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FACTORIZATION PROPERTIES AND TOPOLOGICAL CENTERS OF

MODULE ACTIONS AND ∗-INVOLUTION ALGEBRAS

Kazem Haghnejad Azar1, Masoud Ghanji2

In this paper, we extend some problems of Arens regularity and factorizations
properties of Banach algebras for general structures and we establish the relationships

between topological centers and factorization properties of left module actions with some
conclusions in the Arens regularity of Banach algebras. To a Banach algebra A, we
extend the definition of ∗ − involution algebra to a Banach A− bimodule B with some

results in the factorizations properties of B∗. We have some applications in group
algebras.
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1. Introduction and Preliminaries

For a Banach algebra A, Arens [1] showed that the second dual of A, A∗∗, has two multiplica-
tion each extending the multiplication on A. The constructions of two Arens multiplications
in A∗∗ lead us to definition of topological centers for A∗∗ with respect to both Arens mul-
tiplications. The topological centers of Banach algebras, module actions and applications
of them were introduced and discussed in [6, 8, 13, 14, 15, 16, 17, 19, 20, 21]. Let X,Y, Z
be normed spaces and m : X × Y → Z be a bounded bilinear mapping. Arens offers two
natural extensions m∗∗∗ and mt∗∗∗t of m from X∗∗ × Y ∗∗ into Z∗∗ as follows:
1. m∗ : Z∗ ×X → Y ∗, given by ⟨m∗(z′, x), y⟩ = ⟨z′,m(x, y)⟩ where x ∈ X, y ∈ Y , z′ ∈ Z∗,
2. m∗∗ : Y ∗∗×Z∗ → X∗, given by ⟨m∗∗(y′′, z′), x⟩ = ⟨y′′,m∗(z′, x)⟩ where x ∈ X, y′′ ∈ Y ∗∗,
z′ ∈ Z∗,
3. m∗∗∗ : X∗∗ × Y ∗∗ → Z∗∗, given by ⟨m∗∗∗(x′′, y′′), z′⟩ = ⟨x′′,m∗∗(y′′, z′)⟩
where x′′ ∈ X∗∗, y′′ ∈ Y ∗∗, z′ ∈ Z∗.
The mapping m∗∗∗ is the unique extension of m such that x′′ → m∗∗∗(x′′, y′′) from X∗∗ into
Z∗∗ is weak∗−to−weak∗ continuous for every y′′ ∈ Y ∗∗, but the mapping y′′ → m∗∗∗(x′′, y′′)
is not in general weak∗ − to − weak∗ continuous from Y ∗∗ into Z∗∗ unless x′′ ∈ X. Hence
the first topological center of m may be defined as following

Z1(m) = {x′′ ∈ X∗∗ : y′′ → m∗∗∗(x′′, y′′) is weak∗ − to− weak∗ − continuous}.

Let mt : Y ×X → Z be the transpose of m defined by mt(y, x) = m(x, y) for every x ∈ X
and y ∈ Y . Then mt is a continuous bilinear map from Y × X to Z, and so it may be
extended as above to mt∗∗∗ : Y ∗∗ ×X∗∗ → Z∗∗. The mapping mt∗∗∗t : X∗∗ × Y ∗∗ → Z∗∗

in general is not equal to m∗∗∗, see [1], if m∗∗∗ = mt∗∗∗t, then m is called Arens regular.
The mapping y′′ → mt∗∗∗t(x′′, y′′) is weak∗− to−weak∗ continuous for every y′′ ∈ Y ∗∗, but
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the mapping x′′ → mt∗∗∗t(x′′, y′′) from X∗∗ into Z∗∗ is not in general weak∗ − to− weak∗

continuous for every y′′ ∈ Y ∗∗. So we define the second topological center of m as

Z2(m) = {y′′ ∈ Y ∗∗ : x′′ → mt∗∗∗t(x′′, y′′) is weak∗ − to− weak∗ − continuous}.

It is clear that m is Arens regular if and only if Z1(m) = X∗∗ or Z2(m) = Y ∗∗. Arens
regularity of m is equivalent to the following

lim
i

lim
j
⟨z′,m(xi, yj)⟩ = lim

j
lim
i
⟨z′,m(xi, yj)⟩,

whenever both limits exist for all bounded sequences (xi)i ⊆ X , (yi)i ⊆ Y and z′ ∈ Z∗, see
[6, 18].
The regularity of a normed algebra A is defined to be the regularity of its algebra multi-
plication when considered as a bilinear mapping. Let a′′ and b′′ be elements of A∗∗, the
second dual of A. By Goldstin,s Theorem [7], P.424-425, there are nets (aα)α and (bβ)β in
A such that a′′ = weak∗ − limα aα and b′′ = weak∗ − limβ bβ . So it is easy to see that for
all a′ ∈ A∗, we have

lim
α

lim
β
⟨a′,m(aα, bβ)⟩ = ⟨a′′b′′, a′⟩

and

lim
β

lim
α
⟨a′,m(aα, bβ)⟩ = ⟨a′′ob′′, a′⟩,

where a′′b′′ and a′′ob′′ are the first and second Arens products of A∗∗, respectively, see
[6, 14, 18].
The mapping m is left strongly Arens irregular if Z1(m) = X and m is right strongly Arens
irregular if Z2(m) = Y .
This paper is organized as follows.
a) In section two, for a left Banach A − module B, we study some relationships between
factorization properties and topological centers of left module action.

(1) Let (eα)α ⊆ A be a BLAI for B. Then the following assertions hold.

i) For each b′ ∈ B∗, π∗
ℓ (b

′, eα)
w∗

→ b′.
ii) B∗ factors on the left with respect to A if and only if B∗∗ has aW ∗BLAI (eα)α ⊆ A.
iii) B∗∗ has a W ∗BLAI (eα)α ⊆ A if and only if B∗∗ has a left unit element e′′ ∈ A∗∗

such that eα
w∗

→ e′′.

(2) Suppose that b′ ∈ wapℓ(B). Let a′′ ∈ A∗∗ and (aα)α ⊆ A such that aα
w∗

→ a′′ in A∗∗.
Then we have

π∗
ℓ (b

′, aα)
w→ π∗∗∗∗

ℓ (b′, a′′).

(3) Let B∗ factors on the left with respect to A. If AA∗∗ ⊆ ZB∗∗(A∗∗), then ZB∗∗(A∗∗) =
A∗∗.

(4) If B∗∗ has a BLAI with respect to A∗∗, then B∗∗ has a left unit with respect to A∗∗.
(5) Let B be a left Banach A−module and A has a BRAI (eα)α ⊂ A. Then, B∗ factors

on the left if and only if for each b′ ∈ B∗, we have π∗
ℓ (b

′, eα)
w→ b′ in B∗.

(6) Let A has a BLAI (eα)α ⊆ A such that eα
w∗

→ e′′ in A∗∗ where e′′ is a left unit for
A∗∗. Suppose that Zt

e′′(B
∗∗) = B∗∗. Then, B factors on the right with respect to A

if and only if e′′ is a left unit for B∗∗.

b) In section three, for a Banach A− bimodule B we study ∗ − involution algebra on B∗∗

with respect to first Arens product with some results in the factorization of B∗, that is,
suppose that (eα)α ⊆ A is a BAI for B and B∗∗ is a Banach ∗ − involution algebra as
A∗∗-module, then B∗∗ is unital and B∗ factors on the both side.
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2. Factorization properties and topological centers of left module actions

Let B be a Banach A− bimodule, and let

πℓ : A×B → B and πr : B ×A → B.

be the left and right module actions of A on B. Then B∗∗ is a Banach A∗∗ − bimodule with
module actions

π∗∗∗
ℓ : A∗∗ ×B∗∗ → B∗∗ and π∗∗∗

r : B∗∗ ×A∗∗ → B∗∗.

Similarly, B∗∗ is a Banach A∗∗ − bimodule with module actions

πt∗∗∗t
ℓ : A∗∗ ×B∗∗ → B∗∗ and πt∗∗∗t

r : B∗∗ ×A∗∗ → B∗∗.

We may therefore define the topological centers of the left and right module actions of A on
B as follows:

ZA∗∗(B∗∗) = Z(πr) = {b′′ ∈ B∗∗ : the map a′′ → π∗∗∗
r (b′′, a′′) : A∗∗ → B∗∗

is weak∗ − to− weak∗ continuous}
ZB∗∗(A∗∗) = Z(πℓ) = {a′′ ∈ A∗∗ : the map b′′ → π∗∗∗

ℓ (a′′, b′′) : B∗∗ → B∗∗

is weak∗ − to− weak∗ continuous}
Zt
A∗∗(B∗∗) = Z(πt

ℓ) = {b′′ ∈ B∗∗ : the map a′′ → πt∗∗∗
ℓ (b′′, a′′) : A∗∗ → B∗∗

is weak∗ − to− weak∗ continuous}
Zt
B∗∗(A∗∗) = Z(πt

r) = {a′′ ∈ A∗∗ : the map b′′ → πt∗∗∗
r (a′′, b′′) : B∗∗ → B∗∗

is weak∗ − to− weak∗ continuous}
We note that if B is a left(resp. right) Banach A − module and πℓ : A × B → B (resp.
πr : B × A → B) is left (resp. right) module action of A on B, then B∗ is a right (resp.
left) Banach A−module.
We write ab = πℓ(a, b), ba = πr(b, a), πℓ(a1a2, b) = πℓ(a1, a2b), πr(b, a1a2) = πr(ba1, a2),
π∗
ℓ (a1b

′, a2) = π∗
ℓ (b

′, a2a1), π
∗
r (b

′a, b) = π∗
r (b

′, ab), for all a1, a2, a ∈ A, b ∈ B and b′ ∈ B∗

when there is no confusion.
Now we introduce some notations and definitions that we use throughout this paper.
Let A be a Banach algebra. We say that a net (eα)α∈I in A is a left approximate identity
(= LAI) [resp. right approximate identity (= RAI)] if, for each a ∈ A, eαa −→ a [resp.
aeα −→ a]. For a ∈ A and a′ ∈ A∗, we denote by a′a and aa′ respectively, the functionals
on A∗ defined by ⟨a′a, b⟩ = ⟨a′, ab⟩ = a′(ab) and ⟨aa′, b⟩ = ⟨a′, ba⟩ = a′(ba) for all b ∈ A.
The Banach algebra A is embedded in its second dual via the identification ⟨a, a′⟩ - ⟨a′, a⟩
for every a ∈ A and a′ ∈ A∗. We denote the set {a′a : a ∈ A and a′ ∈ A∗} and
{aa′ : a ∈ A and a′ ∈ A∗} by A∗A and AA∗, respectively, clearly these two sets are subsets
of A∗. Let A has a BAI. If the equality A∗A = A∗, (AA∗ = A∗) holds, then we say that
A∗ factors on the left (right). If both equalities A∗A = AA∗ = A∗ hold, then we say that
A∗ factors on both sides. We say that a Banach algebra A has BLAI, if A has bounded
LAI. The definition of notations BRAI and BAI for a Banach algebra A are similar.
Let B be a left Banach A − module and e be a left unit element of A. We say that e is
a left unit (resp. weakly left unit) for B, if πℓ(e, b) = b (resp. ⟨b′, πℓ(e, b)⟩ = ⟨b′, b⟩ for all
b′ ∈ B∗) where b ∈ B. The definition of right unit (resp. weakly right unit) is similar. A
Banach A− bimodule B is unital, if it has the same left and right unit as A−module. Let
B be a left Banach A − module and (eα)α ⊆ A be a LAI [resp. weakly left approximate
identity(=WLAI)] for A. (eα)α is left approximate identity (= LAI)[ resp. weakly left



38 Kazem Haghnejad Azar, Masoud Ghanji

approximate identity (=WLAI)] for B, if for all b ∈ B, πℓ(eα, b) → b ( resp. πℓ(eα, b)
w→ b).

The definition of the right approximate identity (= RAI)[ resp. weakly right approximate
identity (= WRAI)] is similar. (eα)α ⊆ A is called a approximate identity (= AI)[ resp.
weakly approximate identity (WAI)] for B, if B has the same left and right approximate
identity [ resp. weakly left and right approximate identity ].
Let (eα)α ⊆ A be weak∗ left approximate identity for A∗∗. Then (eα)α is weak∗ left
approximate identity as A∗∗ − module (= W ∗LAI as A∗∗ − module) for B∗∗, if for all

b′′ ∈ B∗∗, we have π∗∗∗
ℓ (eα, b

′′)
w∗

→ b′′. The definition of the weak∗ right approximate identity
(= W ∗RAI ) is similar. (eα)α ⊆ A is called a weak∗ approximate identity (= W ∗AI ) for
B∗∗, if B∗∗ has the same weak∗ left and right approximate identity. We say that a left
Banach A − module B has BLAI, if B has bounded LAI. The definition of notations
BRAI, BAI, WBLAI, WBRAI, WBAI, W ∗BLAI, W ∗BRAI and W ∗BAI are similar.
Let B be a Banach A− bimodule. We say that B is a left [resp. right] factors with respect
to A, if BA = B [resp. AB = B].

Theorem 2.1. Let A be a Banach algebra with a BAI (eα)α. Let B be a left Banach
A−module and (eα)α ⊆ A be a BLAI for B. Then the following assertions hold.

(1) For each b′ ∈ B∗, we have π∗
ℓ (b

′, eα)
w∗

→ b′.
(2) B∗ factors on the left with respect to A if and only if B∗∗ has a W ∗BLAI (eα)α ⊆ A.
(3) B∗∗ has a W ∗BLAI (eα)α ⊆ A if and only if B∗∗ has a left unit e′′ ∈ A∗∗ such that

eα
w∗

→ e′′.

Proof. (1) For every b ∈ B, since πℓ(eα, b)
∥.∥→ b, πℓ(eα, b)

w→ b. Take b′ ∈ B∗. Then we
have

lim
α
⟨π∗

ℓ (b
′, eα), b⟩ = lim

α
⟨b′, πℓ(eα, b)⟩ = ⟨b′, b⟩.

It follows that π∗
ℓ (b

′, eα)
w∗

→ b′.
(2) Let B∗ factors on the left with respect to A. Then for every b′ ∈ B∗, there are x′ ∈ B∗

and a ∈ A such that b′ = x′a. Then for every b′′ ∈ B∗∗, we have

⟨π∗∗∗
ℓ (eα, b

′′), b′⟩ = ⟨eα, π∗∗
ℓ (b′′, b′)⟩ = ⟨π∗∗

ℓ (b′′, b′), eα⟩

= ⟨b′′, π∗
ℓ (b

′, eα)⟩ = ⟨b′′, π∗
ℓ (x

′a, eα)⟩ = ⟨b′′, π∗
ℓ (x

′, aeα)⟩

= ⟨π∗∗
ℓ (b′′, x′), aeα⟩ → ⟨π∗∗

ℓ (b′′, x′), a⟩

= ⟨b′′, b′⟩.

It follows that

π∗∗∗
ℓ (eα, b

′′)
w∗

→ b′′,

consequently, B∗∗ has W ∗BLAI.
Conversely, let b′ ∈ B∗. Then for every b′′ ∈ B∗∗, we have

⟨b′′, π∗
ℓ (b

′, eα)⟩ = ⟨π∗∗∗
ℓ (eα, b

′′), b′⟩ → ⟨b′′, b′⟩.

It follows that

π∗
ℓ (b

′, eα)
w→ b′,

and so by Cohen factorization theorem, we are done.
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(3) Assume that B∗∗ has a W ∗BLAI (eα)α ⊆ A. Without loss generality, let e′′ ∈ A∗∗ be

a left unit for A∗∗ with respect to the first Arens product such that eα
w∗

→ e′′. Then
for each b′ ∈ B∗, we have

⟨π∗∗∗
ℓ (e′′, b′′), b′⟩ = ⟨e′′, π∗∗

ℓ (b′′, b′)⟩
= lim

α
⟨eα, π∗∗

ℓ (b′′, b′)⟩ = lim
α
⟨π∗∗

ℓ (b′′, b′), eα⟩

= lim
α
⟨b′′, π∗

ℓ (b
′, eα)⟩ = lim

α
⟨π∗∗∗∗

ℓ (b′, eα), b
′′⟩

= lim
α
⟨b′, π∗∗∗

ℓ (eα, b
′′)⟩ = lim

α
⟨π∗∗∗

ℓ (eα, b
′′), b′⟩

= ⟨b′′, b′⟩.
Thus e′′ ∈ A∗∗ is a left unit for B∗∗.

Conversely, let e′′ ∈ A∗∗ be a left unit for B∗∗ and assume that eα
w∗

→ e′′ in A∗∗. Then
for every b′′ ∈ B∗∗ and b′ ∈ B∗, we have

⟨π∗∗∗
ℓ (eα, b

′′), b′⟩ = ⟨eα, π∗∗
ℓ (b′′, b′)⟩

→ ⟨e′′, π∗∗
ℓ (b′′, b′)⟩ = ⟨π∗∗∗

ℓ (e′′, b′′), b′⟩
= ⟨b′′, b′⟩.

It follows that π∗∗∗
ℓ (eα, b

′′)
w∗

→ b′′.
�

Corollary 2.1. Let B be a left Banach A − module and A has a BLAI. If B∗∗ has a
W ∗BLAI , then

{a′′ ∈ A∗∗ : Aa′′ ⊆ A} ⊆ ZB∗∗(A∗∗).

Proof. By using the preceding theorem, since B∗∗ has W ∗BLAI, B∗ factors on the left with
respect to A. Suppose that b′ ∈ B∗. Then there are x′ ∈ B∗ and a ∈ A such that b′ = x′a.

Assume that a′′ ∈ A∗∗ such that Aa′′ ⊆ A. Let b′′ ∈ B∗∗ and (b′′α)α ⊆ B∗∗ such that b′′α
w∗

→ b′′

in B∗∗. Then we have the following equality

lim
α
⟨π∗∗∗

ℓ (a′′, b′′α), b
′⟩ = lim

α
⟨π∗∗∗

ℓ (a′′, b′′α), x
′a⟩

= lim
α
⟨aπ∗∗∗

ℓ (a′′, b′′α), x
′⟩ = ⟨π∗∗∗

ℓ (aa′′, b′′), x′⟩ = ⟨π∗∗∗
ℓ (a′′, b′′), b′⟩.

It follows that a′′ ∈ ZB∗∗(A∗∗). �
In the preceding corollary, if we take B = A, then we have the following conclusion

{a′′ ∈ A∗∗ : Aa′′ ⊆ A} ⊆ Z1(A
∗∗).

Definition 2.1. A functional a′ in A∗ is said to be wap (weakly almost periodic) on A if
the mapping a → a′a from A into A∗ is weakly compact.

The preceding definition is equivalent to the following condition, see [6, 14, 18].
For any two net (aα)α and (bβ)β in {a ∈ A : ∥ a ∥≤ 1}, we have

limαlimβ⟨a′, aαbβ⟩ = limβlimα⟨a′, aαbβ⟩,
whenever both iterated limits exist. The collection of all wap functionals on A is denoted
by wap(A). Also we have a′ ∈ wap(A) if and only if ⟨a′′b′′, a′⟩ = ⟨a′′ob′′, a′⟩ for every
a′′, b′′ ∈ A∗∗.
Let B be a left Banach A−module. Then, b′ ∈ B∗ is said to be left weakly almost periodic
functional if the set {π∗

ℓ (b
′, a) : a ∈ A, ∥ a ∥≤ 1} is relatively weakly compact. We denote
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by wapℓ(B) the closed subspace of B∗ consisting of all the left weakly almost periodic
functionals in B∗.
The definition of the right weakly almost periodic functional (= wapr(B)) is the same.
By [18], the definition of wapℓ(B) is equivalent to the following

⟨π∗∗∗
ℓ (a′′, b′′), b′⟩ = ⟨πt∗∗∗t

ℓ (a′′, b′′), b′⟩
for all a′′ ∈ A∗∗ and b′′ ∈ B∗∗. Thus, we can write

wapℓ(B) = {b′ ∈ B∗ : ⟨π∗∗∗
ℓ (a′′, b′′), b′⟩ = ⟨πt∗∗∗t

ℓ (a′′, b′′), b′⟩
for all a′′ ∈ A∗∗, b′′ ∈ B∗∗}.

Theorem 2.2. Let B be a left Banach A − module and suppose that b′ ∈ wapℓ(B). Let

a′′ ∈ A∗∗ and (aα)α ⊆ A such that aα
w∗

→ a′′ in A∗∗. Then we have

π∗
ℓ (b

′, aα)
w→ π∗∗∗∗

ℓ (b′, a′′).

Proof. Assume that b′′ ∈ B∗∗. Then

⟨π∗∗∗∗
ℓ (b′, a′′), b′′⟩ = ⟨π∗∗∗

ℓ (a′′, b′′), b′⟩ = lim
α
⟨π∗∗∗

ℓ (aα, b
′′), b′⟩

= lim
α
⟨b′′, π∗

ℓ (b
′, aα)⟩.

Now suppose that (b′′β)β ⊆ B∗∗ such that b′′β
w∗

→ b′′. Since b′ ∈ wapℓ(B), we have

⟨π∗∗∗∗
ℓ (b′, a′′), b′′β⟩ = ⟨π∗∗∗

ℓ (a′′, b′′β), b
′⟩ → ⟨π∗∗∗

ℓ (a′′, b′′), b′⟩

= ⟨π∗∗∗∗
ℓ (b′, a′′), b′′⟩.

Thus π∗∗∗∗
ℓ (b′, a′′) ∈ (B∗∗, weak∗)∗ = B∗. We conclude that

π∗
ℓ (b

′, aα)
w→ π∗∗∗∗

ℓ (b′, a′′) in B∗∗.

�
In the preceding corollary, if we take B = A, then we obtain the following result.

Suppose that a′ ∈ wap(A) and a′′ ∈ A∗∗ such that aα
w∗

→ a′′ where

(aα)α ⊆ A. Then we have a′aα
w→ a′a′′.

Theorem 2.3. Let B be a left Banach A − module with BLAI (eα)α ⊆ A. Suppose that
b′ ∈ wapℓ(B). Then

π∗
ℓ (b

′, eα)
w→ b′.

Proof. Let b′′ ∈ B∗∗ and (bβ)β ⊆ B such that bβ
w∗

→ b′′ in B∗∗. Then for every b′ ∈ wapℓ(B),
we have the following equality

lim
α
⟨b′′, π∗

ℓ (b
′, eα)⟩ = lim

α
⟨π∗∗∗∗

ℓ (b′, eα), b
′′⟩

= lim
α
⟨b′, π∗∗∗

ℓ (eα, b
′′)⟩ = lim

α
⟨π∗∗∗

ℓ (eα, b
′′), b′⟩

= lim
α

lim
β
⟨πℓ(eα, bβ), b

′⟩ = lim
β

lim
α
⟨πℓ(eα, bβ), b

′⟩

= lim
β
⟨bβ , b′⟩ = ⟨b′′, b′⟩.

It follows that
π∗
ℓ (b

′, eα)
w→ b′.
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�

Corollary 2.2. Let B be a left Banach A −module with BLAI (eα)α ⊆ A. Suppose that
wapℓ(B) = B∗. Then B∗ factors on the left with respect to A.

Corollary 2.3. Let A be an Arens regular Banach algebra with BLAI. Then A∗ factors on
the left.

Example 2.1. i) Let G be finite group. Then we have the following equality

M(G)∗L1(G) = M(G)∗ and L∞(G)L1(G) = L∞(G).

ii) Consider the Banach algebra (ℓ1, .) which is Arens regular Banach algebra with unit
element. Then we have ℓ∞.ℓ1 = ℓ∞.
iii) Let K(E) be the space of all compact operators from E into E. Let E = ℓp with p ∈
(1,∞). Then by using Theorem 2.6.23 of [6], K(ℓp) is Arens regular. Since K(ℓp) has a
BAI, by preceding corollary, K(ℓp)∗ factors on the left.

Theorem 2.4. Let B be a left Banach A−module and B∗ factors on the left with respect
to A. If AA∗∗ ⊆ ZB∗∗(A∗∗), then ZB∗∗(A∗∗) = A∗∗.

Proof. Let b′′ ∈ B∗∗ and (b′′α)α ⊆ B∗∗ such that b′′α
w∗

→ b′′ in B∗∗. Suppose that a′′ ∈ A∗∗.
Since B∗ factors on the left, for every b′ ∈ B∗, there are x′ ∈ B∗ and a ∈ A such that
b′ = x′a. Since aa′′ ∈ ZB∗∗(A∗∗), we have

⟨π∗∗∗
ℓ (a′′, b′′α), b

′⟩ = ⟨π∗∗∗
ℓ (a′′, b′′α), x

′a⟩

= ⟨aπ∗∗∗
ℓ (a′′, b′′α), x

′⟩ = ⟨π∗∗∗
ℓ (aa′′, b′′α), x

′⟩

→ ⟨π∗∗∗
ℓ (aa′′, b′′), x′⟩ = ⟨π∗∗∗

ℓ (a′′, b′′), b′⟩.
It follows that

π∗∗∗
ℓ (a′′, b′′α)

w∗

→ ⟨π∗∗∗
ℓ (a′′, b′′),

and so a′′ ∈ ZB∗∗(A∗∗). �

Corollary 2.4. Let A be a Banach algebra and A∗ factors on the left. If AA∗∗ ⊆ Z1(A
∗∗),

then A is Arens regular.

Theorem 2.5. Let B be a left Banach A−module and A has a BRAI (eα)α ⊂ A. Then,

B∗ factors on the left if and only if for each b′ ∈ B∗, we have π∗
ℓ (b

′, eα)
w→ b′ in B∗.

Proof. Assume that B∗ factors on the left. Then for every b′ ∈ B∗, there are x′ ∈ B∗ and
a ∈ A such that b′ = x′a. Then for every b′′ ∈ B∗∗, we have

⟨b′′, π∗
ℓ (b

′, eα)⟩ = ⟨b′′, π∗
ℓ (x

′a, eα)⟩ = ⟨b′′, π∗
ℓ (x

′, aeα)⟩

= ⟨π∗∗
ℓ (b′′, x′), aeα)⟩ → ⟨π∗∗

ℓ (b′′, x′), a⟩

= ⟨b′′, b′⟩.
It follows that π∗

ℓ (b
′, eα)

w→ b′ in B∗.
By Cohen factorization theorem, the converse hold. �

In the preceding theorem, if we take B = A, we obtain Lemma 2.1 from [14].

Definition 2.2. An element e′′ of A∗∗ is said to be a mixed unit if e′′ is a right unit for the
first Arens multiplication and a left unit for the second Arens multiplication. That is, e′′ is
a mixed unit if and only if for each a′′ ∈ A∗∗, a′′e′′ = e′′oa′′ = a′′.
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By [4], p.146, an element e′′ of A∗∗ is mixed unit if and only if it is a weak∗ cluster
point of some BAI (eα)α∈I in A.
Let B be a Banach A− bimodule and a′′ ∈ A∗∗. We define the locally topological center of
the left and right module actions of a′′ on B∗∗, respectively, as follows

Zt
a′′(B∗∗) = Zt

a′′(πt
ℓ) = {b′′ ∈ B∗∗ : πt∗∗∗t

ℓ (a′′, b′′) = π∗∗∗
ℓ (a′′, b′′)},

Za′′(B∗∗) = Za′′(πt
r) = {b′′ ∈ B∗∗ : πt∗∗∗t

r (b′′, a′′) = π∗∗∗
r (b′′, a′′)}.

Thus we have ∩
a′′∈A∗∗

Zt
a′′(B∗∗) = Zt

A∗∗(B∗∗) = Z(πt
r),

∩
a′′∈A∗∗

Za′′(B∗∗) = ZA∗∗(B∗∗) = Z(πr).

Theorem 2.6. Let B be a left Banach A−module and A has a BLAI (eα)α ⊆ A such that

eα
w∗

→ e′′ in A∗∗. Suppose that Zt
e′′(B

∗∗) = B∗∗. Then, B factors on the right if and only if
e′′ is a left unit for B∗∗.

Proof. Assume that B factors on the right. Then for every b ∈ B, there are x ∈ B and
a ∈ A such that b = ax. For every b′ ∈ B∗, we have

⟨π∗
ℓ (b

′, eα), b⟩ = ⟨b′, πℓ(eα, b)⟩ = ⟨π∗∗∗
ℓ (eα, b), b

′⟩

= ⟨π∗∗∗
ℓ (eα, ax), b

′⟩ = ⟨π∗∗∗
ℓ (eαa, x), b

′⟩

= ⟨eαa, π∗∗
ℓ (x, b′)⟩ = ⟨π∗∗

ℓ (x, b′), eαa⟩

→ ⟨π∗∗
ℓ (x, b′), a⟩ = ⟨b′, b⟩.

It follows that π∗
ℓ (b

′, eα)
w∗

→ b′ in B∗. Let b′′ ∈ B∗∗ and (bβ)β ⊆ B such that bβ
w∗

→ b′′ in B∗∗.
Since Zt

e′′(B
∗∗) = B∗∗, for every b′ ∈ B∗, we have

⟨π∗∗∗
ℓ (e′′, b′′), b′⟩ = lim

α
lim
β
⟨b′, πℓ(eα, bβ)⟩

= lim
β

lim
α
⟨b′, πℓ(eα, bβ)⟩ = lim

β
⟨b′, bβ⟩

= ⟨b′′, b′⟩.
It follows that π∗∗∗

ℓ (e′′, b′′) = b′′, and so e′′ is a left unit for B∗∗.
Conversely, let e′′ be a left unit for B∗∗ and suppose that b ∈ B. Then for every b′ ∈ B∗,
we have

⟨b′, πℓ(eα, b)⟩ = ⟨π∗∗∗
ℓ (eα, b), b

′⟩ = ⟨eα, π∗∗
ℓ (b, b′)⟩ = ⟨π∗∗

ℓ (b, b′), eα⟩

= ⟨e′′, π∗∗
ℓ (b, b′)⟩ = ⟨π∗∗∗

ℓ (e′′, b), b′⟩ = ⟨b′, b⟩.

Then π∗
ℓ (b

′, eα)
w→ b′ in B∗, and so by Cohen factorization theorem we are done. �

Corollary 2.5. Let B be a left Banach A − module and A has a BLAI (eα)α ⊆ A such

that eα
w∗

→ e′′ in A∗∗. Suppose that Zt
e′′(B

∗∗) = B∗∗. Then π∗
ℓ (b

′, eα)
w→ b′ in B∗ if and only

if e′′ is a left unit for B∗∗.
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For a Banach algebra A, we recall that a bounded linear operator T : A → A is said
to be a left (resp. right) multiplier if, for all a, b ∈ A, T (ab) = T (a)b (resp. T (ab) = aT (b)).
We denote by LM(A) (resp. RM(A)) the set of all left (resp. right) multipliers of A. The
set LM(A) (resp. RM(A)) is normed subalgebra of the algebra L(A) of bounded linear
operator on A.
Let B be a Banach left [resp. right] A − module and T ∈ B(A,B). Then T is called left
[resp. right] multiplier if T (a1a2) = πr(T (a1), a2)
[resp. T (a1a2) = πℓ(a1, T (a2))] for all a1, a2 ∈ A.
We show by LM(A,B) [resp. RM(A,B)] all of the Left [resp. right] multiplier from A into
B.
Lau and Ülger in [14] showed that for Banach algebra A with a BAI, RM(A) is isometrically

isomorphic with M̃1 = {µ ∈ (A∗A)∗ : Aµ ⊆ A}. Now, in the following we study it for left
and right module actions.

Theorem 2.7. The following assertions hold.
i) Let B be a left Banach A−module and A has a BRAI. Then

(1) There is injective linear mapping from LM(A,B) into B∗∗.

(2) RM(A,B) is isometric with M̃1 = {µ ∈ (B∗A)∗ : Aµ ⊆ B}.
ii) Let B be a right Banach A−module and A has a BLAI. Then

(1) There is injective linear mapping from RM(A,B) into B∗∗.

(2) LM(A,B) is isometric with M̃2 = {µ ∈ (AB∗)∗ : µA ⊆ B}.

Proof. We prove (i-1); The proof of (ii-1) is similar to the proof of (i-1) and the proofs of
(i-2) and (ii-2) have similar arguments of Theorem 4.4, from [14].
Assume that e′′ ∈ A∗∗ is a weak∗-cluster point in A∗∗ of a BLAI (eα)α ⊆ A and without

loss generality, let eα
w∗

→ e′′ in A∗∗. It is clear that for every a ∈ A, we have e′′a = a. Let T ∈
LM(A,B). Take the linear mapping ϕ : T → T ∗∗(e′′) from LM(A,B) into B∗∗. Therefore
for every T, S ∈ LM(A,B), if T ∗∗(e′′) = S∗∗(e′′), then we have T ∗∗(e′′)a = S∗∗(e′′)a where
a ∈ A. Consequently, T (a) = S(a). Thus ϕ is injective. �

With notice to preceding theorem for locally compact group G, if we take A = B =

L1(G), then by Theorem 4.2 of [14], we have M̃1 = M(G) and by Corollary 4.5 of [14],
RM(L1(G)) is isometrically isomorphic to M(G).
Problem. Let B be a Banach A− bimodule. Then
i) If B factors on the both side, when B∗ factors?
ii) If B is separable, dose B necessarily factor on the one side?
iii) By notice to Theorem 2-15, for locally compact group G, if we take A = B = L1(G),

what can say for M̃2 and LM(L1(G)?

3. Involution ∗−algebra and Arens regularity of module actions

Definition 3.1. Let B be a left Banach A−module and let (aα)α ⊆ A has weak∗ limit in
A∗∗. We say that (aα)α is left regular with respect to B, if for every (bβ)β ⊆ B, we have

w∗ − lim
α

w∗ − lim
β

aαbβ = w∗ − lim
β

w∗ − lim
α

aαbβ ,

where (bβ)β has weak∗ limit in B∗∗.

The definition of the right regular is similar. For a Banach A − bimodule B, if
(aα)α ⊆ A is left and right regular with respect to B, then (aα)α is called regular with
respect to B. If (aα)α is left or right regular with respect to A, we write (aα)α is left or
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right regular, respectively.

Example 3.1. i) Let B be a right Banach A − module and a′′ ∈ A∗∗. Suppose that
Zr
a′′(B∗∗) = B∗∗ and w∗ − limα aα = a′′ where (aα)α ⊆ A. Then (aα)α is right regular

with respect to B.
ii) Let A be a Banach algebra and (aα)α ⊆ A weak∗ convergence to some point of Z1(A

∗∗).
It is clear that (aα)α is regular.

Theorem 3.1. i) Let B be a left Banach (resp. right) A−module with BLAI (eα)α ⊆ A.
If (eα)α ⊆ A is left (resp. right) regular with respect to B, then B∗ factors on the left (resp.
right).
ii) Let B be a left (resp. right) Banach A −module and suppose that B∗∗ has a left (resp.
right) unit as A∗∗-module. If B∗A (resp. AB∗) is closed subspace of B∗, then B∗ factors
on the left (resp. right).

Proof. i) Let e′′ ∈ A∗∗ and eα
w∗

→ e′′. Assume that (bβ)β ⊆ B such that bβ
w∗

→ b′′ in B∗∗.
Then

e′′b′′ = w∗ − lim
α

eαb
′′ = w∗ − lim

α
w∗ − lim

β
eαbβ = w∗ − lim

β
w∗ − lim

α
eαbβ

= w∗ − lim
β

bβ = b′′.

Thus for every b′ ∈ B∗, we have

⟨b′′, b′⟩ = ⟨e′′b′′, b′⟩ = lim
α
⟨eαb′′, b′⟩ = lim

α
⟨b′′, b′eα⟩.

It follows that b′eα
w→ b′, and so by Cohen factorization theorem, we are done.

ii) Assume that B∗A ̸= B∗. Let e′′ ∈ A∗∗ be a left unit element for B∗∗ and suppose that

there is a net (eα)α ⊆ A such that eα
w∗

→ e′′. By Hahn Banach theorem take 0 ̸= b′′ ∈ B∗∗

such that ⟨b′′, B∗A⟩ = 0. Then for every b′ ∈ B∗, we have

⟨b′′, b′⟩ = ⟨e′′b′′, b′⟩ = lim
α
⟨eαb′′, b′⟩ = lim

α
⟨b′′, b′eα⟩ = 0.

This is contradiction, so B∗A = B∗.
Proof of the next part is similar. �

Suppose A is a Banach algebra with a continuous involution ∼. Then by Lemma 2.1
of [10] , ∼ has an extension to a continuous conjugate linear mapping on A∗∗, denote by the
same symbol ∼, such that (a′′b′′)∼ = (b′′)∼o(a′′)∼ for all a′′, b′′ ∈ A∗∗.
In the following, we define ∼ -involution on a Banach A− bimodule B, and we extend also
it on B∗∗ as A∗∗ − bimodule, denote it by the same symbol ∼.

Definition 3.2. Let B be a Banach A − bimodule and suppose that A is a Banach ∗ −
involution algebra. We say that B is a Banach ∼ −involution algebra as A − module, if
the mapping b → b∼ from B into B satisfies in the following conditions

(ab)∼ = b∼a∼, (ba)∼ = a∼b∼, (λb)∼ = λ̄b∼, (b∼)∼ = b , ∥ b∼ ∥=∥ b ∥,
for all a ∈ A, b ∈ B and λ ∈ C.

Theorem 3.2. Assume that B is a Banach ∼ −involution A − bimodule. Then we have
the following assertions.
i) Let ∼ be extend to B∗∗. Then ∼ is an involution on B∗∗ if and only if Zℓ

A∗∗(B∗∗) = B∗∗.
ii) Suppose that (eα)α ⊆ A is a BLAI for B and it is left regular with respect to B. If B∗∗
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is a Banach ∼ −involution algebra as A∗∗-module, then B∗∗ is unital and B∗ factors on
the both side.

Proof. i) The proof has similar arguments to Lemma 2.1 from [10].
ii) By using Theorem 3-3, we know that B∗ factors on the left and without loss generally,

suppose that there is a left unit for B∗∗ as e′′ ∈ A∗∗ such that eα
w∗

→ e′′. Let b′′ ∈ B∗∗. Then

b′′(e′′)∼ = (e′′(b′′)∼)∼ = ((b′′)∼)∼ = b′′.

Since e′′ = (e′′)∼, B∗∗ is unital. Since (eα)α ⊆ A is a left regular, Zℓ
e′′(B

∗∗) = B∗∗.
Therefore by using Theorem 6-3(ii) from [11], we are done. �

Corollary 3.1. Assume that A is a ∼ −involution algebra. Let B be a Banach A−bimodule
and (eα)α ⊆ A be a BAI for B. If B∗∗ is Banach ∼ −involution algebra as A∗∗-module,
then B∗∗ is unital and B∗ factors on the both side.

Example 3.2. [10] Let G be a locally compact group. Then, on L1(G) there is a natural

involution ∼ defined by f∼(x) = ∆(x−1)f(x−1), where ∆ is modular function and x ∈ G.
By preceding theorem if L1(G)∗∗ is a Banach ∼ −involution algebra, then L1(G)∗∗ is unital
with respect to first Arens product, and so LUC(G) = L∞(G). It follows that G is discrete.

Problem . Let G be a locally compact group. We know that M(G) by µ∼(f) =
∫
f(x−1)dµ

for all f ∈ C0(G) is ∼ −involution algebra. Is there any extension of this ∼ −involution
algebra to M(G)∗∗ whenever M(G)∗∗ equipped first Arens product.
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