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ON THE LAGRANGE COMPLEX INTERPOLATION 

Adrian NEAGOE1 

In lucrare prezint unele rezultate legate de interpolarea Lagrange în 
domeniul complex ( cor. prop. 1şi prop. 2 ). Formula (6) este o extindere a formulei 
lui Shannon de eşantionare (7) , pentru cazul momentelor echidistante de 
eşantionare . In  §2 am adăugat un rezultat privind eşantionarea in domeniul 
frecvenţelor. In §3 am dat o extindere multidimensională a formulei de eşantionare , 
care nu foloseşte interpolarea Lagrange,  ci o abordare distribuţională . 

 
In this work, I present some results regarding the Lagrange interpolation 

in the complex domain (cor. prop. 1 and prop. 2). Formula (6) is an extension of the 
well-known Shannon’s sampling formula (7) , for sampling equidistant moments. In 
§2 I present a simple result regarding the sampling in frequency. In §3 I give a 
multidimensional extension , which does not use the Lagrange interpolation but a 
distributional approach. 

  
Key words: Lagrange interpolation in the complex domain, sampling theorem,  
                    multidimensional sampling theorem.  
 

1. Lagrange interpolation in complex domain 
 

Recall that a function  f : ℂ → ℂ is called entire if it is holomorphic 
(≡analytical ) in all the complex plane. If (an), 1≥n  is a given sequence of 
complex numbers and ∞→nz , the Lagrange interpolation problem consists of 
finding an entire function  f so that 1,)( ≥∀= nazf nn . 
This problem has solutions only if we impose some supplementary conditions 
regarding the sequence (an) . 
 PROPOSITION 1. Fix a real number T>0. Let Tnzn = , with n∈ ℤ and 

the function φ: ℂ → ℂ , 
T

sin)( zz π
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 is uniformly convergent on any compact in ℂ. 

 Proof : The series (1) becomes ∑
∈ −Z cos)T(
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If 0R > and R|| ≤z , then for every |n| large enough , we have 
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Accordingly, the rest of the considered series of functions is uniformly convergent 
towards zero for N ∞→  
 Applying the fact that the sum of a series of entire functions, uniformly 
convergent on any compact , is an entire function, we get the following: 

COROLLARY : Under the hypothesis of prop. 1 , the function  f : ℂ → ℂ , 

∑
∈

−=
Z

)T(
T

)(
n

n nzsaazf π  is entire and, moreover nanTf =)( , for any n∈ℤ [1]. 

 

2. A generalization of the sampling Shannon formula 

Fix 0T > and let f : ℂ → ℂ be an entire function. Denote T)
2
1( +=ρ nn  

and consider the complex integral 

∫
ρ=
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The residue of the function under the integral in the simple pole kT is equal to 

π
π

−π kzk
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 . Then, 

acording to the residues theorem , it results that  
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On the other hand , we estimate the integral (2) direct by the  parametrization of 
the path of integration ; put ]2,0[, π∈⋅ρ= teu it

n , hence 
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But for any ]2,0[ π∈t , |
T

sin||)sin|
T

exp( it
nn et ρ

π
<ρ

π  . 

Moreover , for any z fixed , 1||lim =
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PROPOSITION 2.  Let 0T > fixed and f : ℂ → ℂ be an entire function 

with the  property that it there is 0M > and a real number ),0(
T
π

∈β so that 

M|)(| ≤xf  for any x∈ ℝ and  |)sin|exp(M|)(| trzf β⋅≤ for any itrez = . Then 

∑
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Proof :  Thus, |)sin|exp(M|)(| tef n
it

n βρρ ⋅≤ ; so, according to (5) ,  

∫ ⋅−≤
π
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π
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0

|)sin|)
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exp((M4|)(I| dttz nn . Because 
T
π

<β  , 0)(I →zn  for 

∞→n  , uniformly on any compact, the relation (6) follows . 
NOTE. If the values  f(nT) , n∈ ℤ are previously fixed , the entire function 

f is uniquely determinated ( by applying the identity principle ). 
CORROLARY.  If f : ℝ → ℂ belongs to L1∩L2 and ],[ˆsupp bbf −⊂ , then 

∑
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−⋅=
Z

)()()(
n

nbtsa
b

nftf ππ , a.e. t∈ℝ.                             (7) 

This is the classical formulation of the Shannon formula. The formula (6) 
is a generalization of this. Here is a simpler argument to get (7), by using 
distributions: if u means the unit step function then 

∑
∈

−⋅−−+=
Zn
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then 0)(ˆ =ωf  and 0)()( =−−+ bubu ωω ; and if b<||ω , then ),(2 bbnb −∈−ω  
only for n = 0 and for 0≠n , 0)2(ˆ =− nbf ω ]. From the previous relation, one 
gets ∑

∈

−∗⋅−−+=
Z

)2()(ˆ))()(()(ˆ
n

nbfbubuf ωδωωωω  and it is enough to apply 

the Fourier inversion formula . 

            NOTE. 1) The function )
T

()( zsaz π
=ϕ  is a good interpolator , in the sense 

that whenever ∑ ⋅−=
n

nfnzzf )T()T()( ϕ , it follows for any δ>0 , that 

∑ −⋅+−=
n

nfnzzf )T()T()( δδϕ [3]. 

 2) The signals which do appear in nature are random and one can extend 
the relation (7) to random signals: namely if )( tξ is a stationary random signal 
with a null mean and a limited band of frequency , then )( πξξ π nbtsa

Zn b
nt −⋅= ∑

∈

 

[2], [4]. 
 The above corollary suggest a dual result , regarding the sampling in 
frequency of the spectral function f̂  of f : qualitatively, the value of f̂  in any 
frequency is well determined from the values in some discrete frequencies . 
 

 PROPOSITION 3. Suppose that f∈  L1∩L2 has a bounded duration ( that 
is , 0>∃τ  such that 0)( =tf  for τ≥|| t ). Then 
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3. A multidimensional extension of the Shannon formula 

In the case of the multidimensional signals, the Lagrange type 
interpolation cannot be directly applied . Instead, in this case , one can use the 
previous argument , by making use the distributions.  
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For the multidimensional case , the Lagrange interpolation from §1, 2 is 
not directly possible, but it could be applied the previous argument , by making 
use the distributions. Namely, we prove: 

PROPOSITION 4. Let f : ℝn→ℂ be a function from L2(ℝn) with supp
∧
f  

bounded. Then there are vectors v1,….,vn ∈ ℝn so that a.e. ∈∀x  ℝn ,  f(x) is well 

determined by the values of f in the set of values 
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Proof. Choose v1,….,vn linear independent and let u1,…..,un their 
reciprocals ( such that it takes place the following relation between euclidean 

inner products : ijji vu πδ= 2,  for every i,j) . We shall note ∑
=

=⋅
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1
 and 

we shall define a sampling function s , similar with “sa” , so that the following 
formula holds: 
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If such a function really exists, then 
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parallelipiped  built on the vectors u1,…..,un. Applying the Fourier n-dimensional 

operator , it results ∑
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enough to choose vectors v1,….,vn so that the supports of )( ukf ⋅+ω
∧

 are disjoint 

and consider a function s so that W=
∧
s , constant on supp

∧
f  and null for the  

values ω where 0)( ≠⋅+ω
∧

ukf  , for 0≠k . The formula (9) is then obtained by 
applying the Fourier inversion formula . 
 

4. Conclusions 

In this work , one presents some results regarding the Lagrange 
interpolation in the complex plane , which have close connections with the 
Shannon sampling theorem ( propositions 1 , 2 ) . One can also apply the adopted 
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method for the case of the random signals and that of nonequidistant moments .  
In the paragraph 2 I have added a formula (8) for the sampling in frequency. One 
asserts and proves an extension of the sampling theorem to the case of functions 
of several variables . 
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