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In this paper we define module biprojectivity and module biflatness for
a Banach algebra which is a Banach module over another Banach algebra with
compatible actions, and comparing to the classical notion of biprojectivity and
biflatness, we show that these are more natural concepts if one tries to generalize
the classical results on function algebras on groups to semigroups. As a typical
example, we show that for an inverse semigroup S with the set of idempotents E,
the semigroup algebra ℓ1(S), as an ℓ1(E)-module, is module biprojective if and
only if an appropriate group homomorphic image of S is finite. Also we show that
ℓ1(S) is module biflat if and only if S is amenable.
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1. Introduction

For a discrete semigroup S, ℓ∞(S) is the Banach algebra of bounded complex-
valued functions on S with the supremum norm and pointwise multiplication. For
each a ∈ S and f ∈ ℓ∞(S), let laf and raf denote the left and the right translations
of f by a, that is (laf)(s) = f(as) and (raf)(s) = f(sa), for each s ∈ S. Then a
linear functional m ∈ (ℓ∞(S))∗ is called a mean if ∥m∥ = ⟨m, 1⟩ = 1; m is called a
left (right) invariant mean if m(laf) = m(f) (m(raf) = m(f), respectively) for all
s ∈ S and f ∈ ℓ∞(S). A discrete semigroup S is called amenable if there exists
a mean m on ℓ∞(S) which is both left and right invariant (see [8]). An inverse
semigroup is a discrete semigroup S such that for each s ∈ S, there is a unique
element s∗ ∈ S with ss∗s = s and s∗ss∗ = s∗. Elements of the form ss∗ are called
idempotents of S. For an inverse semigroup S, a left invariant mean on ℓ∞(S) is
right invariant and vice versa.

A Banach algebra A is amenable if every bounded derivation from A into any
dual Banach A-module is inner, that isH1(A, X∗) = {0} for every Banach A-module
X, where H1(A, X∗) is the first Hochschild cohomology group of A with coefficients
in X∗. This concept was introduced by B. E. Johnson in [13]. Also A is called
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super-amenable (contractible) if H1(A, X) = {0} for every Banach A-bimodule X
(see [7, 21]).

The second author in [1] introduced the concept of module amenability for
Banach algebras which are Banach modules over another Banach algebra with com-
patible actions, and showed that for an inverse semigroup S with set of idempotents
E, the semigroup algebra ℓ1(S) is module amenable as a Banach module on ℓ1(E), if
and only if S is amenable. This generalizes the celebrated theorem of Johnson for a
discrete group G (valid also for locally compact groups) which states that the group
algebra ℓ1(G) is amenable if and only if G is amenable. Pourmahmood in [16] in-
troduced the concept of module super-amenability (contractibility) and showed that
for an inverse semigroup S, the semigroup algebra ℓ1(S) is module super-amenable
if and only if the group homomorphic image S/ ≈ is finite, where s ≈ t whenever
δs − δt belongs to the closed linear span of the set {δset − δst : s, t ∈ S, e ∈ E} (see
also [3] and [4]).

Biprojective Banach algebras were introduced by A. Ya. Helemskii in [9].
Later he has studied biprojectivity and biflatness of the Banach algebras in more
details in [10, Chapters IV and VII]. It follows from [7, Proposition 2.8.41] that a
biprojective Banach algebra is biflat, but the converse is not true. For instance,
ℓ1-group algebra of integer numbers Z is biflat but not biprojective. For an infinite-
dimensional Hilbert space H, the Banach algebra A(H⊗̂H) consisting of norm limits
of all sequences of finite rank operators on H⊗̂H is biflat, but not biprojective
[21, Example 4.3.25]. If K is a non-empty, locally compact space, then C0(K) is
biprojective if and only if K is discrete [7, Proposition 4.2.31], but if K is an infinite
compact space, then C(K) is not biprojective [7, Corollary 5.6.3]. In general each
commutative biprojective Banach algebra has a discrete character space and the
converse holds for all commutative Banach algebra [21, Exercise 4.3.5]. It is shown
by Selivanov in [22], that for any a non-zero Banach space E, the nuclear algebra
E⊗̂E∗ is biprojective (see [7, Corollary 2.8.43]).

In part two of this paper, we define the module biprojectivity and module
biflatness of a Banach algebra A which is a Banach A-module with compatible
actions on another Banach algebra A and find their relation with module amenability
[1] and module super-amenability [16]. In particular, we show that when A acts on A

trivially from left then under some mild conditions, module biprojectivity (biflatness)
of A implies biprojectivity (biflatness) of the quotient Banach algebra A/J , where
J is the closed ideal of A generated by (a · α)b − a(α · b) for all a ∈ A and α ∈ A.
Also we show that, under some conditions, biprojectivity (biflatness) of a Banach
algebra implies its module biprojectivity (biflatness), but the converse is not true.

Let P be a partially ordered set. For p ∈ P , we set (p] = {x : x ≤ p} and
[p) = {x : p ≤ x}. Then P is called locally finite if (p] is finite for all p ∈ P ,
and locally C-finite for some constant C > 1 if |(p]| < C for all p ∈ P . A partially
ordered set P which is locally C-finite, for some constant C is called uniformly locally
finite. Y. Choi in [6, Theorem 6.1] proved that if S is a Clifford semigroup, then
the group algebra ℓ1(S) is biflat if and only if (E,≤) is uniformly locally finite, and
each maximal subgroup of S is amenable. Later, P. Ramsden generalized this result
to any discrete semigroup S [18]. He also showed that for any discrete semigroup S,
ℓ1(S) is biprojective if and only if S is uniformly locally finite and and all maximal
subgroups of S are finite.
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In part three of this paper, we prove that if S is an inverse semigroup with the
set of idempotents E, then ℓ1(S) is module biprojective, as an ℓ1(E)-module, if and
only if an appropriate group homomorphic image S/≈ of S is finite. This could be
considered as the module version (for inverse semigroups) of a result of Helemskii
[11] which asserts that for a discrete group G, ℓ1(G) is biprojective if and only if G
is finite (see also [7, Theorem 3.3.32]). Finally we show that ℓ1(S) is ℓ1(E)-module
biflat if and only if S is amenable. This also can be regarded as the module version
of a result of Helemskii [10] which states that for any locally compact group G, the
group algebra L1(G) is biflat if and only if G is amenable.

2. Module biprojectivity and module biflatness

Throughout this paper, A and A are Banach algebras such that A is a Banach
A-bimodule with compatible actions, that is

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).

Let X be a Banach A-bimodule and a Banach A-bimodule with compatible actions,
that is

α ·(a ·x) = (α ·a) ·x, a ·(α ·x) = (a ·α) ·x, (α ·x) ·a = α ·(x ·a) (a ∈ A, α ∈ A, x ∈ X)

and similarly for the right or two-sided actions. Then we say that X is a Banach
A-A-module. If moreover

α · x = x · α (α ∈ A, x ∈ X)

then X is called a commutative A-A-module. If X is a (commutative) Banach A-A-
module, then so is X∗, where the actions of A and A on X∗ are defined by

⟨α · f, x⟩ = ⟨f, x · α⟩, ⟨a · f, x⟩ = ⟨f, x · a⟩ (a ∈ A, α ∈ A, x ∈ X, f ∈ X∗)

and similary for the right actions. Let Y be another A-A-module, then a A-A-
module homomorphism from X to Y is a norm-continuous map φ : X −→ Y with
φ(x± y) = φ(x)± φ(y) and

φ(α · x) = α · φ(x), φ(x · α) = φ(x) · α, φ(a · x) = a · φ(x), φ(x · a) = φ(x) · a,

for x, y ∈ X, a ∈ A, and α ∈ A.
Note that when A acts on itself by algebra multiplication, it is not in general a
Banach A-A-module, as we have not assumed the compatibility condition

a · (α · b) = (a · α) · b (α ∈ A, a, b ∈ A).

If A is a commutative A-module and acts on itself by multiplication from both sides,
then it is also a Banach A-A-module. If A is a Banach A-module with compatible
actions, then so are the dual space A∗ and the second dual space A∗∗. If moreover
A is a commutative A-module, then A∗ and the A∗∗ are commutative A-A-modules.
Also the canonical embeddingˆ: A → A∗∗; a 7→ â is an A-module homomorphism.

Consider the projective tensor product A⊗̂A. It is well known that A⊗̂A is a
Banach algebra with respect to the canonical multiplication map defined by

(a⊗ b)(c⊗ d) = ac⊗ bd (a, b, c, d ∈ A)
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and extended by bi-linearity and continuity [7]. Then A⊗̂A is a Banach A-A-module
with canonical actions. Let I be the closed ideal of the projective tensor product
A⊗̂A generated by elements of the form

{a · α⊗ b− a⊗ α · b | α ∈ A, a, b ∈ A}. (1)

Consider the map ω ∈ L(A⊗̂A,A) defined by ω(a⊗b) = ab and extended by linearity
and continuity. Let J be the closed ideal of A generated by

ω(I) = {(a · α)b− a(α · b) | α ∈ A, a, b ∈ A}. (2)

Then the module projective tensor product A⊗̂AA ∼= (A⊗̂A)/I and the quotient
Banach algebra A/J are both Banach A-modules and Banach A-modules. Also, A/J
is always A-A-module with compatible actions when A acts on A/J canonically. We
have (A⊗̂AA)∗ = LA(A,A

∗) where the right hand side is the space of all A-module
homomorphism from A to A∗[20]. Also the map ω̃ ∈ L(A⊗̂AA,A/J) defined by
ω̃(a ⊗ b + I) = ab + J extends to an A-module homomorphism. Moreover, ω̃∗ and
ω̃∗∗, the first and second adjoints of ω̃ are A-A-module homomorphisms. Let � and
♢ be the first and second Arens products on the second dual space A∗∗, then A∗∗ is
a Banach algebra with respect to both of these products [7, Theorem 2.6.15].

Let A and A be as in the above and X be a Banach A-A-module. A bounded
map D : A −→ X is called a module derivation if

D(a± b) = D(a)±D(b), D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A),

and
D(α · a) = α ·D(a), D(a · α) = D(a) · α (a ∈ A, α ∈ A).

Although D is not necessary linear, but still its boundedness implies its norm con-
tinuity (since it preserves subtraction). When X is commutative A-module, each
x ∈ X defines a module derivation

Dx(a) = a · x− x · a (a ∈ A).

These are called inner module derivations. The Banach algebra A is called module
amenable (as an A-module) if for any commutative Banach A-A-module X, each
module derivation D : A −→ X∗ is inner [1]. Similarly, A is called module super-
amenable (contractible) if each module derivation D : A −→ X is inner [16].

Let I and J be the closed ideals defined in (1) and (2), respectively. Then
(A⊗̂A)/I is not always an A/J-module unless A is a commutative A-module. Let
L be the closed ideal generated by elements of the form (a ·α)c⊗ b−ac⊗α · b for all
a, b, c ∈ A and α ∈ A. Then ⟨ω(L)⟩− = ⟨ω(I)⟩− = J but I is not in general equal to
L. If A has a bounded approximate identity (ej), then for each a, b ∈ A and α ∈ A
we have

∥[(a · α)ej ⊗ b− aej ⊗ α · b]− [a · α⊗ b− a⊗ α · b]∥ −→ 0.

So, I ⊆ L. Also

∥[(a · α⊗ b− a⊗ α · b)(c⊗ ej)]− [(a · α)c⊗ b− ac⊗ α · b]∥ −→ 0

for all a, b, c ∈ A and α ∈ A. Hence L ⊆ I. Therefore L = I.
We say the Banach algebra A acts trivially on A from left (right) if there is a

continuous linear functional f on A such that α ·a = f(α)a (a ·α = f(α)a), for each
α ∈ A and a ∈ A (see also [2]). The following lemma is proved in [5, Lemma 3.13].
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Lemma 2.1. If A acts on A trivially from the left or right and A/J has a right
bounded approximate identity, then for each α ∈ A and a ∈ A we have f(α)a−a·α ∈
J .

We show that when A has a bounded approximate identity, then (A⊗̂A)/I is
A/J-module if A acts on A trivially from left or right. For the case of the trivial
left action, consider the following actions

(a+ J) · (b⊗ c+ I) = ab⊗ c+ I, (b⊗ c+ I) · (a+ J) = b⊗ ca+ I.

For a, b, c ∈ A and α ∈ A, we have

[a · α− f(α)a] · (b⊗ c) = (a · α)b⊗ c− f(α)ab⊗ c = (a · α)b⊗ c− ab⊗ α · c ∈ I.

Thus left action is well-defined. Similarly, one can show that the right action is also
well-defined. Here and subsequently, when we consider (A⊗̂A)/I as an A/J-module,
we have supposed that the above conditions are satisfied.

Recall that a Banach algebra A is called biprojective if ω has a bounded right
inverse which is an A-bimodule homomorphism, and is called biflat if ω∗ has a
bounded left inverse which is an A-bimodule homomorphism.

Definition 2.1. A Banach algebra A is called module biprojective (as an A-module)
if ω̃ has a bounded right inverse which is an A/J-A-module homomorphism.

Definition 2.2. A Banach algebra A is called module biflat (as an A-module) if ω̃∗

has a bounded left inverse which is an A/J-A-module homomorphism.

Proposition 2.1. Assume that A acts trivially on A from the left and A/J has an
identity. If A is biprojective, then A is module biprojective.

Proof. Suppose that ρ is the the bounded right inverse of ω and e+ J is identity of
A/J . Define ρ̃ : A/J −→ (A⊗̂A)/I via

ρ̃(a+ J) := (ρ(e) + I) · (a+ J) (a ∈ A).

For each α ∈ A and a ∈ A, we have

ρ̃(α · (a+ J)) = (ρ(e) + I) · (α · a+ J) = (ρ(e) + I) · (f(α)a+ J)

= f(α)(ρ(e) + I) · (a+ J) = α · ρ̃(a+ J),

and

ρ̃((a+ J) · α) = (ρ(e) + I) · (a · α+ J)

= (ρ(e) + I) · (a+ J) · α
= ρ̃(a+ J) · α.

Obviously ρ̃ is a A/J-bimodule homomorphism. Hence ρ̃ is a A/J-A-module homo-
morphism. Now for each a ∈ A we have

(ω̃ ◦ ρ̃)(a+ J) = ω̃((ρ(e) + I) · (a+ J)) = ω̃(ρ(e) · a+ I)

= ω(ρ(e))a+ J = ea+ J = a+ J.

Therefore ρ̃ is a bounded right inverse for ω̃. �
Proposition 2.2. Assume that A acts trivially on A from the left and A/J has an
identity. If A is biflat, then A is module biflat.
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Proof. It is straightforward to show that ω̃ ◦ π1 = π2 ◦ ω, where π1 : A⊗̂A −→
(A⊗̂A)/I and π2 : A −→ A/J are projection maps. Assume that θ is the the

bounded left inverse of ω∗. Define θ̃ : (A⊗̂A)/I)∗ −→ (A/J)∗ via

(θ̃(ϕ))(a+ J) := [θ(ϕ ◦ π1)](a) (a ∈ A),

where ϕ is a functional in ((A⊗̂A)/I)∗. As in the proof of Proposition 2.1, it is

easily verfied that θ̃ is a well-defined and A/J-A-module homomorphism. If f is a
bounded functional on A/I and a ∈ A, then

[(θ̃ ◦ ω̃∗)(f)](a+ J) = (θ̃(ω̃∗)(f))(a+ J) = [(θ̃(ω̃∗(f) ◦ π1)](a)
= [(θ(f ◦ ω̃ ◦ π1)](a) = [(θ(f ◦ π2 ◦ ω)](a)
= [(θ(ω∗(f ◦ π2))](a) = (f ◦ π2)(a) = f(a+ J).

Therefore θ̃ is a bounded left inverse for ω̃∗. �

In section 3, we give some examples of Banach algebras which are module
biprojective (biflat), but not biprojective (biflat). However, in the upcoming propo-
sition we show that module biprojectivity (biflatness) of A with some conditions
implies biprojectivity (biflatness) of A/J .

We say that A has a bounded approximate identity for A if there is a bounded
net {αj} in A such that ∥αj · a− a∥ → 0 and ∥a · αj − a∥ → 0, for each a ∈ A.

Proposition 2.3. Let A acts trivially on A from the left and A/J be a commutative
A-module such that A has a bounded approximate identity for A. If A is module
biprojective, then A/J is biprojective.

Proof. Suppose that ρ̃ is the the bounded right inverse of ω̃. We show that the map

ω : (A/J)⊗̂(A/J) −→ A/J ; ((a+ J)⊗ (b+ J) 7→ ab+ J)

has a right inverse. Consider the map

Γ : (A⊗̂A)/ker(π⊗ π) −→ (A/J)⊗̂(A/J); (a⊗ b+ ker(π⊗ π) 7→ (a+ J)⊗ (b+ J)),

where π : A −→ A/J is the projection map. We have I ⊆ ker(π ⊗ π) because for
each a, b ∈ A and α ∈ A

(π ⊗ π)(a · α⊗ b− a⊗ α · b) = (a · α+ J)⊗ (b+ J)− (a+ J)⊗ (α · b+ J)

= (f(α)a+ J)⊗ (b+ J)− (a+ J)⊗ (f(α)b+ J)

= f(α)(a+ J)⊗ (b+ J)− f(α)(a+ J)⊗ (b+ J)

= 0.

Hence the map

Φ : (A⊗̂A)/I −→ (A⊗̂A)/ker(π ⊗ π) (x+ I 7→ x+ ker(π ⊗ π))

is well-defined. We put ρ = Γ ◦ Φ ◦ ρ̃. Since A has a bounded approximate identity
for A, it follows that ρ is C-linear. Now if ρ̃(a + J) =

∑n
i=1 xi ⊗ yi + I, where
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xi, yi ∈ A, then

⟨ω ◦ ρ, a+ J⟩ = ⟨ω ◦ Γ ◦ Φ ◦ ρ̃, a+ J⟩

= ⟨ω ◦ Γ ◦ Φ,
n∑
i=1

xi ⊗ yi + I⟩

= ⟨ω ◦ Γ,
n∑
i=1

xi ⊗ yi + ker(π ⊗ π)⟩

= ⟨ω,
n∑
i=1

(xi + J)⊗ (yi + J)⟩.

=
n∑
i=1

ω(xi ⊗ yi) + J = ω̃(
n∑
i=1

(xi ⊗ yi) + I)

= ω̃ ◦ ρ̃(a+ J) = a+ J.

Therefore ρ is right inverse of ω. �
In analogy with Proposition 2.3, we have the following parallel result for the

biflatness.

Proposition 2.4. Suppose that A acts trivially on A from the left, A/J is a com-
mutative A-module, and A has a bounded approximate identity for A. If A is module
biflat, then A/J is biflat.

Proof. Assume that Φ, Γ and ω are as the above. Suppose that ρ̂ is the the bounded
left inverse of ω̃∗. We prove that the map ω∗ : (A/J)∗ −→ (A/J⊗̂A/J)∗ has a left
inverse. From the proof of Proposition 2.3 we see that ω ◦ Γ ◦Φ = ω̃. Now, for each
φ ∈ (A/J)∗ we have

(ρ̂ ◦ (Γ ◦ Φ)∗ ◦ ω∗)(φ) = (ρ̂ ◦ (Γ ◦ Φ)∗)(φ ◦ ω)
= ρ̂(φ ◦ ω ◦ Γ ◦ Φ)
= (ρ̂ ◦ ω̃∗)(φ) = φ.

Therefore the map ρ̂ ◦ (Γ ◦Φ)∗ is a left inverse of ω∗ which is C-linear (see again the
proof of Proposition 2.3). �

In the above Propositions, note that if A/J has a bounded approximate iden-
tity, then A/J is a commutative A-module (see Lemma 2.1). One can easily show
that module biprojectivity implies module biflatness. In section 3, we shall give an
example of a Banach algebra which is module biflat but not module biprojective.

Let X, Y and Z be Banach A/J-A-modules. Then the short exact sequence

{0} −→ X
φ−→ Y

ψ−→ Z −→ {0} (3)

is admissible if ψ has a bounded right inverse which is A-module homomorphism,
and splits if ψ has a bounded right inverse which is a A/J-A-module homomorphism.
Obviously, the short exact sequence (3) is admissible if and only if φ has a bounded
left inverse which is A/J-A-module homomorphism. We set K = ker ω̃. If A/J has
a bounded approximate identity, then the following sequences are exact.

{0} −→ K
i−→ (A⊗̂A)/I

ω̃−→ A/J −→ {0} (4)
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{0} −→ (A/J)∗
ω̃∗
−→ (A⊗̂A)/I)∗

i∗−→ K∗ −→ {0} (5)

Definition 2.3. A bounded net {ξ̃j} in A⊗̂AA is called a module approximate di-

agonal if ω̃A(ξ̃j) is a bounded approximate identity of A/J and

lim
j

∥ξ̃j · a− a · ξ̃j∥ = 0 (a ∈ A).

An element Ẽ ∈ (A⊗̂AA)∗∗ is called a module virtual diagonal if

ω̃∗∗
A (Ẽ) · a = ã, Ẽ · a = a · Ẽ (a ∈ A),

where ã = a+ J⊥⊥.

Lemma 2.2. With the above notations:

(i) If A/J has an identity, the exact sequences (4) and (5) are admissible;
(ii) If A/J is a commutative A-module and A/J has a bounded approximate iden-

tity (or A acts trivially on A from the left and A/J has a bounded approximate
identity), then the exact sequence (5) is admissible.

Proof. Suppose that A/J has an identity e+ J , the map

ρ̃ : A/J −→ (A⊗̂A)/I; ρ̃(a+ J) = e⊗ a+ I

is an A-module homomorphism and right inverse for ω̃. Also, we can show that ρ̃∗

is left inverse ω̃∗ which is an A-module homomorphism. This complete the proof of
part (i). For the part (ii), assume that (ej + J) is a bounded approximate identity
for A/J . Since the net (ej ⊗ ej + I) is bounded, it has a weak∗ cluster point M in

((A⊗̂A)/I)∗∗. Define the map Ψ : ((A⊗̂A)/I)∗ −→ (A/J)∗ via

⟨Ψ(ρ), a+ J⟩ = ⟨M, (a+ J) · ρ⟩, ρ ∈ ((A⊗̂A)/I)∗, (a ∈ A).

Since A/J is commutative A-module, Ψ is A-module homomorphism. Now for each
ρ ∈ (A/J)∗, a ∈ A, we have

⟨(Ψ ◦ ω̃∗)(ρ), a+ J, ⟩ = ⟨M, (a+ J) · (ρ ◦ ω̃)⟩
= lim

j
⟨(a+ J) · (ρ ◦ ω̃), ej ⊗ ej + I⟩

= lim
j
⟨ρ ◦ ω̃, ej ⊗ eja+ I⟩

= lim
j
⟨ρ, ejeja+ J⟩ = ⟨ρ, a+ J⟩.

Therefore Ψ is left inverse ω̃∗. �

Note that in the above Lemma, if A acts trivially on A from the left and
A/J has a bounded approximate identity, then A/J is a commutative A-module by
Lemma 2.1.

The second author in [1, Proposition 2.2] showed that if A is a commutative
Banach A-module which is module amenable then it has a bounded approximate
identity. The converse is not true for the semigroup algebra even for the classical
case of groups. For the free group F2 on two generators, the group algebra ℓ1(F2)
has a bounded approximate identity and even an identity, but it is not amenable [7,
Example 3.3.62]. The following theorem shows when the module amenability of a
Banach algebra A is equivalent to its module biflatness.
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Theorem 2.1. Let A be a Banach A-module and let A/J be a commutative Banach
A-module. Suppose A has a bounded approximate identity. Then A is A-module
amenable if and only if A is module biflat.

Proof. Suppose that A is module amenable. Since A/J is commutative A-module,

A has a module virtual diagonal Ẽ ∈ ((A⊗̂A)/I)∗∗ [1, Theorem 2.1]. Define the
map Ψ : ((A⊗̂A)/I)∗ −→ (A/J)∗ via

⟨Ψ(ρ), a+ J⟩ = ⟨Ẽ, (a+ J) · ρ⟩, ρ ∈ ((A⊗̂A)/I)∗, (a ∈ A).

It is easy to show that Ψ is A/J-A-module homomorphism. Now, similar to the
proof of Lemma 2.2, Ψ is a left inverse for ω̃∗.

Conversely, let (ej) be a bounded approximate identity for A and φ̃ is a A/J-A-
module homomorphism such that φ̃◦ω̃∗ = I(A/J)∗ . Suppose that the net (ej⊗ej+I)
converge weak∗ to E in ((A⊗̂A)/I)∗∗. Hence, Ẽ = (φ̃∗ ◦ ω̃∗∗)(E) is a module virtual
diagonal for A. Therefore A is module amenable. �

Recall that an element M ∈ A⊗̂AA is called a module diagonal if ω̃(M) is an
identity of A/J and a ·M = M · a, for all a ∈ A. The following theorem shows that
under some conditions module super-amenability of a Banach algebra A is equivalent
to its module biprojectivity.

Theorem 2.2. Let A be a Banach A-module and let A/J be a commutative Banach
A-module. Suppose A has a bounded approximate identity. Then A is module super-
amenable if and only if A/J has an identity and A is module biprojective.

Proof. Assume that A is module super-amenable. Then A/J has an identity by
[16, proposition 3.2]. Also A has a module diagonal M [16, Theorem 3.5]. Define
ρ̃ : A/J −→ (A⊗̂A)/I by ρ̃(a + J) := a ·M, for all a ∈ A. Since a ·M = M · a, we
can show that ρ̃ is a A/J- A-module homomorphism. Also

(ω̃ ◦ ρ̃)(a+ J) = ω̃((a+ J) ·M) = (a+ J) · ω̃(M) = a+ J.

Therefore ρ̃ is a bounded right inverse for ω̃.
Conversely, if e + J is an identity for A/J and ρ̃ is a bounded right inverse

for ω̃ which is A/J-A-module homomorphism, then it is easy to show ρ̃(e+ J) is a
module diagonal for A. Now the module super-amenability of A follows from [16,
Theorem 3.5]. �

3. Module biprojectivity and module biflatness of semigroup alge-
bras

In this section we find conditions on a (discrete) inverse semigroup S such
that the semigroup algebra ℓ1(S) is ℓ1(E)-module biprojective and biflat, where E
(or ES) is the set of idempotents of S. Throughout this section S is an inverse
semigroup with the set of idempotents E, where the order of E is defined by

e ≤ d⇐⇒ ed = e (e, d ∈ E).

Since E is a commutative subsemigroup of S [12, Theorem V.1.2], actually a semi-
lattice, ℓ1(E) could be regarded as a commutative subalgebra of ℓ1(S), and thereby
ℓ1(S) is a Banach algebra and a Banach ℓ1(E)-module with compatible actions [1].
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Here we let ℓ1(E) acts on ℓ1(S) by multiplication from right and trivially from left,
that is

δe · δs = δs, δs · δe = δse = δs ∗ δe (s ∈ S, e ∈ E).

In this case, the ideal J (see section 2) is the closed linear span of

{δset − δst s, t ∈ S, e ∈ E}.
We consider an equivalence relation on S as follows:

s ≈ t⇐⇒ δs − δt ∈ J (s, t ∈ S).

For an inverse semigroup S, the quotient S/≈ is a discrete group (see [2] and
[16]). Indeed, S/≈ is homomorphic to the maximal group homomorphic image GS
[14] of S [17]. In particular, S is amenable if and only if S/ ≈ is amenable [8, 14]. As
in [19, Theorem 3.3], we may observe that ℓ1(S)/J ∼= ℓ1(S/ ≈). With the notations
of section 2, ℓ1(S)/J is a commutative ℓ1(E)-bimodule with the following actions:

δe · (δs + J) = δs + J, (δs + J) · δe = δse + J (s ∈ S, e ∈ E).

Let k ∈ N. Recall that E satisfies condition Dk [8] if given f1, f2, ..., fk+1 ∈ E
there exist e ∈ E and i, j such that

1 ≤ i < j ≤ k + 1, fie = fi, fje = fj .

Duncan and Namioka in [8, Theorem 16] proved that for any inverse semigroup
S, ℓ1(S) has a bounded approximate identity if and only if E satisfies condition Dk

for some k. Helemskii showed in [11, Theorem 51] that for any locally compact
group G, L1(G) is biprojective if and only if G is compact (see also [7, Theorem
3.3.32]). The following Theorem is the module version of Helemskii’s result for
inverse semigroups.

Theorem 3.1. Let S be an inverse semigroup with the set of idempotents E. If
E satisfies condition Dk for some k, then ℓ1(S) is module biprojective as an ℓ1(E)-
module with trivial left action if and only if S has a finite maximal group homomor-
phic image GS.

Proof. Since GS is a (discrete) group, ℓ1(S)/J ∼= ℓ1(GS) has an identity. Also ℓ1(S)
has a bounded approximate identity [8, Theorem 16]. Hence by Theorem 2.2, ℓ1(S)
is module biprojective if and only if ℓ1(S) is module super-amenable. It follows from
[16, Theorem 3.7] that ℓ1(S) is module super-amenable if and only if GS = S/ ≈ is
finite (see also [3, Theorem 3.2]). �
Corollary 3.1. Let S be an inverse semigroup. If GS is infinite, then ℓ1(S) is not
biprojective.

Proof. This follows from Proposition 2.1 and Theorem 3.1. �
Theorem 3.2. Let S be an inverse semigroup with the set of idempotents E. If E
satisfies condition Dk for some k, then ℓ1(S) is module biflat as an ℓ1(E)-module
with trivial left action if and only if S is amenable.

Proof. Since ℓ1(S)/J ∼= ℓ1(S/ ≈) has identity and ℓ1(S) has a bounded approximate
identity, by Theorem 2.1, ℓ1(S) is module biflat if and only if ℓ1(S) is module
amenable. It follows from [1, Theorem 3.1] that ℓ1(S) is module amenable if and
only if S is amenable. �
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Corollary 3.2. Let S be an inverse semigroup. If ℓ1(S) is biflat, then S is amenable.

Proof. This is a consequence of Proposition 2.2 and Theorem 3.2. �

Note that the above Corollary is also a direct consequence of [18, Theorem
3.7].

Example 3.1. Let N be the commutative semigroup of positive integers. It is
known that ℓ1(N) with pointwise multiplication is biprojective, but with convolu-
tion it is not biprojective [7, Example 4.1.42]. Now consider (N,∨) with maximum
operation m∨n =max(m,n), then each element of N is an idempotent, hence N/ ≈
is the trivial group with one element. Thus ℓ1(N) is module biprojective (as an
ℓ1(N)-module) by Theorem 3.1. Since N/ ≈ is amenable, N is amenable. Therefore
ℓ1(N) is module biflat by Theorem 3.2. Also we know for an idempotent e in an
inverse semigroup S, (e] = {f ∈ E : fe = ef = f}. For S = N, for each n ∈ N
we have (n] = {m ∈ N : m ≥ n}. Hence N is not uniformly locally finite (even not
locally finite, see the introduction), so ℓ1(N) is not biflat, so it is not biprojective
[18]. We note that ℓ1(N) with pointwise multiplication is biprojective [7, Example
4.1.42 (vii)].

Example 3.2. Let C be the bicyclic inverse semigroup generated by a and b, that
is

C = {ambn : m,n ≥ 0}, (ambn)∗ = anbm.

The set of idempotents of C is EC = {anbn : n = 0, 1, ...} which is totally ordered
with the following order

anbn ≤ ambm ⇐⇒ m ≤ n.

It is shown in [2] that C/ ≈ is isomorphic to the group of integers Z, hence C is
amenable. Therefore ℓ1(C) is module biflat, but not module biprojective. It is easy
to see EC is not uniformly locally finite, so ℓ1(C) is neither biprojective nor biflat.

Example 3.3. Let S be an amenable E-unitary inverse semigroup with infinite
number of idempotents (see [12] and [15]). Then ℓ1(S) is module biflat. As a con-
crete example, the free inverse semigroup FI({x}) on a singleton is an amenable, E-
unitary inverse semigroup with an infinite number of idempotents, hence ℓ1(FI({x}))
is not amenable (see [8]). Also it is easy to see that FI({x}) is not uniformly locally
finite, hence it is not biflat [18].

Example 3.4. Let G be a group, and let I be a non-empty set. Then for S =
M(G, I), the Brandt inverse semigroup corresponding to G and the index set I, it is
shown in [16] that S/ ≈ is the trivial group. Therefore ℓ1(S) is module biprojective.
But if index set I is infinite, then ℓ1(S) is not amenable [8, Theorem 12]. Clearly S
is uniformly locally finite, indeed (e] = {0, e}, for each idempotent e of S. Also each
maximal subgroup of S at an idempotent is isomorphic to G, hence ℓ1(S) is biflat
if and only if G is amenable and ℓ1(S) is biprojective if and only if G is finite [18,
Theorem 3.7]. In particular, for any infinite group G, ℓ1(S) is module biprojective,
but it is not biprojective.
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