
U.P.B. Sci. Bull., Series D, Vol. 87, Iss. 4, 2025                                                      ISSN 1454-2358 

OPTIMIZATION AND PREDICTION OF SURFACE 
ROUGHNESS IN CNC TURNING OF ALSI13 USING FEED 

RATE VARIATION STRATEGY 

Hanane MERZOUK1, Mohamed RAHOU 2,Fethi, SEBAA 3, Rafik MEDJAHED4 

This paper proposes an innovative approach to optimize cutting parameters 
in NC machines to achieve high-quality surface finishes. The methodology centers 
on developing a mathematical model for feed rate optimization, applicable to both 
linear and nonlinear geometries. The paper is divided into two key sections. The 
first section presents an experimental study aimed at examining the relationship 
between surface finish and feed rate, resulting in a robust database. A total of 55 
tests were performed on AlSi13 material, with feed rates varying while cutting depth 
and speed remained constant. The second section focuses on the modeling and 
optimization of cutting parameters, leveraging variance analysis and response 
surface methodology to refine performance.  

Keywords: CNC; Average surface roughness; cutting parameters; RSM; 
ANOVA. 

1. Introduction 

Mechanical machining plays an important economic role in the industry of 
a country, in the development of strategic national sectors, as well as in the 
creation of large-scale employment [1]. It is considered one of the most common 
fundamental manufacturing processes for obtaining a finished product with the 
required geometry by removing unwanted segments, known (chips), with 
precision, surface finish, and maximum tool life [2-4]. It is performed using 
specific cutting tools and cutting parameters [5]. Its main objective is to 
manufacture products with reduced energy consumption and higher material 
removal rates in order to improve productivity and quality, a priority and a 
challenge in sustainable manufacturing for industries and researchers [3,6]. 
However, to achieve this, it is imperative to develop an explicit relational model 
between machining parameters and energy cost [7]. The energy and other 
resources used during machining are indicated by an index called surface 
roughness. It characterizes the surface condition of a mechanical part and is used 
to refine contact surfaces, improve fatigue life, corrosion resistance, aesthetics, etc 
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[8]. In other words, optimizing the machine’s configuration by choosing the best 
cutting parameters, as well as the right approach to cooling and lubrication, will 
save energy [9,10]. Recently, the roughness indicator has attracted much attention 
among researchers, as the required cutting and machine tool parameters are often 
based on previous experience, software packages or the supplier’s own database. 
However, this does not guarantee that the parameter values selected will provide 
the optimum surface finish, and may even lead to high production costs [11]. To 
this end, it is therefore important to study this indicator closely by understanding 
and identifying the factor(s) influencing this magnitude, and to achieve this 
objective researchers have proposed various machining strategies with variable 
machining parameters, including tool path optimization [12], as some conclusions 
established by Gustavo M. et al [13],or Chunhua Feng et al [14] simultaneous 
optimization of the tool path and cutting parameters reduces the energy 
consumption of machining. Additional strategies involve adjusting spindle speed 
[15] and feed rate [16,17]. Surface roughness is determined by calculating Rz and 
Ra. Rz can provide information about pores, holes or surface deformations that 
affect strength, while Ra represents the average surface roughness [18]. Ra is a 
quantity which depends on several factors, including the type of material and 
cutting tool, cutting parameters, including feed rate, cutting speed, depth of cut, 
lubrication, and environmental factors such as temperature and humidity. Bhise et 
al [19] state that cutting speed and feed rate are important parameters in the study 
of surface roughness. However, roughness is sensitive to variations in feed rate. 
The same applies to Fnides et Al [20] and Barali´c et al [21]. And in the work of 
Khare et al [22], cutting speed and depth of cut were identified as the most 
significant factors influencing surface roughness parameters. To determine the 
factor that significantly impacts the output variable, various static techniques are 
used. Analysis of variance, or ANOVA, is the most widely used [27]. This 
technique effectively quantifies and determines the effect of factors. Using this 
technique, Yasar et Al [23], Khettabi et al [24], Qehaja et al [25], and Kiswanto et 
al [26] concluded that feed rate (f) contributes significantly to surface roughness. 
In most cases, universal formulas linking certain independent variables to an 
output variable cannot be found, or do not exist, as in the case of average surface 
roughness (Ra), where this relationship is obtained empirically [28]. In general, 
methods for modeling the surface finish of workpieces produced by the turning 
process are classified into two categories: theoretical modeling and empirical 
parametric modeling. And so far, common empirical methods employed include 
Response Surface Methodology (RSM), Artificial Neural Networks (ANN), 
Support Vector Machine (SVM), and others. [29]. However, in the present work, 
only RSM will be used. This approach allows for the relationship of a response 
and several input variables or factors influencing it, through the use of an 
appropriate experimental design and analysis [30,31]. And by combining it with 
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ANOVA, this will make it possible to leverage the advantages of each method to 
obtain optimal results for the parameters of the optimization process and identify 
the optimum conditions [32,33]. RSM is a crucial and powerful tool for Design of 
Experiments (DOE), intrinsic regression modeling, and optimization techniques, 
making it valuable across various engineering disciplines [34-37].  

2. Experimental study 

This experimental study aims to develop a surface roughness prediction 
model based on optimal cutting parameters for machining AlSi13. 
2.1. Materials and methods 
2.1.1. Workpiece 

Currently, aluminum alloys, particularly those with silicon is the main 
limiting factor, are experiencing significant growth. (Al-Si) alloys are known for 
their excellent fluidity, castability and high corrosion resistance, representing a 
crucial class of materials in the aerospace and transportation sectors [38,39].  

The tested workpiece is made of an aluminum-silicon alloy (AlSi13), also 
known as Alpax. Widely used in aerospace and automotive applications, this alloy 
is valued for its light weight and excellent mechanical and chemical properties, as 
specified in Tables (1) and (2) of EN 1706 [40]. 

Table 1 
Physical and Mechanical Characteristics of Al-Si13 [41] 

Tensile 
strength 

Rm (MPa) 

Elastic limit 
Re (MPa) 

Coefficient of 
Thermal expansion  

α (µm/m.ºC) 

Thermal  
conductivity  
λ (W/m.K) 

Density 
ρ 

(g/cm³) 

Fusion point 
Tm (ºC) 

230 150 20-21 120-150 2.68 577 
Table 2 

Chemical Composition of Al-Si13 [41] 

Si 
(%) 

Fe 
(%) 

Cu 
(%) 

Mn 
(%) Mg 

(%) 
Ni 

(%) 

Zn 
(%) 

Sn 
(%) 

Ti 
(%) 

others 
(%) 

12-13.5 <0.6 <0.1 <0.1 <0.1 <0.1 <0.1 <0.05 <0.2 <0.05 
As for the workpiece, it’s a solid round aluminum billet, measuring 

50mm*30mm, as shown in Figure 1. 
 

 

 

 
 

Fig. 1. Overview of the studied geometry 
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2.1.2. Cutting tool & Machine 

The cutting tool is equipped with a tungsten carbide insert of triangular 
geometry (Fig 2), corresponding to the standardized reference TPUN 16 03 08 
H10F. The machine tool used during the machining operation is the BOXFORRD 
160 TCLi numerically controlled machine (CNC) ( Figure3). 

 
 
 
 
 
 
 
 
 

Fig. 2. Geometric characteristics of the plate TPUN 16 03 08 H10F [53] 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Machine used 
 

2.2. Test plan 
Several parameters are employed to evaluated surface roughness, 

including cutting parameters. In the present work, we have chosen the average 
surface roughness (Ra) as an indicator to characterize the surface finish during 
turning, wich is the most commonly used parameter in industry. To determine 
which of these machining parameters such as feed rate (f), cutting speed (Vc) and 
cutting depth (ap) has the most significant influence on surface finish during 
machining, a series of 55 experiments was carried out (Figure2). 11 Experimental 
levels are defined for each group of parts, which were produced with identical and 
constant parameters (cutting speed, spindle speed and depth of cut) as shown in 
Table (3). Keeping these parameters constant, the feed rate was varied and the 
average surface roughness (Ra) measured each time. 
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Table 3 
Level setting 

Level N(rpm) ap 
(mm) 

Vc 
(m/min) 

Level N(rpm) ap 
(mm) 

Vc 
(m/min) 

1 1921.80 

1 

175 6 2229.29 2 175 
2 1976.71 180 7 2292.99  180 
3 2196.35 200 8 2547.77  200 
4 2470.89 225 9 2786.62 3 175 
5 2745.44 250 10 

11 
2866.24 
3182.71 

 180 
200 

 
As Ra is a measured quantity, there is no universal formula for expressing 

it as a function of machining parameters. This is because these are specific to each 
case, such as the material used, the cutting tool used and so on. The best way to do 
this is to carry out experiments, measure Ra at different feed rates and fit a 
mathematical model to the results obtained. And to find the existing link between 
Ra and cutting parameters modelled by equation (1), the RSM methodology was 
applied as an approach. First of all, the problem is formulated by identifying the 
dependent variable (Ra) and the independent factors influencing it. And to 
establish this link, we carry out a set of experiments, by varying the input 
variables on each test, and measuring the output variable. An experimental design 
approach is adopted to minimize the number of tests while maximizing 
information. The effects of each factor are analyzed using ANOVA to determine 
their impact on Ra. Then, using regression analysis, we establish a mathematical 
model associated with the problem linking inputs and outputs, and optimize the 
latter by finding the optimum conditions. Finally, we test the validity of the model 
obtained by comparing experimental and predicted results.  

                                     Ra = φ(Vc,f,ap)            (1) 
The mathematical model established by RSM is obtained by the method of 

least squares. And the evaluation of the linear relationships between the dependent 
variable (Ra) and the three independent variables (Vc, f and ap) is given by the 
equation of the multiple linear regression line which takes the following form: 

Y = β0 + iXi + ijXiXj + ϵi                               (2) 
The coefficients (βi) represent the linear effects of machining parameters 

on Ra, while (βij) indicate their interaction effects. β0 is the intercept and ϵi the 
residual error. The coefficient of determination (R²) assesses the model’s fit 
[42,43], ranging from 0 to 1, with values close to 1 indicating strong agreement 
between the model and experimental data. R² is calculated from the sum of 
squared residuals (SSE) and the sum of squared totals (SST), and given by the 
following general formula. 

R2 = 1 −                                                 (3) 
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3. Result and discussion  

The experimental results were classified in table (4). the levels were 
grouped in turn according to the common cutting speed for clarity. 

 
3.1. Effect of cutting parameters on surface rough 
3.1.1. Effect of feed rate 

The behavior of the Ra curve at different feed rates is shown in Figure 4. 
By analyzing the effect of (f) on (Ra), we remark that for feed rate of 0.05 
mm/rev, (Ra) increases with increasing (f) for all cutting speeds (Vc = 175, 180 
and 200 m/min). At this stage, (Ra) is between 0.63 and 0.73. A high value of Ra 
means a rougher surface due to high feed speeds, as higher material removal per 
revolution causes greater cutting forces and vibrations, producing deeper tool 
marks [44]. Reducing the feed rate improves surface finish, though excessively 
low values may raise temperatures and increase tool wear. We also note that 
surface finish improves (minimum) as (Vc) increases (Vc ≥ 200) and (f) is 
reduced. What Cakir et al [45] have also confirmed. Because as (f) increases, the 
cillions become deeper and wider. 

Table 4 
Plan of experiment for roughness Ra 

Vc (m/min) level ap (mm)  

175 

01 
 

1 Vf [mm/rev] 0.05 0.2 0.28 0.32 0.38 
Ra[μm] 0.64 0.95 1.11 1.21 1.28 

06 
 

2 Vf [mm/rev] 0.05 0.08 0.15 0.18 0.20 
Ra[μm] 0.68 0.75 0.84 0.96 1.05 

09 2.5 Vf [mm/rev] 0.05 0.08 0.11 0.19 0.25 
Ra[μm] 0.72 0.79 0.87 0.98 1.2 

180 

02 
 

1 
 

Vf [mm/rev] 0.05 0.13 0.17 0.21 0.23 
Ra[μm] 0.67 0.73 0.77 0.89 0.97 

07 
 

2 
 

Vf [mm/rev] 0.05 0.10 0.12 0.16 0.20 
Ra[μm] 0.68 0.76 0.88 0.99 1.10 

10 2.5 Vf [mm/rev] 0.05 0.10 0.15 0.25 0.30 
Ra[μm] 0.73 0.89 0.94 1.25 1.30 

200 

03 
 

1 Vf [mm/rev] 0.05 0.08 0.10 0.12 0.14 
Ra[μm] 0.37 0.65 0.70 0.75 0.83 

08 
 

2 Vf [mm/rev] 0.08 0.10 0.13 0.18 0.25 
Ra[μm] 0.67 0.73 0.79 0.85 0.97 

11 2.5 Vf [mm/rev] 0.08 0.10 0.16 0.22 0.28 
Ra[μm] 0.73 0.88 0.96 1.22 1.28 

225 04 1 Vf [mm/rev] 0.05 0.08 0.16 0.18 0.20 
Ra[μm] 0.32 0.60 0.84 0.89 0.92 

250 05 1 Vf [mm/rev] 0.05 0.08 0.18 0.26 0.30 
Ra[μm] 0.28 0.50 0.83 1.13 1.2 



Optimization and prediction of surface roughness in CNC turning of ALSI13 […] variation strategy       181 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Surface roughness vs feed rate 
 

3.1.1. Effect of cutting speed 
The evolution of Ra as a function of cutting speed Vc is shown in Figure 

5. For f=0.2mm/rev and a cutting speed ranging from 180m/min to 250m/min, Vc 
has a low influence on Ra. Nevertheless, it remains acceptable for general 
manufacturing applications according to the norm (0.8≥Ra≥1.6). Furthermore, for 
low feed rates, Ra decreases with increasing Vc. This is because during high-
speed machining, the temperature of the cutting zone rises, leading to softening of 
the material [46,47]. Moreover, it minimizes the formation of burrs and reduce 
vibrations, leading to a more stable cutting process. [48-50]. 

 

                                
Fig. 5. Surface roughness vs cutting speed at ap = 1mm 

 
3.1.3. Effect of cutting depth 

Figure 6 shows that a greater depth of cut leads to a slightly increase in Ra, 
due to higher forces and vibrations. However, no significant change is observed 
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(∆Ra= 0.08µm). compared to the impact of the cutting parameters studied 
previously, ap has little influence on (Ra), which remains virtually stable. 
 

                              
Fig. 6. Surface roughness vs depth of cut 

 
3.2. Analysis of Variance 

In order to significantly analyze and determine the influence of the input 
parameters that most affect roughness, an ANOVA is carried out using MINITAB 
software. The results are listed in Table (5), and where we find indicated the 
degrees of freedom (DF), the sum of squared deviations (SS), the mean squares 
(MS), the statistical property (F-Value), the probability (P-Value) and the 
percentage contribution of each factor is calculated by the formula (5) which 
follows: 

                           Percentage = −  × 100                       (5) 
Table 5 

Analysis of variance (ANOVA) for Ra 
Source DF SS MS F-Value P-Value Percentage 
Model 9 2.79640 0.310711 80.55 0.000 94.1558332 
Linear 3 0.98967 0.329890 85.53 0.000 33.3225588 

f 1 0.82891 0.828907 214.90 0.000 27.9097095 
Vc 1 0.00025 0.000246 0.06 0.802 0.00841759 
Ap 1 0.02836 0.028362 7.35 0.009 0.9548918 

Square 3 0.01469 0.004897 1.27 0.296 0.49461779 
f*f 1 0.00479 0.004793 1.24 0.271 0.16128109 

Vc*Vc 1 0.00000 0.000003 0.00 0.977 0.0000000 
Ap*Ap 1 0.01176 0.011764 3.05 0.088 0.3959636 

2-Way interactions 3 0.09223 0.030743 7.97 0.000 3.10541857 
f*Vc 1 0.08371 0.083711 21.70 0.000 2.81854699 

Vf*Ap 1 0.00012 0.000125 0.03 0.858 0.00404044 
Vc*Ap 1 0.00001 0.000012 0.00 0.956 0.0003367 
Error 45 0.17358 0.003857    
Total 54 2.96997     

A low P value (≤ 0.05) is considered statistically significant [51]. Indeed, 
the significance level α, chosen to determine if a result is statistically meaningful 
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or not, is generally set at 0.05 (5%). In other words, the confidence level is 95%. 
Table (5) show that the significant factors with a low P-value are (f), (ap) and 
interaction (f*Vc). According to the ANOVA results, (f) was the factor with the 
most effect on Ra, with the highest percentage contribution of 27.91%. This was 
followed by the interaction (f*Vc) with 3.1%, and finally ap with 0.95%. 
3.2.1. Pareto Chart  

The Pareto bar chart shown in figure 7 provides us with more information 
on the factors that have the most effect on Ra, by classifying the cutting 
parameters in order of importance by the bar length, (f) has a considerable 
influence on (Ra). It also allows us to draw a reference line which depends on the 
significance threshold (2.01); values exceeding the red line represent factors 
which have a significant contribution to the model [52]. factors intersecting this 
line are respectively f, f*Vc and ap. 
 

 
Fig. 7. Surface roughness vs depth of cut 

 
3.2.2. Surface Roughness regression analysis and comparison between 
predicted and measured values  

In machining, (Ra) is the arithmetic mean of the irregularities. The 
relationship between it and the independent machining variables (f, Vc and ap) is 
usually given empirically. RSM enabled us to determine this relationship. 
Equation (6) expresses the mathematical model developed by Minitab software in 
the form of a polynomial regression equation, obtained by using multiple 
regression and fitting the experimental data collected during testing. The terms (f), 
(Vc), and (ap) represent the individual linear effects of each parameter on Ra, 
while (f.Vc), (f.ap) and (Vc.ap) represent their interactions, showing how the 
combination of two parameters affects (Ra). The constant 1.37 adjusts the model 
to fit the experimental data. 
                  Ra = 1.37 − 1.02f − 0.0045Vc − 0.171Ap − 1.36f2 − 0.000001Vc

2 
+ 0.0720A2

p + 0.02040f · Vc + 0.031f · Ap + 0.00007Vc · Ap          (2) 
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The regression model shows a strong fit with R² = 0.9416. This value, 
being close to unity, means that 94.16% of the variability of (Ra) is explained by 
the model, and only 5.84% remains unexplained. Consequently, the fit of the 
established model to the data is very satisfactory and has a strong predictive 
capability. In order to study the validity, precision and reliability of the model, it 
is necessary to establish a comparison between the experimental roughness values 
measured and those predicted by the mathematical model obtained. The results 
given in Table 6 enable us to compare these values by calculating the error (∆Ra), 
where we note that the deviation is very small (between 10−1 and 10−2). The same 
comparison can be made by viewing the histogram illustrated in figure 8, The 
difference in heights observed directly on the histogram shows once again that the 
deviation is very small. Consequently, the model is considered valid, and can be 
used to predict Ra as a function of these same independent variables under 
untested conditions. The comparison between experimental and predicted Ra 
values shows that the prediction errors are generally low, mostly below 10%, with 
a minimum error of 0.027% and a maximum of 14,63%. This indicates a good 
agreement between the experimental results and the RSM model. The slight 
deviations observed may be attributed to experimental uncertainties, tool wear, or 
unmodeled process dynamics. Overall, the results validate the predictive accuracy 
of the proposed model for surface roughness optimization. 

Table 6 
Synthesis of comparison between measured and predicted Ra values. 

f [mm/rev] Vc [m/min] Ap [mm] Ra Th 
[µm] 

Ra Exp 
[µm] 

∆Ra 
[µm] 

Error 
(%) 

0.05 

175 
1 0.590775 0.64 0.049225 7,6914 
2 0.649575 0.68 0.030425 4,4743 

2.5 0.732975 0.72 0.012975 1,8021 

180 
1 0.57195 0.67 0.09805 14,6343 
2 0.6311 0.68 0.0489 7,1912 

2.5 0.714675 0.73 0.015325 2,0993 

0.08 

175 2 0.722631 0.75 0.027369 3,6492 
2.5 0.806496 0.79 0.016496 2,0881 

200 
1 0.583576 0.65 0.066424 10,2191 
2 0.645056 0.67 0.024944 3,7230 

2.5 0.729796 0.73 0.000204 0,0279 

0.1 

180 2 0.7566 0.76 0.0034 0,4474 
2.5 0.84095 0.89 0.04905 5,5112 

200 
1 0.6405 0.7 0.0595 8,5000 
2 0.7026 0.73 0.0274 3,7534 

2.5 0.78765 0.88 0.09235 10,4943 
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Fig. 8. Comparison of measured and predicted Ra values  

 
3.2.3. Response surface plots  

In order to study the impact of different variables on the Ra, to facilitate 
analysis of its variation and to bring greater clarity to the data, 3D response 
surface and contour plots (Figures 9 and 10) were generated using Minitab 
3.2.4. 3D response surface 

The relationship between each pair of variables on Ra is shown in Figure 
(11). (A) shows how (Ra) changes as a function of (f) and (Vc), (B) shows the 
change as a function of (f) and (ap), and (C) as a function of (Vc) and (ap). 
Figures (A) and (B) show that (Ra) increases with increasing feed rate. in (A), the 
inclination is pronounced, indicating that (Ra) is strongly affected by (f and Vc). 
In (B), the surface appears flatter, indicating a weak interaction between f and ap, 
while (C) shows only a slight curvature, meaning Vc and ap have limited impact. 
Overall, Ra reaches its lowest values when f and ap are small and Vc is high. 
 

 
Fig. 9. 3D interaction of response surface plots of surface roughness Ra 
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3.2.5. Contour plot 
The contour lines show the variations of Ra, as the areas are darker, the Ra 

values are higher. The contour plots shown in the figure 10 reveal a peak in Ra (≥ 
1.50 µm) at a Vc of around 250m/min, f =0.38mm/rev and ap = 2.5mm. Ra is 
minimal (< 0.50µm) at Vc ≥ 210m/min, f ≤ 0.05mm/rev and at ap ≤ 1.75mm. The 
contour diagram of the (Vc*f) interaction shows both close and distant contour 
lines, meaning that factors interact in a complex way, creating several of the 
roughness zones. The (ap*f) plot shows evenly spaced contours, suggesting minor 
and regular variations dominated by one factor. Finally, the interaction between 
(ap) and (Vc) shows two distinct zones separated by a contour line, suggesting 
that the two factors interact to produce binary roughness results (high or low), but 
the overall Ra variation remains small. 

 
Fig. 10. Contour Plot of Ra 

 
3.2.6. Optimization of cutting conditions for surface roughness Ra 

The optimization diagram (Figure 11) indicates that the optimal surface 
roughness value Ra = 0.3318 µm, predicted by RSM, was obtained for f = 0.05 
mm/rev, Vc = 250 m/min, and ap = 1 mm. Although no experiments were 
performed at exactly this cutting speed, the predictive model was validated with 
an average prediction error of 7.08% and a coefficient of determination R² = 
0.9416, demonstrating its reliability. Moreover, the experimental trend between 
175 and 200 m/min confirmed that Ra decreases as Vc increases. At 200 m/min, 
Ra = 0.37µm, which corresponds to the predicted decrease in Ra (0.3318 µm) at 
250 m/min. Therefore, the optimized result is considered valid within the model’s 
accuracy. 
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Fig. 11. Optimal parameters obtained with Minitab’s response optimization module. 

3. Conclusion  

Average surface roughness (Ra) is a quantity influenced by several factors, 
and in the absence of a universal formula to express it, RSM combined with 
ANOVA enable us to determine which parameter significantly influences the 
output, and to develop a mathematical model describing the relationship between 
independent factors and response empirically as in the problem posed. In this 
experiment, three cutting parameters are considered as independent variables: 
cutting depth (ap), cutting speed (Vc) and feed rate (f). And it is the average 
surface roughness (Ra) that is chosen as the output variable to evaluate the surface 
quality of AlSi13 aluminum alloy in dry turning. The study carried out led to the 
following conclusions: 
• By analyzing the influence of each cutting parameter on roughness (Ra) using 
ANOVA, we deduced that among the three selected input parameters (f, Vc and 
ap), feed rate had the greatest influence with a percentage contribution of 27.91%. 
This was followed by interaction (f.Vc) with 3.1%, and finally cutting depth with 
0.95%. The same conclusions were drawn from the response surface plots. 
• From the graphical, numerical and response surface plotting approaches, it was 
concluded that the best surface roughness is obtained for low feed rates and high 
cutting speed values. 
• The RSM was used to develop a mathematical model describing the influence of 
cutting parameters (f, Vc and ap) on the average surface roughness (Ra), which 
showed satisfactory agreement with measured values. 
• As the regression equation obtained using RSM was essentially designed to 
predict response (Ra), it can be utilized to predict Ra under untested conditions. 
• RSM was also utilized to optimize the cutting parameters, and the optimum 
values of these parameters to obtain a minimum surface roughness (Ra) of 
0.3318µm are: Vc = 250 m/min, f = 0.05 mm/rev and ap = 1 mm. 
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• The results obtained are in line with previously published results in the same 
field of research, confirming the effectiveness of regression analysis in modelling 
average surface roughness during dry turning of AlSi13. 
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