effective for 

solving such difficult NLP problems. 
 

 4.3. Multi-objective optimization by using the Pareto optimal front 
 

 When more than one objective function are simultaneously considered, the 

optimization problem is more difficult to be solved. For multi-objective 

optimization, several alternatives can be followed [76,77]. One elegant option is 

to obtain a set of Pareto-optimal solutions, called Pareto-optimal front for the case 

of at least two adverse objectives [78]. A Pareto solution is one where any 

improvement in one objective can only take place at the cost of the other 

objective. For the present case study of BR optimization, several opposite 

objectives can be considered, such as: Max. P(D-fructose) production; Min. 

substrates [kDG] consumption; Min. co-factor [NADPH] consumption; Min. 

enzyme E (ALR) consumption. Of course, the Pareto-optimal fronts can be 

obtained by using any pair of these opposite objective functions. In the present 

paper, the following three Pareto-optimal fronts have been considered, by taking 

the above objectives two-by-two: 
 

Max. P production –vs.- Min. substrate (kDG) consumption (initially added); 

Max. P production –vs.- Min. minimum NADPH consumption (initially added); 
(3) 
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Max. P production –vs.- Min. minimum enzyme E (ALR) consumption (initially 

added). 

 

 The rough Pareto-optimal fronts have been generated by using the 

dedicated algorithm (GAMULTIOBJ) of the MATLAB computational package. 

To be better interpreted, these rough Pareto-curves have been smoothed with 

using the cubic smoothing spline procedure CSAPS of Matlab. 
 

 4.4. Optimization problem constraints  
 

 The above formulated nonlinear optimization problem (NLP) Eq. (2), or 

the Pareto-optimal front problem Eq.(3), must account for the followings 

constraints: 

(a).- The BR model Eq.(1); 

(b).- To limit the excessive consumption of raw-materials, feasible searching 

limits are imposed to the control/decision variable, in two alternatives: 

(b1).- Large search intervals (OWL in Table 1). 

(b2).- Tight search intervals (OTL in Table 1). 

These feasible limits were based on the unpublished experimental information of 

Maria and Ene [50]. 

In a general form, the constraint (b) translates in the following relationships: 
 

maxo,i,oi,min,o,i C C C  ; i = S, NADPH, E (4) 

 

 5. Optimization results and their discussion 

 

 The BR optimization problem results are the following: 

-.- The Pareto optimal fronts for several opposite objectives (Figs. 4-6); 

-.- The NLP optimal operating policy comparatively displayed vs. experimental 

data set #1 in (Fig. 7); 

-.- A comparison of all BR operating alternatives in terms of P production and 

raw-materials consumption (based on the initial load) in Table 3.  

By analyzing these results, and the operating alternatives of Table 3, several 

conclusions can be derived, as follows: 

 

(1).-  In the Pareto optimal front case, four opposite objectives have been 

considered, according to Eq.(3). The most important Pareto-front is that indicating 

the dependence of the [maximum D-fructose production vs.- minimum substrate 

(kDG) consumption (initially added)] (Fig. 4). According to the suggestions of 

Maria [78-82], the slope “breakpoint” in the exponential-like increasing Pareto-

curve can be considered as being the preferred solution of the optimization 

problem. However, the irregular increasing curve makes this option difficult. The 

chosen optimal set-point (SP) displayed in Table 3 , at one of the “breakpoints” of 
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the curve of (Fig. 4) is that realizing a high P-productivity, with the same 

consumption of kDG and NADPH, as in the optimal NLP policy case. However, 

despite the “fairly good” performances of this Pareto-optimal SP, the enzyme 

consumption is 10x higher than in the optimal NLP case, making the NLP optimal 

policy to be preferred.  

 

(2).- The nominal, not-optimal BR operation SPBR reported very poor 

performances in Table 3. The species dynamics trajectories during the batch time 

for the best NLP optimal operating policy of BR is given in Fig. 7. Compared to 

the experimental curves of the nominal, not-optimal BR operation (data set #1) 

the NLP optimal operation reported superior performances: 3x higher P-

productivity, with 2x-3x higher consumption of (kDG, NADPH), but with a 60% 

less consumption of ALR.  

Thus, the in-silico, off-line BR optimization of this paper appears to be fully 

justified by the obtained better operating policies. 

 

(3).- By analyzing the NLP optimal operating policies of the BR, with using 

OWL vs. OTL search intervals for the control variables, and also the Fig. 7 with 

the species dynamics in the best NLP operating case, some conclusions can be 

derived:  a) the P-productivity increases with the initial substrates [kDG, NADPH] 

concentrations, if enough ALR is present, and if ALR does not deactivate too fast. 

To better fulfill such a condition, the best alternative appears to be the use of a 

more stable enzyme, that is immobilized on a suitable porous support [78-80]; b) 

The NLP optimally operated BR with large searching intervals (OWL) for the 

control variables reported much better performances (2x more in terms of 

produced P, and 2x less in terms of consumed kDG, NADPH) compared to the 

optimal BR by using tight searching intervals (OTL) in Table 3.  

 

(4).- For a enough stable (immobilized) enzyme, the P(D-fructose) production 

maximization, clearly depends on the available amount of substrate (kDG) and 

cofactor (NADPH). As the kDG results from the step 1 of the Cetus process 

[48,49], a more realistic optimization must consider concomitantly the both linked 

Cetus process.  
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Fig. 4. The Pareto-optimal front in terms of 

Min. substrate (kDG) consumption (initially 

added)-vs.- Max. P(D-fructose) production, for 

OWL limits (Table 1) of control variables. The 

marked SP was chosen according to [63-67]. 

The blue line is the smoothed Pareto-optimal 

front. 

Fig. 5. The Pareto-optimal front in terms of 

Min. NADPH consumption (initially added)-

vs.- Max. P(D-fructose), for OWL limits 

(Table 1) of control variables. The marked SP 

is the same as the one chosen in Fig. 4. The 

blue line is the smoothed Pareto-optimal front. 

 

 
Fig. 6. The Pareto-optimal front in terms of Min. enzyme E consumption (initially added)-vs.- 

Max. P(D-fructose), for OWL limits (Table 1) of control variables. The marked SP is the same as 

the one chosen in Fig. 4. The blue line is the smoothed Pareto-optimal front. 
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Fig. 7 [Black line] The in-silico determined NLP best optimal operating policy of the BR 

given in Table 3, in terms of the key-species dynamics over the batch time, with imposing the 

(OWL) optimization wide limits of Table 1. [Blue line, and blue points] The not-optimal 

operation of BR by Maria and Ene [50] in terms of experimental kinetic curves and data 

points for the same key-species of the enzymatic process, for the data set # 1 case.  

 

 6. Conclusions 

 

 To conclude, the in-silico, off-line optimized BR operation, even simple, 

can offer a significantly improved effectiveness, due to its high flexibility in using 

an easily adaptable process model [81], and due to the applied effective 

optimization rules (single objective NLP, and the multi-objective Pareto-fronts 

techniques). 

 The nominal, not-optimal BR operation SPBR reported very poor 

performances. Compared to this BR poor operation, the single/multi-objective 

optimal BR operation reported superior performances: 3x higher product-

productivity, even if at the cost of a 2x higher consumption of raw-materials 

(kDG, NADPH, ALR). Thus, the in-silico BR optimization of this paper appears 

to be fully justified by the obtained better operating policies. 
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Table 3 

BR productivity and raw-materials consumption when operated in various modes. The BR 

optimal policy compared to the experimental data set #1 is given in Fig. 7. The main 

characteristics of the BR are given in Table 1. The reactor volume is of 1 L in all cases. 

Bioreactor operation 
Raw-material consumption 

(a,b) 

D-fructose 

production, 

(b) 

BR 

policy 
Obs.  

kDG, 

mmoles 

NADPH, 

mmoles 
E (ALR) 

(U) (c) 
(mmoles) 

BR 

Experi

mental, 

Maria 

and Ene 

[50]  

Not-

optimal 

data set 

#1,  

Fig. 7 

Nominal initial load 

SPBR (d,g) 
35 35 4.8 

11.05 

(poor) [KDG]o 35 

[NADPH]o 35 

[ALR]o 0.0048 

BR 

NLP 

optimal 

initial 

load 

(this 

paper) 

(OWL) 

(e) 

Fig. 7 

Optimal load wide limits 

(OWL)    

29.54 

(best) 

[KDG]o 100 

[NADPH]o 80 100 80 3.0 

[ALR]o 0.003    

BR 

NLP 

optimal 

initial 

load 

(this 

paper) 

(OTL) 

(f) 

Optimal load tight limits 

(OTL) 
48.73 48.75 3.1 

15.1 

(poor) 

 

[KDG]o 48.73 

[NADPH]o 48.75    

[ALR]o 0.0031    

BR 

Pareto-

optimal 

initial 

load 

(this 

paper) 

(OWL) 

(e-h) 

 

Optimal load wide  

Limits (OWL) 

100 80 33 
29.54 

(fairly good) 

[KDG]o 100 

[NADPH]o 80 

[ALR]o 0.033 

Footnotes:  

(a) Referring to the reactor liquid initial volume of 1 L (Table 1). 

(b) The displayed digits come from the numerical simulations.  

(d) The BR experimental nominal set-point #1 (Table 1, Fig.3) of Maria and Ene [54]. Notation: 

SPBR = the BR nominal set-point; SP = set point. 

(e). BR optimal policy (initial load) was obtained using larger search intervals (OWL, Table 1) 

(f) BR optimal policy (initial load) was obtained using tight search intervals (OTL, Table 1) 

(g) The units are: [kDG], mM; [NADPH], mM; [ALR], (U/mL). 

(h) Search intervals used to obtain the optimal SP are those from (e). 
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Abbreviations and notations 

 

jc  - Species j concentration, M 

jk , jK , y - Rate constants (M, s, U/L units) 

jr  - Reaction rate of species “j” (M/s, U/L.s) 

t - Time (s) 

Index   

0,o - Initial 

A, A+ - NADPH, NADP+ 

ALR - Aldose reductase 

E, ENZ - Enzyme, that is the aldose reductase (ALR) 

kDG,  D-glucosone - 2-keto-D-glucose 

NAD(P)H - 
Nicotinamide adenine dinucleotide (phosphate) 

reduced form 

OTL, OWL  Optimization tight / wide limits respectively 

P - Product (fructose) 

P2Ox - Pyranose 2-oxidase 

P2Oxox - Inactive form of P2Ox 

S - Substrate (kDG here) 

SP - Set point (BR running conditions) 
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