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ON THE LAGRANGE COMPLEX INTERPOLATION

Adrian NEAGOE!

In lucrare prezint unele rezultate legate de interpolarea Lagrange in
domeniul complex ( cor. prop. 1si prop. 2 ). Formula (6) este o extindere a formulei
lui Shannon de esantionare (7) , pentru cazul momentelor echidistante de
esantionare . In §2 am adaugat un rezultat privind esantionarea in domeniul
frecvengelor. In §3 am dat o extindere multidimensionala a formulei de esantionare ,
care nu foloseste interpolarea Lagrange, ci o abordare distributionald .

In this work, I present some results regarding the Lagrange interpolation
in the complex domain (cor. prop. 1 and prop. 2). Formula (6) is an extension of the
well-known Shannon’s sampling formula (7) , for sampling equidistant moments. In
$2 I present a simple result regarding the sampling in frequency. In §3 I give a
multidimensional extension , which does not use the Lagrange interpolation but a
distributional approach.

Key words: Lagrange interpolation in the complex domain, sampling theorem,
multidimensional sampling theorem.

1. Lagrange interpolation in complex domain

Recall that a function f: C — C is called entire if it is holomorphic
(=analytical ) in all the complex plane. If (a,), »>1 is a given sequence of
complex numbers and z, — oo, the Lagrange interpolation problem consists of
finding an entire function fso that f(z,)=a,,Vn2>1.

This problem has solutions only if we impose some supplementary conditions
regarding the sequence (a,) .

PROPOSITION 1. Fix a real number T>0. Letz, =nT, with ne Z and

the function ¢: C — C, ¢(z) = sm? If a sequence (a,) , ne Z has the property

thatVe >0, 3IM >0 and N(¢) so that |a, |< 1\:I+8 for n>N(g), then the
[n]
series
(P(Z Nz-2,)
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is uniformly convergent on any compact in C.

. . 1
Proof : The series (1) becomes Zan sin 2= =

nez %(z —nT)cosnrx

sinu

Zansa%(z —nT), where we have denoted sa(u) = (u=0)andsa(0)=1.

neZ

If R >0and|z |< R, then for every |n| large enough , we have
M-S(R)

’
n |1+€

| ansa(% (z—nT)) £ where S(R) = sup{| sa(u) |;|u < R}.

So, for any N fixed, | Y a, ~sa(% (z-nT)[<2M-SR)- Y |
n=N

l+¢ °
[n|>N n

Accordingly, the rest of the considered series of functions is uniformly convergent
towards zero for N— oo

Applying the fact that the sum of a series of entire functions, uniformly
convergent on any compact , is an entire function, we get the following:

COROLLARY : Under the hypothesis of prop. 1, the function f: C —» C,

f(2)= Zansa%(z —nT) is entire and, moreover f(nT)=a,,, forany neZ [1].

neZ

2. A generalization of the sampling Shannon formula

Fix T>O0and let f: C — C be an entire function. Denotep,, = (n +%)T

and consider the complex integral

L=t [ LW s @

27 T’

i :
=p, (u—2z)sin—
|zl=p, (1 —2) T
The residue of the function under the integral in the simple pole £T is equal to

J(KT) and forz # kT, the residue in z is equal to M . Then,
(km— E) coskm sin =
T T

acording to the residues theorem , it results that

L= Y ST () 3)

kTI<p, (kn—"")coskn sin -
T T
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On the other hand , we estimate the integral (2) direct by the parametrization of
the path of integration ; putu =p,, ~eit, t €[0,2m], hence
21| 1,(2) |= j —n "n —do 4)
0 (pye”’ —2)-sin(_pye”

But for any ¢ €[0,27], exp(%pn |sinz]) < sin%pneit | .

. ' z i z 1
Moreover , for any z fixed, lim |e" ———|=1 so |e" ———|>— for any n large

n— Pn Pn
enough . From (4) one can obtain the estimation
4T 1 f(pe")]
ILEK=] dr. (5)

79 exp(> p, |sint )
T
PROPOSITION 2. Let T >O0fixed and f: C — C be an entire function

with the property that it there is M >0and a real numberf} € (O,%) so that
| f(x)[€M forany xe R and | f(z)|<M:-exp(fr|sint|)for any z = re' . Then

f=3 f(nT)-sa(%(z—nT». (6)

neZ
Proof : Thus, | f(p,e")|<M-exp(fp, |sint|); so, according to (5),

27
[1,(2)|< % J.exp((ﬁ —%) -p, |sint |)dt . Because 3 < % , 1,,(z) > 0 for
0

n — oo , uniformly on any compact, the relation (6) follows .
NOTE. If the values f(nT), ne 7 are previously fixed , the entire function
f1s uniquely determinated ( by applying the identity principle ).
CORROLARY. Iff: R — C belongs to L' "L? and suppf c[-b,b], then

=3 f(%) -sa(bt —nx), ae. teR. 7)

neZ
This is the classical formulation of the Shannon formula. The formula (6)
is a generalization of this. Here is a simpler argument to get (7), by using
distributions: if # means the unit step function then
f(@) =Y (w(@+b)~u(@-b))- f(w-2nb), for any w R [indeed, if | & > b,

neZ
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then j}(a)) =0 and u(w+b)-u(w—->b)=0;andif |w|< b, then w—2nb e (-b,b)
only for n =0 and for n # 0, f (w—2nb) = 0]. From the previous relation, one
gets /}(a)) =w(w+b)—u(w->))- f(a)) * Z O(w—2nb) and it is enough to apply

neZ

the Fourier inversion formula .

NOTE. 1) The function ¢(z) = sa(%) is a good interpolator , in the sense

that whenever f(z) = z @(z—nT)- f(nT), it follows for any 6>0 , that

f(2)=) p(z—nT+6)- f(nT-6)[3].

2) The signals which do appear in nature are random and one can extend
the relation (7) to random signals: namely if (£,)is a stationary random signal

with a null mean and a limited band of frequency , then & = Zﬁm -sa(bt —nr)

neZ p

[2], [4].

The above corollary suggest a dual result , regarding the sampling in
frequency of the spectral function f of f': qualitatively, the value of f in any
frequency is well determined from the values in some discrete frequencies .

PROPOSITION 3. Suppose that fe L'~ L? has a bounded duration ( that
is, 37 >0 such that f(¢#)=0 for |#|> 7). Then

Voek, f(@) =Y f&)-sar(zw-n) (8)

neZ T

Proof. We have f(¢) = (u(z + %) —u(t— %)) (f()* Y 5(t—n7)) and

neZ

apply the Fourier transform : f (w) = S POT [ f (w)- 1 Z o(w— E)] =
Tw T nez 2
=3 (0~ 222« f(w)], whence (8) .
= T TOT

3. A multidimensional extension of the Shannon formula

In the case of the multidimensional signals, the Lagrange type
interpolation cannot be directly applied . Instead, in this case , one can use the
previous argument , by making use the distributions.
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For the multidimensional case , the Lagrange interpolation from §1, 2 is
not directly possible, but it could be applied the previous argument , by making
use the distributions. Namely, we prove:

N
PROPOSITION 4. Let /: R"—C be a function from L*(R") with supp f

bounded. Then there are vectors vy,....,v, € R" so that a.e. Vxe R", f(x)is well

n
determined by the values of f'in the set of values Q = {Z kivilky,....k, € Z} .
i=1
Proof. Choose vi,....,v, linear independent and let uy,.....,u, their
reciprocals ( such that it takes place the following relation between euclidean

n
inner products : <ul-,vj> =2nd;; for every ij) . We shall note k-v = zki"i and
i=1

we shall define a sampling function s , similar with “sa” , so that the following
formula holds:

f)= D f(k-v)-s(x—k-v) ae xe R", )
kez"
If such a function really exists, then

flk-v)-s(x—k-v)= ff(y)-S(x—y)ﬁ(y—lﬂ)dy

Rn
1 —i : .
But, f(x)=7 > f()e " VEE> s(x— y)dy, where W is the volume of the
kezZ"
parallelipiped built on the vectors uy,.....,un. Applying the Fourier n-dimensional

/AN 1 A AN
operator , it results f(o) = W s(m)- Zf(co+l£~g) for any e R”. Then it is
kez"

N
enough to choose vectors vy,....,v, so that the supports of f(w+k-u) are disjoint

AN N
and consider a function s so that s = W, constant on supp /' and null for the

A\
values @ where f(ow+k-u)+#0 , for k# 0. The formula (9) is then obtained by
applying the Fourier inversion formula .

4. Conclusions

In this work , one presents some results regarding the Lagrange
interpolation in the complex plane , which have close connections with the
Shannon sampling theorem ( propositions 1, 2 ) . One can also apply the adopted
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method for the case of the random signals and that of nonequidistant moments .
In the paragraph 2 I have added a formula (8) for the sampling in frequency. One
asserts and proves an extension of the sampling theorem to the case of functions
of several variables .
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