

ON THE LAGRANGE COMPLEX INTERPOLATION

Adrian NEAGOE¹

In lucrare prezint unele rezultate legate de interpolarea Lagrange în domeniul complex (cor. prop. 1 și prop. 2). Formula (6) este o extindere a formulei lui Shannon de eșantionare (7), pentru cazul momentelor echidistante de eșantionare. În §2 am adăugat un rezultat privind eșantionarea în domeniul frecvențelor. În §3 am dat o extindere multidimensională a formulei de eșantionare, care nu folosește interpolarea Lagrange, ci o abordare distribuțională.

In this work, I present some results regarding the Lagrange interpolation in the complex domain (cor. prop. 1 and prop. 2). Formula (6) is an extension of the well-known Shannon's sampling formula (7), for sampling equidistant moments. In §2 I present a simple result regarding the sampling in frequency. In §3 I give a multidimensional extension, which does not use the Lagrange interpolation but a distributional approach.

Key words: Lagrange interpolation in the complex domain, sampling theorem, multidimensional sampling theorem.

1. Lagrange interpolation in complex domain

Recall that a function $f : \mathbb{C} \rightarrow \mathbb{C}$ is called entire if it is holomorphic (≡analytical) in all the complex plane. If (a_n) , $n \geq 1$ is a given sequence of complex numbers and $z_n \rightarrow \infty$, the Lagrange interpolation problem consists of finding an entire function f so that $f(z_n) = a_n$, $\forall n \geq 1$.

This problem has solutions only if we impose some supplementary conditions regarding the sequence (a_n) .

PROPOSITION 1. Fix a real number $T > 0$. Let $z_n = nT$, with $n \in \mathbb{Z}$ and the function $\varphi : \mathbb{C} \rightarrow \mathbb{C}$, $\varphi(z) = \sin \frac{\pi z}{T}$. If a sequence (a_n) , $n \in \mathbb{Z}$ has the property that $\forall \varepsilon > 0$, $\exists M > 0$ and $N(\varepsilon)$ so that $|a_n| < \frac{M}{|n|^{1+\varepsilon}}$ for $n \geq N(\varepsilon)$, then the series

$$f(z) = \sum_{n=1}^{\infty} \frac{a_n \varphi(z)}{\varphi'(z_n)(z - z_n)}, \quad (1)$$

Prof., Jean Monnet Theoretical High School, Bucharest, Romania, adrianneagoe78@yahoo.com

is uniformly convergent on any compact in \mathbb{C} .

Proof : The series (1) becomes $\sum_{n \in \mathbb{Z}} a_n \sin \frac{\pi z}{T} \frac{1}{\frac{\pi}{T}(z - nT) \cos n\pi} = \sum_{n \in \mathbb{Z}} a_n \frac{\pi}{T} (z - nT)$, where we have denoted $sa(u) = \frac{\sin u}{u}$ ($u \neq 0$) and $sa(0) = 1$.

If $R > 0$ and $|z| \leq R$, then for every $|n|$ large enough, we have

$$|a_n sa(\frac{\pi}{T}(z - nT))| \leq \frac{M \cdot S(R)}{|n|^{1+\varepsilon}}, \text{ where } S(R) = \sup \{|sa(u)|; |u| \leq R\}.$$

$$\text{So, for any } N \text{ fixed, } \left| \sum_{|n|>N} a_n \cdot sa(\frac{\pi}{T}(z - nT)) \right| \leq 2M \cdot S(R) \cdot \sum_{n=N}^{\infty} \frac{1}{n^{1+\varepsilon}}.$$

Accordingly, the rest of the considered series of functions is uniformly convergent towards zero for $N \rightarrow \infty$

Applying the fact that the sum of a series of entire functions, uniformly convergent on any compact, is an entire function, we get the following:

COROLLARY : Under the hypothesis of prop. 1, the function $f: \mathbb{C} \rightarrow \mathbb{C}$,

$$f(z) = \sum_{n \in \mathbb{Z}} a_n sa(\frac{\pi}{T}(z - nT)) \text{ is entire and, moreover } f(nT) = a_n, \text{ for any } n \in \mathbb{Z} [1].$$

2. A generalization of the sampling Shannon formula

Fix $T > 0$ and let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Denote $\rho_n = (n + \frac{1}{2})T$

and consider the complex integral

$$I_n(z) = \frac{1}{2\pi i} \int_{|z|=\rho_n} \frac{f(u)du}{(u - z) \sin \frac{\pi u}{T}}, n \in \mathbb{Z} \quad (2)$$

The residue of the function under the integral in the simple pole kT is equal to $\frac{f(kT)}{(k\pi - \frac{\pi z}{T}) \cos k\pi}$ and for $z \neq kT$, the residue in z is equal to $\frac{f(z)}{\sin \frac{\pi z}{T}}$. Then,

according to the residues theorem, it results that

$$I_n(z) = \sum_{|kT| \leq \rho_n} \frac{f(kT)}{(k\pi - \frac{\pi z}{T}) \cos k\pi} + \frac{f(z)}{\sin \frac{\pi z}{T}} \quad (3)$$

On the other hand, we estimate the integral (2) direct by the parametrization of the path of integration ; put $u = \rho_n \cdot e^{it}$, $t \in [0, 2\pi]$, hence

$$2\pi |I_n(z)| = \left| \int_0^{2\pi} \frac{f(\rho_n e^{it}) \cdot \rho_n i e^{it}}{(\rho_n e^{i\theta} - z) \cdot \sin(\frac{\pi}{T} \rho_n e^{it})} d\theta \right| \quad (4)$$

But for any $t \in [0, 2\pi]$, $\exp(\frac{\pi}{T} \rho_n |\sin t|) < \sin \frac{\pi}{T} \rho_n e^{it}$.

Moreover, for any z fixed, $\lim_{n \rightarrow \infty} |e^{it} - \frac{z}{\rho_n}| = 1$ so $|e^{it} - \frac{z}{\rho_n}| > \frac{1}{2}$ for any n large enough. From (4) one can obtain the estimation

$$|I_n(z)| \leq \frac{4}{\pi} \int_0^{2\pi} \frac{|f(\rho_n e^{it})|}{\exp(\frac{\pi}{T} \rho_n |\sin t|)} dt. \quad (5)$$

PROPOSITION 2. Let $T > 0$ fixed and $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function with the property that if there is $M > 0$ and a real number $\beta \in (0, \frac{\pi}{T})$ so that $|f(x)| \leq M$ for any $x \in \mathbb{R}$ and $|f(z)| \leq M \cdot \exp(\beta r |\sin t|)$ for any $z = re^{it}$. Then

$$f(z) = \sum_{n \in \mathbb{Z}} f(nT) \cdot sa\left(\frac{\pi}{T}(z - nT)\right). \quad (6)$$

Proof: Thus, $|f(\rho_n e^{it})| \leq M \cdot \exp(\beta \rho_n |\sin t|)$; so, according to (5),

$|I_n(z)| \leq \frac{4M}{\pi} \int_0^{2\pi} \exp\left(\left(\beta - \frac{\pi}{T}\right) \cdot \rho_n |\sin t|\right) dt$. Because $\beta < \frac{\pi}{T}$, $I_n(z) \rightarrow 0$ for $n \rightarrow \infty$, uniformly on any compact, the relation (6) follows.

NOTE. If the values $f(nT)$, $n \in \mathbb{Z}$ are previously fixed, the entire function f is uniquely determinated (by applying the identity principle).

CORROLARY. If $f: \mathbb{R} \rightarrow \mathbb{C}$ belongs to $L^1 \cap L^2$ and $\text{supp} \hat{f} \subset [-b, b]$, then

$$f(t) = \sum_{n \in \mathbb{Z}} f\left(\frac{n\pi}{b}\right) \cdot sa(bt - n\pi), \text{ a.e. } t \in \mathbb{R}. \quad (7)$$

This is the classical formulation of the Shannon formula. The formula (6) is a generalization of this. Here is a simpler argument to get (7), by using distributions: if u means the unit step function then

$$\hat{f}(\omega) = \sum_{n \in \mathbb{Z}} (u(\omega + b) - u(\omega - b)) \cdot \hat{f}(\omega - 2nb), \text{ for any } \omega \in \mathbb{R} \text{ [indeed, if } |\omega| \geq b,$$

then $\hat{f}(\omega) = 0$ and $u(\omega+b) - u(\omega-b) = 0$; and if $|\omega| < b$, then $\omega - 2nb \in (-b, b)$ only for $n = 0$ and for $n \neq 0$, $\hat{f}(\omega - 2nb) = 0$. From the previous relation, one gets $\hat{f}(\omega) = (u(\omega+b) - u(\omega-b)) \cdot \hat{f}(\omega) * \sum_{n \in \mathbb{Z}} \delta(\omega - 2nb)$ and it is enough to apply the Fourier inversion formula.

NOTE. 1) The function $\varphi(z) = sa(\frac{\pi z}{T})$ is a good interpolator, in the sense that whenever $f(z) = \sum_n \varphi(z - nT) \cdot f(nT)$, it follows for any $\delta > 0$, that $f(z) = \sum_n \varphi(z - nT + \delta) \cdot f(nT - \delta)$ [3].

2) The signals which do appear in nature are random and one can extend the relation (7) to random signals: namely if (ξ_t) is a stationary random signal with a null mean and a limited band of frequency, then $\xi_t = \sum_{n \in \mathbb{Z}} \xi_{n\pi} \cdot sa(bt - n\pi)$ [2], [4].

The above corollary suggest a dual result, regarding the sampling in frequency of the spectral function \hat{f} of f : qualitatively, the value of \hat{f} in any frequency is well determined from the values in some discrete frequencies.

PROPOSITION 3. Suppose that $f \in L^1 \cap L^2$ has a bounded duration (that is, $\exists \tau > 0$ such that $f(t) = 0$ for $|t| \geq \tau$). Then

$$\forall \omega \in \mathbb{R}, \hat{f}(\omega) = \sum_{n \in \mathbb{Z}} \hat{f}(\frac{n}{\tau}) \cdot sa\pi(\tau\omega - n) \quad (8)$$

Proof. We have $f(t) = (u(t + \frac{\tau}{2}) - u(t - \frac{\tau}{2})) \cdot (f(t) * \sum_{n \in \mathbb{Z}} \delta(t - n\tau))$ and

$$\begin{aligned} \text{apply the Fourier transform: } \hat{f}(\omega) &= \frac{\sin \pi \omega \tau}{\pi \omega} * [\hat{f}(\omega) \cdot \frac{1}{\tau} \sum_{n \in \mathbb{Z}} \delta(\omega - \frac{n}{\tau})] = \\ &= \sum_{n \in \mathbb{Z}} \delta(\omega - \frac{n}{\tau}) \cdot [\frac{\sin \pi \omega \tau}{\pi \omega \tau} * \hat{f}(\omega)], \text{ whence (8).} \end{aligned}$$

3. A multidimensional extension of the Shannon formula

In the case of the multidimensional signals, the Lagrange type interpolation cannot be directly applied. Instead, in this case, one can use the previous argument, by making use the distributions.

For the multidimensional case, the Lagrange interpolation from §1, 2 is not directly possible, but it could be applied the previous argument, by making use the distributions. Namely, we prove:

PROPOSITION 4. Let $f: \mathbb{R}^n \rightarrow \mathbb{C}$ be a function from $L^2(\mathbb{R}^n)$ with $\text{supp } \hat{f}$ bounded. Then there are vectors $v_1, \dots, v_n \in \mathbb{R}^n$ so that a.e. $\forall x \in \mathbb{R}^n$, $f(x)$ is well determined by the values of f in the set of values $\Omega = \left\{ \sum_{i=1}^n k_i v_i / k_1, \dots, k_n \in \mathbb{Z} \right\}$.

Proof. Choose v_1, \dots, v_n linear independent and let u_1, \dots, u_n their reciprocals (such that it takes place the following relation between euclidean inner products: $\langle u_i, v_j \rangle = 2\pi\delta_{ij}$ for every i, j). We shall note $\underline{k} \cdot \underline{v} = \sum_{i=1}^n k_i v_i$ and we shall define a sampling function s , similar with "sa", so that the following formula holds:

$$f(x) = \sum_{\underline{k} \in \mathbb{Z}^n} f(\underline{k} \cdot \underline{v}) \cdot s(x - \underline{k} \cdot \underline{v}) \text{ a.e. } x \in \mathbb{R}^n. \quad (9)$$

If such a function really exists, then

$$f(\underline{k} \cdot \underline{v}) \cdot s(x - \underline{k} \cdot \underline{v}) = \int_{\mathbb{R}^n} f(y) \cdot s(x - y) \cdot \delta(y - \underline{k} \cdot \underline{v}) dy$$

But, $f(x) = \frac{1}{W} \sum_{\underline{k} \in \mathbb{Z}^n} f(y) e^{-i\langle y, \underline{k} \cdot \underline{u} \rangle} \cdot s(x - y) dy$, where W is the volume of the parallelepiped built on the vectors u_1, \dots, u_n . Applying the Fourier n -dimensional operator, it results $\hat{f}(\omega) = \frac{1}{W} \cdot \hat{s}(\omega) \cdot \sum_{\underline{k} \in \mathbb{Z}^n} \hat{f}(\omega + \underline{k} \cdot \underline{u})$ for any $\omega \in \mathbb{R}^n$. Then it is

enough to choose vectors v_1, \dots, v_n so that the supports of $\hat{f}(\omega + \underline{k} \cdot \underline{u})$ are disjoint and consider a function s so that $\hat{s} = W$, constant on $\text{supp } \hat{f}$ and null for the values ω where $\hat{f}(\omega + \underline{k} \cdot \underline{u}) \neq 0$, for $\underline{k} \neq 0$. The formula (9) is then obtained by applying the Fourier inversion formula.

4. Conclusions

In this work, one presents some results regarding the Lagrange interpolation in the complex plane, which have close connections with the Shannon sampling theorem (propositions 1, 2). One can also apply the adopted

method for the case of the random signals and that of nonequidistant moments . In the paragraph 2 I have added a formula (8) for the sampling in frequency. One asserts and proves an extension of the sampling theorem to the case of functions of several variables .

R E F E R E N C E S

- [1] *Ia. I. Hurghin , V.P. Iakovlev* , Metode ale teoriei functiilor intregi in radiotehnica (Methods of integral functions theory in radio engineering) (in Russian), Moskva , Sev. Radio , 1962.
- [2] *D. Stanomir , O. Stănișilă* , Metode matematice în teoria semnalelor (Mathematical methods in signals theory), Ed. Tehnică, 1980 (in Romanian).
- [3] *H. Takahasi* , Complex function theory and numerical analysis , Publ. Rims , Kyoto Univ., 41 , 979 – 988 , 2005.
- [4] *P.P. Vaidyanathan*, Generalizations of the sampling theorem , IEET Trans. Circuits and Systems , 48 , 1094 – 1109 , sept. 2001 .