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FLOW DYNAMICS REGIMES VIA NON-
DIFFERENTIABILITY IN COMPLEX FLUIDS 

Ciprian Iulian AXINTE1, Constantin BACIU2, Simona VOLOVĂŢ3, Dan 
TESLOIANU4 , Zoltan BORSOS5, Anca BACIU6, Maricel AGOP7 

A new topic in the analyses of complex fluid dynamics, considering that the 
movements of the complex fluid entities take place on continuum but non-
differentiable curves is proposed. It results that in the dispersive approximation of 
motion, two distinguished flow regimes (non-quasi-autonomous and quasi-
autonomous) by means of cnoidal modes of a velocity field can be established. The 
self-similarity of these modes specifies both the existence of some “cloning” 
mechanisms but also holographic behaviours. Some correlations with experimental 
data in plasma ablation are presented.  
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1. Introduction 

The complex fluids dynamics is an interdisciplinary research topic that has 
been studied by means of a combination of basic theory, derived especially from 
physics and computer simulation. Such systems are composed of many interacting 
elemental units (called „agents”) and, among the most significant properties are 
the self-organization, the adaptability etc [1-3]. Examples of the most studied 
complex fluids are: colloidal fluids, polymers, foams, emulsions, gels, 
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suspensions, micelar and liquid-crystal phases, molten materials, blood, etc. In 
this case the fluids do not obey to the hydrodynamic laws [4-6].  

Plasma of electrical discharges shows complex dynamics as periodic 
transitions between multiple states [7-9], intermittency [10,11], chaos and 
hyperchaos[12]. The electrical response to different perturbations (periodic [13-
16] or noisy[17]) can be explained using models involving transitions between 
solid-like and fluid-like behavior. Despite the large variety of the theoretical 
models that describe the complex dynamics [7, 9, 18-19], the physical origin of 
complexity is still a subject of interest. A possible solution can be the new 
approach based on the model of flow dynamics regimes via non-differentiability. 
In this way, both the complexity of interaction process that determines various 
temporal resolution scales and the patterns evolution that determines different 
degrees of freedom are taking into account.  

In the framework of the multiscale approach of complex fluid dynamics, 
the main hypotheses are based on that, for temporal scales that are large with 
respect to the inverse of the highest Lyapunov exponent, the deterministic 
trajectories of the complex fluid particles are replaced by a collection of virtual 
trajectories and the concept of definite positions by that of probability density [20-
22]. Since, in such context, the non-differentiability appears as a universal 
property of the complex fluids dynamics, it is necessary to construct a non-
differentiable physics by considering that the complexity of the interactions 
processes is replaced by non-differentiability. This topic was developed using the 
Scale Relativity Theory (SRT) [23,24] and its extensions [25-26].  

In the present paper we propose a new approach in the analyses of 
complex fluid dynamics, using SRT. Considering that the entities of the complex 
fluid are moving on continuous but non-differentiable curves, we show that in the 
dispersive approximation of SRT, two distinct flow regimes of the complex fluid 
appear. These regimes are controlled by means of a non-linear parameter 
associated to the modulus of the elliptic function cn (cnoidal oscillation modes of 
a velocity field). 

2. Geodesics equations 

We can simplify the dynamics of a complex fluid supposing that it 
displays chaotic behaviours (i.e. self-similarity and strong fluctuations at all 
possible scales [1-6,10-12,14,18,19,25,26]). This means that the complex fluid 
particles move on continuous but non-differentiable curves, i.e. fractal curves (for 
example, the Koch curve, the Peano curve or the Weierstrass curve [20,23,24]).  

Once such hypothesis accepted, some consequences of non-
differentiability through SRT become obvious [23,24]: i) physical quantities 
describing the complex fluid dynamics are fractal functions, i.e. functions that 
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simultaneously depend on spatial coordinates, time and scale resolution, δt/τ 
(identified here with dt/τ by substitution principle [23,24]). We mention that in 
classical physics, the physical quantities describing the dynamics of a complex 
fluid are continuous but differentiable functions  merely depending on spatial 
coordinates and on time; ii) the complex fluid will behave as a special interaction-
less „fluid” by means of geodesics in a fractal space (these geodesics are 
identified with the stream lines of complex fluid). In such conjecture, the 
dynamics of the complex fluid particles are given by the fractal operator  

(the dispersive approximation of motion of SRT) [19,26]: 
( ) ( )2/ 1 3/ 12 3

3
ˆ 2ˆ

3

F FD Dd dt dti
dt t

λ λ
τ τ τ τ

− −∂ ⎛ ⎞ ⎛ ⎞= + ⋅∇ − Δ + ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
V   (1) 

where 
ˆ

D Fi−V = V V      (2) 
is the complex velocity, VD is the differentiable and resolution scale independent 
velocity, VF is the non-differentiable and resolution scale dependent velocity. 
ˆ ⋅∇V is the convective term, the next term in (1) is the dissipative term and the 

last one is the dispersive term. DF is the fractal dimension of the movement curve, 
λ is the spatial resolution scale, τ is the temporal resolution scale and 2 / Dλ τ ≡  is 
the Nottale coefficient specific to fractal – non-fractal transition [23,24]. In the 
case of fractal dimension DF, we can use any definition (the Hausdorff – 
Besikovici fractal dimension, the Kolmogorov fractal dimension etc. [20,22,24]), 
but once such definition accepted, it has to be constant over the entire complex 
fluid dynamics analysis. 

Applying the fractal operator (1) to the complex speed (2) and accepting 
a generalized inertial principle (a generalization of Nottale's principle of scale 
covariance [19,26]), we obtain the geodesics equation: 

( )
( ) ( )2/ 1 3/ 12 3

3
ˆ ˆ ˆ 2ˆ ˆ ˆ ˆ
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Equation (3) shows that at any point of a fractal path, local acceleration, 
ˆ

t∂V , convection, ( )ˆ ˆ∇V V , the dissipation, ( )( )2/ 12 ˆ/ / FDdtλ τ τ − ΔV ,  and 

dispersion, ( )( )3/ 13 3 ˆ/ / FDdtλ τ τ − ∇ V  are in equilibrium. The presence of the 
dispersive term in (3) generalizes the results from [23,24], so that all implications 
from [19,26] (the behaviours of the complex fluids are viscoelastic or hysteretic) 
and not only, can be here extended. 

Since the movement of the complex fluid lacks interaction, we practically 
make use of self-convection, self-dissipation and self-dispersion type 
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mechanisms. Then, the geodesics equations are identified with “stream lines” of 
the complex fluid.   

3. Separation of flow dynamics regimes in complex fluids 

Separating in geodesics equation (3) the real part from the imaginary one 
of velocity field (2), for the differentiable scale resolution, we obtain: 

( ) ( )
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while for the fractal one: 
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For irotational motions of the velocity field (2), 

ˆ 0, 0, 0D F=∇× ∇× = ∇× =V V V    (6a-c) 
 

the following form can be chosen: 
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or explicitly, with ( )exp iSψ ρ= , 
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where ρ  is an amplitude and S a phase. In such a context, if the dissipative 
effects are negligible compared to the convective and dispersive ones, then the 
equations (4) and (5) take the form (for details of the method see [18,25,26]): 
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( )
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An explicit form of the velocity field VD is obtained for the one-
dimensional case. In dimensionless variables 

0

, , , D

D

Vt kx M
V

ω τ ξ θ ξ τ φ= = = − =    (10a-d) 

the solution of equation (9) using the method from [19,26] becomes: 

( )2
0

( )2 1 2 ;
( )

E sa acn s
K s

Φ Φ α θ θ
⎡ ⎤

= + − + −⎡ ⎤⎢ ⎥ ⎣ ⎦
⎣ ⎦
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where K(s), E(s) are the complete elliptical integrals of first and second kind of 
modulus s, cn is the Jacobi elliptical function of argument α(θ - θ0) and modulus s 
[27], a is an amplitude and Φ  is an average value of the states density. Details on 
defining parameters s, a and Φ  can be found in [4,6,28]. Moreover, in previous 
relations (10a-d), ω is a specific pulsation, k is the inverse of a specific length, 

0DV  is a specific velocity and M is an equivalent of Mach number. These 
parameters are specific to the complex fluid characterizing both structure and 
dynamic types [4-6]. Therefore the flow dynamics of the complex fluids is 
achieved through space-time cnoidal oscillation modes of the velocity field 
(Fig.1). The oscillation modes are explained through modulus s of the elliptical 
function cn, non-linearity parameter depending both on structure and dynamic 
types of the complex fluids. Moreover, the oscillation modes are self-similar via 
the parameter s (Fig.2a,b) which specifies the fractal character of the flow 
processes in complex fluids. 

 

Fig. 1. Three-dimensional dependence of cnoidal oscillations modes of velocity field 
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Fig. 2. Self-similar contour curves of the velocity field versus non-linear parameter s: a) 0 ≤ s ≤ 
0.5, b) 0 ≤ s ≤ 0.2 

 
The self-similarity of the cnoidal modes specifies the existence of some 

“cloning” mechanisms (full and fractional velocity function – a function which 
evolves in time to a state describable as a collection of spatially distributed sub-
velocity-functions that each closely reproduces the initial velocity-function shape) 
[29]. All these show a direct connection between the fractal structure of the flow 
dynamics of complex fluid and holographic behaviours [30]. 

The space-type cnoidal oscillation modes have the following characteristic 
parameters: 

i) Wave number 
1/2

( )
ak

sK s
π

=      (12) 

ii) Phase velocity  
2
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iii) Period (see Figure 3a,b) 
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Fig. 3. The period of the cnoidal oscillation modes versus a and s (a); two dimensional contour of 

the period (b) 
 

For s → 0 (11) it is reduced to a harmonic package type sequence, while 
for      s → 1, (11) it is reduced to a soliton package type sequence. For s = 0 (11) 
it is reduced to a harmonic type sequence and for s  = 1 (11) it is reduced to 
soliton type sequence. 

Through non-linearity s two distinct “flow” regimes of the complex fluid 
appears: non-quasi-autonomous regime (by harmonic type sequences, harmonic 
package type sequence), and quasi-autonomous respectively (by soliton type 
sequences, soliton package type sequences) - see Fig.3a, b.  

In such context, we can consider that the nonlinear and chaotic dynamics 
generated by space charge configurations or other localized particles structures in 
an electrical plasma discharge can be explained and modelled by the complex 
fluid flow dynamics. Particularly, in the case of plasma ablation [31,32] the two 
plasma structures experimentally observed by optical and electrical measurements 
(structures that correspond to two types of electrons, cold and hot) can be 
generated by means of two flow regimes of the complex fluid previously 
mentioned. Indeed, if the temperature of the hot electrons is kBTe ≈ 8 eV and the 
temperature of the cold electrons is kBTe ≈ 2 eV [31-35] then, according with 
SRT, by means of the relation /B e esD k T mν= , where m is the rest mass of the 
entities from the plasma ablation, νes the collision frequency, we can define two 
fractal-nonfractal “diffusion coefficients” corresponding to the flow regimes. i.e. 
Dh ≈ 4·102 m2/s and Dc ≈ 30 m2/s (for details see [35]). Considering that the two 
ablation plasma structures are associated with double layers [36] with the 
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dimensions Lh ≈ 10-2 m and Lc ≈ 1.5·10-2m (see the evolution of the visible 
emission from the aluminum plasma plume recorded using camera with gating 
time 20 ns [35]), it result the characteristic velocities Vh = Dh/Lh ≈ 4·104 m/s2 and 
Vc = Dc/Lc ≈ 2·103 m/s. These values are close to those obtained by means of the 
expansion velocities of the experimental first (hot) and second (cold) plasma 
structures (for details on the method see [35]). We note that the complex fluid 
methods [18,19,25,26] give reliable results and can be used together with the 
methods of non-linear dynamics and chaos [7,8,11-13], to the analyses of the 
dynamics experimentally observed in electrical discharge plasmas. 

4. Conclusions 

The main conclusions of the present paper are the following: 
− Supposing that the entities of a complex fluid are moving on continuous 

and non-differentiable curves (fractal curves) the geodesics are obtained. 
These geodesics are identified with the complex fluid stream lines; 

− If the dissipative effects are negligible compared to the convective and 
dispersive ones, for one dimensional case the solution of motion equation 
is established. In such context the flow regimes of the complex fluid are 
controlled by means of cnoidal oscillation modes of the velocity field; 

− The flow regime types are explained by means of cnoidal elliptical 
function modulus. So, non-quasi-autonomous regime (by harmonic type 
sequences, harmonic package type sequence), and quasi-autonomous one 
(by soliton type sequences, soliton package type sequences) are obtained; 

− The self-similarity of the cnoidal modes specifies the existence of some 
“cloning” mechanisms. All these show a direct connection between the 
fractal structure of the flow dynamics of complex fluid and holographic 
behaviours; 

− Possible validations of the model by means of plasma ablation 
experimental data are presented. 
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