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THE EXTRAGRADIENT METHOD WITH A TWO-STEP INERTIAL
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In this paper, based on extragradient method and the two-step inertial tech-

nique, we introduce a new iterative scheme for finding an element of the set of solutions

of a quasimonotone, Lipschitz continuous variational inequality problem in real Hilbert
spaces. Under suitable conditions, we present a weak convergence theorem of the se-

quence generated by the proposed algorithm.
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1. Introduction

The paper deals with two new numerical approaches for finding a solution of the
variational inequality problem (VIP) [13, 14] in a real Hilbert space H.

Let C be a nonempty, closed, and convex subset in H and F : H → H be an operator.
Recall that VIP for the operator F on C is stated as follows:

Find x∗ ∈ C such that ⟨Fx∗, y − x∗⟩ ≥ 0 for all y ∈ C. (1)

The solution set is denoted by S.

The dual variational inequality problem of (1) is to find a point x∗ ∈ C such that

⟨Fy, y − x∗⟩ ≥ 0 ∀y ∈ C. (2)

We denote the solution set of the dual variational inequality problem (2) by SD. It is
obvious that SD is a closed, convex set (possibly empty). In the case when F is continuous
and C is convex, we get

SD ⊂ S.

If F is a pseudomonotone and continuous mapping, then S = SD (see, Lemma 2.1 in
[10]). The inclusion S ⊂ SD is false, if F is a quasimonotone and continuous mapping (see
Example 4.2 in [47]).

Variational inequality theory is an important tool in economics, engineering mechan-
ics, mathematical programming, transportation and others (see, [1, 4, 15, 23, 25]). One
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of the most interesting and important problems in the VIP theory is the study of efficient
iterative algorithms for finding approximate solutions and the convergence analysis of algo-
rithms. Several methods have been proposed to solve VIPs in finite and infinite dimensional
spaces, see e.g. [7, 8, 9, 28, 45]. and the references therein. Among these iterative methods,
the simplest one for VIP (1) is the following gradient projection method:{

v0 ∈ C,

vn+1 = PC(vn − τFvn),

where PC denotes the metric projection of H onto the set C and τ is a positive real num-
ber. The main restriction of gradient projection methods is that the operators require to
be Lipschitz continuous and strongly monotone (or inverse strongly monotone). The extra-
gradient method which was introduced by Korpelevich [26] and Antipin [3] overcomes this
disadvantage by performing an additional projection at each iteration in the following way:

v0 ∈ C,

un = PC(vn − τFvn),

vn+1 = PC(vn − τFun),

(3)

where F : C → C is monotone and L-Lipschitz continuous, τ ∈
(
0, 1

L

)
. Recently, the

extragradient method has given conclusive results assuming monotone and the Lipschitz
continuous mappings (see, e.g., [11, 27, 34, 39, 42]). It is well known that to implement
the extragradient method, one needs to calculate two projections onto C in each iteration.
Thus, if C is a general closed and convex set, then the computation of projections is rather
expensive. Recently, we have some methods were introduced so that they can overcome
this drawback as follows the subgradient extragradient method [7], Tseng’s method [40],
the projection and contraction method [18]. However, these methods require a mapping
F : H → H instead of F : C → C in the extragradient method. Therefore, in the case
the computation of projection onto feasible C is easy to calculate, when we can use the
extragradient method instead of some recent methods. This makes us interested in the
extragradient method in this work.

One of the new directions in this field is to combine well-known algorithms with
the inertial technique for solving VIPs; the purpose of them is to improve the speed of
convergence rates (see, e.g., [2, 6, 12, 16, 22, 24, 35, 36, 37, 38] and the references therein).

Let us now discuss an inertial type algorithm. We know the problem of finding a zero
of a maximal monotone operator A on a real Hilbert space H can be expressed as follows:

find x ∈ H such that 0 ∈ A(x). (4)

One fundamental approach to solving this is the proximal method, which generates
the next iteration xn+1 by solving the subproblem:

0 ∈ λnA(x) + (x− xn),

where xn is the current iteration and λn is a regularization parameter (see [5, 33]).
In 2001, Attouch and Alvarez [2] applied an inertial technique to the algorithm above

to construct an inertial proximal method for solving the original problem (4). It works as
follows: given xn−1, xn ∈ H and two parameters θn ∈ [0, 1), λn > 0, find xn+1 ∈ H such
that:

0 ∈ λnA(xn+1) + xn+1 − xn − θn(xn − xn−1),

which can be rewritten as:

xn+1 = JA
λn

(xn + θn(xn − xn−1)),
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where JA
λn

is the resolvent of A with parameter λn. The inertia is induced by the term
θn(xn − xn−1) and can be viewed as a means to accelerate convergence (see e.g., [2, 31]).

In recent years, the class of quasimonotone (or non-monotone) mappings has been
studied as a weaker alternative to the pseudomonotonicity assumption for solving the VIP
[19, 20, 43, 44, 46, 47]. However, these methods primarily employ the one-step inertial
technique [2, 31] in conjunction with extragradient method (3). Recently, in [32], the two-
step inertial technique was investigated, demonstrating that this approach may enhance
convergence more rapidly than the one-step inertial technique. In this paper, motivated and
inspired by the above problems, we introduce a modified extragradient method by applying
the technique of two-step inertial for solving a quasimonotone variational inequality in real
Hilbert spaces.

This paper is organized as follows: In Sect. 2, we recall some definitions and prelim-
inary results for further use. Sect. 3 deals with analyzing the convergence of the proposed
algorithm. Finally, in Sect. 4, conclusion is provided.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty, closed, convex subset of H.
The weak convergence of {pn}∞n=1 to x is denoted by pn ⇀ x as n → ∞, while the strong
convergence of {pn}∞n=1 to x is written as pn → x as n → ∞. For each u, v, w ∈ H, and θ,
β ∈ R we have

∥u+ v∥2 ≤ ∥u∥2 + 2⟨v, u+ v⟩,
and

∥(1 + θ)u− (θ − β)v − βw∥2 =(1 + θ)∥u∥2 − (θ − β)∥v∥2 − β∥w∥2

+ (1 + θ)(θ − β)∥u− v∥2

+ β(1 + θ)∥u− w∥2 − β(θ − β)∥v − w∥2. (5)

For all x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

∥x− PCx∥ ≤ ∥x− y∥, for all y ∈ C,

where PC is the metric projection of H onto C. We know that PC is nonexpansive.

Lemma 2.1 ([17]). Let C be a closed convex subset in a real Hilbert space H and x ∈ H.
Then we have the following inequalities:

(i) Given z ∈ C, we have z = PCx ⇐⇒ ⟨x− z, z − y⟩ ≥ 0, for all y ∈ C;
(ii) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ for all y ∈ H;
(iii) ∥PCx− y∥2 ≤ ∥x− y∥2 − ∥x− PCx∥2, for all y ∈ C.

Definition 2.1 ([41]). An operator F : H → H is said to be:
(i) L-Lipschitz continuous with L > 0 if

∥Fx− Fy∥ ≤ L∥x− y∥, for all x, y ∈ H.

In particular, when L = 1 then the operator F is called nonexpansive.
(ii) monotone if

⟨Fx− Fy, x− y⟩ ≥ 0, for all x, y ∈ H.

(iii) pseudo-monotone in the sense of Karamardian [21] if

⟨Fx, y − x⟩ ≥ 0 =⇒ ⟨Fy, y − x⟩ ≥ 0, for all x, y ∈ H.

(iv) quasimonotone, if

⟨Fx, y − x⟩ > 0 =⇒ ⟨Fy, y − x⟩ ≥ 0, for all x, y ∈ H.
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(v) δ-strongly pseudo-monotone if there exists a constant δ > 0 such that

⟨Fx, x− y⟩ ≥ 0 =⇒ ⟨Fy, y − x⟩ ≥ δ∥x− y∥2, for all x, y ∈ H.

(vi) sequentially weakly continuous if, for each sequence {pn} in H, the fact that {pn}
converges weakly to a point x ∈ H implies that {Fpn} converges weakly to Fx.

It is easy to see that every monotone operator is pseudo-monotone but the converse is
not true. The following lemma provides some sufficient conditions for nonemptiness of SD.

Lemma 2.2 ([47]). Suppose that at least one of the following conditions holds true:

(1) F is pseudomonotone on C and S ̸= ∅,
(2) F is the gradient of G, where G is a differential quasiconvex function on an open set

K,C ⊂ K and attains its global minimum on C,
(3) F is quasi-monotone on C, F ̸= 0 on C and C is bounded,
(4) F is quasi-monotone on C, F ̸= 0 on C and there exists a positive number r such that,

for every v ∈ C with ∥v∥ ≥ r, there exists y ∈ C such that ∥y∥ ≤ r and ⟨Fv, y−v⟩ ≤ 0,
(5) F is quasimonotone on C and SN ̸= ∅,
(6) F is quasi-monotone on C, intC is nonempty and there exists v∗ ∈ S such that

Fv∗ ̸= 0.

Then, SD is nonempty.

Lemma 2.3. [[29]] Let C be a nonempty subset of H and let {xn} be a sequence in H such
that the following two conditions hold:

(a) for each x ∈ C, limn→∞ ∥xn − x∥ exists;
(b) every sequential weak cluster point of {xn} belongs to C.
Then {xn} converges weakly to a point in C.

Lemma 2.4 ([30]). Let {λ}, {pn} and {qn} be three sequences of nonnegative numbers sat-
isfying

λn+1 ≤ (1 + qn)λn + pn, for all n ≥ 1,

where
∑∞

n=1 pn < +∞ and
∑∞

n=1 qn < +∞. Then limn→+∞ λn exists.

3. The Main Results

In this paper, we introduce a new modified extragradient method for solving the
quasimonotone VIP in real Hilbert spaces. In order to prove the convergence of the proposed
algorithm, we assume the following conditions:

Condition 3.1. SD ̸= ∅.

Condition 3.2. The mapping F : C → C is L-Lipschitz continuous on H. However, the
size of L is not necessary to be known.

Condition 3.3. The mapping F is sequentially weakly continuous on C, i.e., for each
sequence {xn} ⊂ C : {xn} converges weakly to x∗ implies {Fxn} converges weakly to Fx∗.

Condition 3.4. The mapping F is quasimonotone on H.

Now, we introduce our algorithm:

Algorithm 3.1. Given τ1 > 0, θ ∈ [0, 1], β ∈ [−1, 0], µ ∈
(
0,

1

3

)
. Let y−1, y0, y1 ∈

H be arbitrary and {αn} and {βn} be two nonnegative real numbers sequences such that∑∞
n=1 αn < +∞ and

∑∞
n=1 βn < +∞.

Iterative Steps: Given the current iterate yn, calculate yn+1 as follows:
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Step 1. Compute{
tn = yn + θ(yn − yn−1) + β(yn−1 − yn−2),

un = PC(tn − τnFtn),

If tn = un or Ftn = 0 then stop and tn is a solution of (1). Otherwise
Step 2. Compute

yn+1 = PC(tn − τnFun),

update

τn+1 =

min

{
µ

∥tn − un∥
∥Ftn − Fun∥

, (1 + αn)τn + βn

}
if Ftn ̸= Fun,

(1 + αn)τn + βn otherwise.
(6)

Set n := n+ 1 and go to Step 1.

The following lemmas will guide the convergence analysis.

Lemma 3.1. Let {τn} be a sequence generated by (6). Then

lim
n→∞

τn = τ and τ ≥ min
{
τ1,

µ

L

}
.

Moreover, we also obtain

∥Ftn − Fun∥ ≤ µ

τn+1
∥tn − un∥.

Proof. By the definition of {τn} we get τn ≤ (1 + αn)τn + βn, for all n. Using Lemma 2.4
then limn→∞ τn exists. Assume limn→∞ τn = τ. Using the definition of {τn} again, it is easy

to see that τn ≥ min
{
τ1,

µ

L

}
. Thus τ ≥ min

{
τ1,

µ

L

}
. Moreover, it is obvious that

∥Ftn − Fun∥ ≤ µ

τn+1
∥tn − un∥,

in both of these cases, Ftn ̸= Fun or Ftn = Fun. The proof is completed. □

Lemma 3.2. Assume that Conditions 3.1–3.4 hold. Let {tn} be a sequence generated
by Algorithm 3.1. If there exists a subsequence {tnk

} convergent weakly to z ∈ H and
limk→∞ ∥tnk

− unk
∥ = 0, then z ∈ SD or Fz = 0.

Proof. First, we see that {tnk
} ⇀ z and limk→∞ ∥tnk

− unk
∥ = 0 imply that unk

⇀ z and
since un ∈ C we get z ∈ C.

Now, we divide the proof into two cases.
Case 1: If lim supk→∞ ∥Funk

∥ = 0, then we have limk→∞ ∥Funk
∥ = lim infk→∞ ∥Funk

∥ =
0. Since unk

converges weakly to z ∈ C and F satisfies Condition 3.3 we get

0 ≤ ∥Fz∥ ≤ lim inf
k→∞

∥Funk
∥ = 0.

This implies that Fz = 0.
Case 2: If lim supk→∞ ∥Funk

∥ > 0. Without loss of generality, we take limk→∞ ∥Funk
∥ =

M > 0. It then follows that there exists K ∈ N such that ∥Funk
∥ >

M

2
for all k ≥ K. Since

unk
= PC(tnk

− τnk
Ftnk

), we have

⟨tnk
− τnk

Ftnk
− unk

, x− unk
⟩ ≤ 0, for all x ∈ C,

or, equivalently,

1

τnk

⟨tnk
− unk

, x− unk
⟩ ≤ ⟨Ftnk

, x− unk
⟩, for all x ∈ C.
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Consequently, we have

1

τnk

⟨tnk
− unk

, x− unk
⟩+ ⟨Ftnk

, unk
− tnk

⟩ ≤ ⟨Ftnk
, x− tnk

⟩, for all x ∈ C. (7)

Since {tnk
} is weakly convergent, {tnk

} is bounded. Then, by the Lipschitz continuity

of F , {Ftnk
} is bounded. As ∥tnk

−unk
∥ → 0, {unk

} is also bounded and τnk
≥ min

{
τ1,

µ

L

}
.

Passing (7) to the limit as k → ∞, we get

lim inf
k→∞

⟨Ftnk
, x− tnk

⟩ ≥ 0 for all x ∈ C. (8)

Moreover, we have

⟨Funk
, x− unk

⟩ = ⟨Funk
− Ftnk

, x− tnk
⟩+ ⟨Ftnk

, x− tnk
⟩

+⟨Funk
, tnk

− unk
⟩. (9)

Since limk→∞ ∥tnk
− unk

∥ = 0 and F is L-Lipschitz continuous on H, we get

lim
k→∞

∥Ftnk
− Funk

∥ = 0

which, together with (8) and (9), implies that

lim inf
k→∞

⟨Funk
, x− unk

⟩ ≥ 0. (10)

If lim supk→∞⟨Funk
, x− unk

⟩ > 0, then there exists a subsequence {unkj
} such that

limj→∞⟨Funkj
, x− unkj

⟩ > 0. Consequently, there exists j0 ∈ N such that

⟨Funkj
, x− unkj

⟩ > 0, for all j ≥ j0.

Using the quasimonotonicity of F, one gets ⟨Fx, x− unkj
⟩ ≥ 0, hence, tending j → ∞, we

conclude z ∈ SD.
If lim supk→∞⟨Funk

, x− unk
⟩ = 0, inequality (10) implies that

lim
k→∞

⟨Funk
, x− unk

⟩ = 0.

Let ϵk := |⟨Funk
, x− unk

⟩|+ 1

k + 1
. Then we obtain

⟨Funk
, x− unk

⟩+ ϵk > 0, for all k ≥ 1. (11)

Furthermore, for each k ≥ 1, since {unk
} ⊂ C, we can suppose Funk

̸= 0 (otherwise,
unk

is a solution) and, setting

qnk
=

Funk

∥Funk
∥2

,

we have ⟨Funk
, qnk

⟩ = 1 for each k ≥ 1. Now, we can deduce from (11) that, for each k ≥ 1,

⟨Funk
, x+ ϵkqnk

− unk
⟩ > 0.

Since F is quasimonotone on H, we get

⟨F (x+ ϵkqnk
), x+ ϵkqnk

− unk
⟩ ≥ 0. (12)
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Now, for all k ≥ 1, using (12) we get

⟨Fx, x+ ϵkqnk
− unk

⟩ = ⟨Fx− F (x+ ϵkqnk
), x+ ϵkqnk

− unk
⟩+ ⟨F (x+ ϵkqnk

), x+ ϵkqnk
− unk

⟩
≥ ⟨Fx− F (x+ ϵkqnk

), x+ ϵkqnk
− unk

⟩
≥ −∥Fx− F (x+ ϵkqnk

)∥∥x+ ϵkqnk
− unk

∥
≥ −ϵkL∥qnk

∥∥x+ ϵkqnk
− unk

∥

= −ϵkL
1

∥Funk
∥
∥x+ ϵkqnk

− unk
∥

≥ −ϵkL
2

M
∥x+ ϵkqnk

− unk
∥. (13)

In (13), letting k → ∞ and using the fact that limk→∞ ϵk = 0 and the boundedness
of {∥x+ ϵkqnk

− unk
∥}, we get

⟨Fx, x− z⟩ ≥ 0, for all x ∈ C.

This implies that z ∈ SD.
□

Next, we present the convergence of Algorithm 3.1.

Theorem 3.1. Assume that Conditions 3.1–3.4 hold and Fx ̸= 0, for all x ∈ C. Then the
sequence {yn} generated by Algorithm 3.1 converges weakly to an element z ∈ S provided that

the parameters θ and β satisfy: 0 ≤ θ <

√
33− 5

4
and max

{
2θ2 + 5θ − 1

8θ + 8
, 7θ−1

}
< β ≤ 0.

Proof. The proof is divided into several steps as follows:
Step 1. We first prove that

∥yn+1 − x∗∥2 ≤ ∥tn − x∗∥2 − 1

3

(
1− µ

τn
τn+1

)
∥yn+1 − tn∥2, for all x∗ ∈ SD. (14)

Indeed, taking x∗ ∈ SD ⊂ S ⊂ C, we have

∥yn+1 − x∗∥2 = ∥PC(tn − τnFun)− PCx
∗∥2

≤ ⟨yn+1 − x∗, tn − τnFun − x∗⟩

=
1

2
∥yn+1 − x∗∥2 + 1

2
∥tn − τnFun − x∗∥2 − 1

2
∥yn+1 − tn + τnFun∥2

=
1

2
∥yn+1 − x∗∥2 + 1

2
∥tn − x∗∥2 + 1

2
τ2n∥Fun∥2 − ⟨tn − x∗, τnFun⟩

− 1

2
∥yn+1 − tn∥2 −

1

2
τ2n∥Fun∥2 − ⟨yn+1 − tn, τnFun⟩

=
1

2
∥yn+1 − x∗∥2 + 1

2
∥tn − x∗∥2 − 1

2
∥yn+1 − tn∥2 − ⟨yn+1 − x∗, τnFun⟩.

This implies that

∥yn+1 − x∗∥2 ≤ ∥tn − x∗∥2 − ∥yn+1 − tn∥2 − 2⟨yn+1 − x∗, τnFun⟩. (15)

Since x∗ ∈ SD, we have ⟨Fx, x− x∗⟩ ≥ 0 for all x ∈ C. Taking x := un ∈ C, we get

⟨Fun, x
∗ − un⟩ ≤ 0.

Thus we have

⟨Fun, x
∗ − yn+1⟩ =⟨Fun, x

∗ − un⟩+ ⟨Fun, un − yn+1⟩ ≤ ⟨Fun, un − yn+1⟩. (16)
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From (15) and (16), we obtain

∥yn+1 − x∗∥2 ≤ ∥tn − x∗∥2 − ∥yn+1 − tn∥2 + 2τn⟨Fun, un − yn+1⟩
= ∥tn − x∗∥2 − ∥yn+1 − un∥2 − ∥un − tn∥2 − 2⟨yn+1 − un, un − tn⟩
+ 2τn⟨Fun, un − yn+1⟩

= ∥tn − x∗∥2 − ∥yn+1 − un∥2 − ∥un − tn∥2

+ 2⟨tn − τnFun − un, yn+1 − un⟩. (17)

Since un = PC(tn − τnFtn) and yn+1 ∈ C, we have

2⟨tn − τnFun − un, yn+1 − un⟩ = 2⟨tn − τnFtn − un, yn+1 − un⟩+ 2τn⟨Ftn − Fun, yn+1 − un⟩
≤ 2τn⟨Ftn − Fun, yn+1 − un⟩
≤ 2τn∥Ftn − Fun∥∥yn+1 − un∥

≤ 2µ
τn

τn+1
∥tn − un∥∥yn+1 − un∥

≤ µ
τn

τn+1
∥tn − un∥2 + µ

τn
τn+1

∥un − yn+1∥2. (18)

Substituting (18) into (17), we obtain

∥yn+1 − x∗∥2 ≤ ∥tn − x∗∥2 −
(
1− µ

τn
τn+1

)
∥un − tn∥2 −

(
1− µ

τn
τn+1

)
∥yn+1 − un∥2

= ∥tn − x∗∥2 −
(
1− µ

τn
τn+1

)
(∥un − tn∥2 + ∥yn+1 − un∥2)

≤ ∥tn − x∗∥2 − 1

2

(
1− µ

τn
τn+1

)
∥yn+1 − tn∥2. (19)

From µ ∈
(
0,

1

3

)
and limn→∞

(
1− µ

τn
τn+1

)
= 1− µ ≥ 2

3
, it follows that there exists

N1 ∈ N such that

1− µ
τn

τn+1
≥ 2

3
, for all n ≥ N1.

It implies, from (19), that

∥yn+1 − x∗∥2 ≤ ∥tn − x∗∥2 − 1

3
∥yn+1 − tn∥2, for all n ≥ N1. (20)

Step 2.

lim
n→∞

∥yn−1 − yn−2∥ = 0.

First, using the definition of tn and using (5) we get

∥tn − x∗∥2 = ∥yn + θ(yn − yn−1) + β(yn−1 − yn−2)− x∗∥2

= ∥(1 + θ)(yn − x∗)− (θ − β)(yn−1 − x∗)− β(yn−2 − x∗)∥2

= (1 + θ)∥yn − x∗∥2 − (θ − β)∥yn−1 − x∗∥2 − β∥yn−2 − x∗∥2

+ (1 + θ)(θ − β)∥yn − yn−1∥2 + β(1 + θ)∥yn − yn−2∥2 − β(θ − β)∥yn−1 − yn−2∥2

≤ (1 + θ)∥yn − x∗∥2 − (θ − β)∥yn−1 − x∗∥2 − β∥yn−2 − x∗∥2

+ (1 + θ)(θ − β)∥yn − yn−1∥2 − β(θ − β)∥yn−1 − yn−2∥2. (21)
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and

∥yn+1 − tn∥2 = ∥yn+1 − yn + θ(yn − yn−1)− β(yn−1 − yn−2)∥2

= ∥yn+1 − yn∥2 − 2θ⟨yn+1 − yn, yn − yn−1⟩+ θ2∥yn − yn−1∥2

− 2β⟨yn+1 − yn, yn−1 − yn−2⟩+ 2θβ⟨yn − yn−1, yn−1 − yn−2⟩+ β2∥yn−1 − yn−2∥2.
(22)

On the other hand, it is easy to see the following inequalities

−2θ⟨a, b⟩ ≥ −2θ∥a∥∥b∥ ≥ −θ∥a∥2 − θ∥b∥2 (θ > 0)

and

2β⟨a, b⟩ ≥ 2β∥a∥∥b∥ ≥ β∥a∥2 + β∥b∥2 (β < 0).

Using the above inequalities we deduce

−2θ⟨yn+1−yn, yn−yn−1⟩ ≥ −2θ∥yn+1−yn∥∥yn−yn−1∥ ≥ −θ∥yn+1−yn∥2−θ∥yn−yn−1∥2,

−2β⟨yn+1−yn, yn−1−yn−2⟩ ≥ 2β∥yn+1−yn∥∥yn−1−yn−2∥ ≥ β∥yn+1−yn∥2+β∥yn−1−yn−2∥2,

and

2θβ⟨yn−yn−1, yn−1−yn−2⟩ ≥ 2θβ∥yn−yn−1∥∥yn−1−yn−2∥ ≥ θβ∥yn−yn−1∥2+θβ∥yn−1−yn−2∥2.

Substituting the three inequalities into (22), we obtain

∥yn+1 − tn∥2 ≥ (1− θ + β)∥yn+1 − yn∥2 + (θ2 − θ + θβ)∥yn − yn−1∥2

+ (β2 + θβ + β)∥yn−1 − yn−2∥2. (23)

Again, substituting (21) and (23) into (14) we get

∥yn+1 − x∗∥2 ≤ (1 + θ)∥yn − x∗∥2 − (θ − β)∥yn−1 − x∗∥2 − β∥yn−2 − x∗∥2

+ (1 + θ)(θ − β)∥yn − yn−1∥2 − β(θ − β)∥yn−1 − yn−2∥2

− 1

3
(1− θ + β)∥yn+1 − yn∥2 −

1

3
(θ2 − θ + θβ)∥yn − yn−1∥2

− 1

3
(β2 + θβ + β)∥yn−1 − yn−2∥2.

This implies that

∥yn+1 − x∗∥2 − θ∥yn − x∗∥2 − β∥yn−1 − x∗∥2 + 1

3
(1− θ + β)∥yn+1 − yn∥2 ≤ ∥yn − x∗∥2

− θ∥yn−1 − x∗∥2 − β∥yn−2 − x∗∥2 + 1

3
(1− θ + β)∥yn+1 − yn∥2

−
(
1

3
(1− θ + β) +

1

3
(θ2 − θ + θβ)− (1 + θ)(θ − β)

)
∥yn − yn−1∥2

−
(
1

3
(β2 + θβ + β) + β(θ − β)

)
∥yn−1 − yn−2∥2.
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It is, equivalently,

∥yn+1 − x∗∥2 − θ∥yn − x∗∥2 − β∥yn−1 − x∗∥2 + 1

3
(1− θ + β)∥yn+1 − yn∥2

+

(
1

3
(1− θ + β) +

1

3
(θ2 − θ + θβ)− (1 + θ)(θ − β)

)
∥yn − yn−1∥2

≤ ∥yn − x∗∥2 − θ∥yn−1 − x∗∥2 − β∥yn−2 − x∗∥2 + 1

3
(1− θ + β)∥yn − yn−1∥2

+

(
1

3
(1− θ + β) +

1

3
(θ2 − θ + θβ)− (1 + θ)(θ − β)

)
∥yn−1 − yn−2∥2

−
(
1

3
(1− θ + β) +

1

3
(θ2 − θ + θβ)− (1 + θ)(θ − β)

+
1

3
(β2 + θβ + β) + β(θ − β)

)
∥yn−1 − yn−2∥2. (24)

Let

Γn := ∥yn−x∗∥2−θ∥yn−1−x∗∥2−β∥yn−2−x∗∥2+1

3
(1−θ+β)∥yn−yn−1∥2+C1∥yn−1−yn−2∥2,

where

C1 :=
1

3
(1− θ + β) +

1

3
(θ2 − θ + θβ)− (1 + θ)(θ − β).

Let

C2 :=
1

3
(1− θ + β) +

1

3
(θ2 − θ + θβ)− (1 + θ)(θ − β) +

1

3
(β2 + θβ + β) + β(θ − β).

Using (24), we get

Γn+1 − Γn ≤ −C2∥yn+1 − yn∥2, for all n.

Next, we show that

lim
n→∞

Γn exists

and

lim
n→∞

∥yn−1 − yn−2∥ = 0. (25)

Note that we need the assumption 0 ≤ θ <

√
33− 5

4
so that 2θ2 + 5θ − 1 < 0. Now,

we use max

{
2θ2 + 5θ − 1

8θ + 8
, 7θ − 1

}
< β ≤ 0 to prove that C1 > 0 and C2 > 0. Indeed, we

have

C1 =
1

3
(1− θ + β) +

1

3
(θ2 − θ + θβ)− (1 + θ)(θ − β)

=
1

3
− 5

3
θ +

4

3
β − 2

3
θ2 +

4

3
θβ.

It is easy to see that C1 > 0 is equivalent to β >
2θ2 + 5θ − 1

4θ + 4
. By the assumption

β >
2θ2 + 5θ − 1

8θ + 8
, we deduce β >

2θ2 + 5θ − 1

4θ + 4
. Hence, C1 > 0.
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Next, we have

C2 :=
1

3
(1− θ + β) +

1

3
(θ2 − θ + θβ)− (1 + θ)(θ − β) +

1

3
(β2 + θβ + β) + β(θ − β)

=
1

3
− 5

3
θ +

5

3
β − 2

3
θ2 +

8

3
θβ − β2

≥1

3
− 5

3
θ +

5

3
β − 2

3
θ2 +

8

3
θβ + β( by − β2 ≥ β)

=
1

3
− 5

3
θ +

8

3
β − 2

3
θ2 +

8

3
θβ.

So C2 > 0, by our assumption β >
2θ2 + 5θ − 1

8θ + 8
.

Now, we show that Γn ≥ 0. Indeed, we have

Γn =∥yn − x∗∥2 − θ∥yn−1 − x∗∥2 − β∥yn−2 − x∗∥2 + 1

3
(1− θ + β)∥yn − yn−1∥2 + C1∥yn−1 − yn−2∥2

≥ ∥yn − x∗∥2 − θ∥yn−1 − x∗∥2 + 1

3
(1− θ + β)∥yn − yn−1∥2

≥ ∥yn − x∗∥2 − 2θ∥yn − x∗∥2 − 2θ∥yn − yn−1∥2 +
1

3
(1− θ + β)∥yn − yn−1∥2

= (1− 2θ)∥yn − x∗∥2 + 1

3
(1− 7θ + β)∥yn − yn−1∥2. (26)

By assumption β > max

{
2θ2 + 5θ − 1

8θ + 8
, 7θ − 1

}
, we obtain β > 7θ − 1. Combining

this with (26), we get Γn ≥ 0, for all n.

Γn+1 − Γn < −C2∥yn−1 − yn−2∥2 ≤ 0, for all n, (27)

Therefore, the sequence {Γn} is below bounded and nonincreasing, hence limn→∞ Γn

exists. Using this and (27) we get

lim
n→∞

∥yn−1 − yn−2∥ = 0. (28)

Step 3.

lim
n→∞

∥yn − x∗∥2 exists for all x∗ ∈ SD.

Indeed, combining (27), (28), limn→∞ Γn exists. Therefore, the sequence {yn} is
bounded, and from (28) it is easy to see that

lim
n→∞

∥yn−2 − yn∥ = 0.

Let

an := ∥yn − x∗∥2 − θ∥yn−1 − x∗∥ − β∥yn−2 − x∗∥,
bn := ∥yn−1 − yn∥2 + 2⟨yn−1 − yn, yn − x∗⟩ = ∥yn−1 − x∗∥2 − ∥yn − x∗∥2,

and

cn := ∥yn−2 − yn∥2 + 2⟨yn−2 − yn, yn − x∗⟩ = ∥yn−2 − x∗∥2 − ∥yn − x∗∥2.
We have

(1− θ − β)∥yn − x∗∥2 = an + θbn + βcn. (29)

Moreover, since limn→∞ Γn exists and limn→∞ ∥yn−1 − yn−2∥ = 0 we deduce

lim
n→∞

an exists. (30)

Since {yn} is bounded, limn→∞ ∥yn−1 − yn−2∥ = 0 and limn→∞ ∥yn − yn−2∥ = 0 we
obtain

lim
n→∞

bn = 0 and lim
n→∞

cn = 0. (31)
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Combining (32), (30) and (31), we get

lim
n→∞

∥yn − x∗∥2 exists for all x∗ ∈ SD.

Step 4.

lim
n→∞

∥un − tn∥ = 0.

Indeed, we have

∥tn − yn∥ ≤ θ∥yn − yn−1∥+ β∥yn−1 − yn−2∥ → 0 as n → ∞. (32)

Using (32) and limn→∞ ∥yn+1 − yn∥ = 0, we get

∥yn+1 − tn∥ ≤ ∥yn+1 − yn∥+ ∥yn − tn∥ → 0 as n → ∞. (33)

On the other hand by (19), we have

1

2

(
1− µ

τn
τn+1

)
∥un − tn∥2 ≤∥tn − x∗∥2 − ∥yn+1 − x∗∥2

=(∥tn − x∗∥ − ∥yn+1 − x∗∥)(∥tn − x∗∥+ ∥yn+1 − x∗∥)
≤M∥yn+1 − tn∥, for some M > 0. (34)

Combining (33) and (34) we deduce

lim
n→∞

∥un − tn∥ = 0. (35)

Step 5. The sequence {yn} converges weakly to an element in SD Now, since the sequence
{yn} is bounded, we choose a subsequence {ynk

} of {yn} such that ynk
⇀ z∗. By (32),

we have tnk
⇀ z∗. From (35) and Lemma 3.2, we get z∗ ∈ SD ⊂ S. Therefore, we proved

that, for all x∗ ∈ SD ⊂ S, limn→∞ ∥yn − x∗∥ exists and each sequential weak cluster point
of the sequence {yn} is in SD ⊂ S. By Lemma 2.3, the sequence {yn} converges weakly to
an element of SD ⊂ S. This completes the proof.

□

4. Conclusions

In this paper, we present a new version of the extragradient algorithm for solving
the variational inequality problem in Hilbert spaces. We introduce new strategies for the
inertial parameter and step size. Weak convergence is established under the assumptions of
quasimonotonicity and Lipschitz continuity of the given mapping.
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