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PROJECTIVE COVARIANT ϕ-MAPS

Tania-Luminiţa Costache

In this paper we construct a projective covariant representation as-
sociated with a ϕ-map and a projective covariant quasi-representation as-
sociated with a projective (u, u′)-covariant ϕ-map. We gave a projective
version of a result in [13] as a Stinespring’s representation theorem for
pairs of completely positive, symmetric, invariant, multilinear maps.
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1. Introduction

Asadi [2] and Bhat, Ramesh and Sumesh [5] provided a representation
theorem for a class of maps on Hilbert C∗-modules, as a generalization of Stine-
spring’s representation theorem for completely positive maps on C∗-algebras.

Trivedi [20] gave a Stinespring type theorem for τ -maps in the context
of von Neumann algebras. He proved a decomposition of τ -maps in terms of
quasi-representations, which generalize the notion of representations of Hilbert
C∗-modules on Hilbert spaces and a covariant version of this result, by defining
a covariant τ -maps using the notion of C∗-correspondence.

In this paper we construct a projective covariant representation associ-
ated with a ϕ-map and a projective covariant quasi-representation associated
with a projective (u, u′)-covariant ϕ-map. We gave a projective version of a
result in [13] as a Stinespring’s representation theorem for pairs of completely
positive, symmetric, invariant, multilinear maps.

Definition 1.1. ([17]) A pre-Hilbert A-module is a complex vector space E
which is also a right A-module, compatible with the complex algebra structure,
equipped with an A-valued inner product 〈·, ·〉 : E × E → A which is C -and
A-linear in its second variable and satisfies the following relations:
(1) 〈ξ, η〉∗ = 〈η, ξ〉 for every ξ, η ∈ E;
(2) 〈ξ, ξ〉 ≥ 0 for every ξ ∈ E;
(3) 〈ξ, ξ〉 = 0 if and only if ξ = 0.
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We say that E is a Hilbert A-module if E is complete with respect to the
topology determined by the norm ‖·‖ given by ‖ξ‖ =

√
‖〈ξ, ξ〉‖.

Definition 1.2. ([19], [1]) Let A and B be two C∗-algebras and let Mn(A),
respectively Mn(B) denote the ∗-algebra of all n × n matrices over A, respec-
tively B with the algebraic operations and the topology obtained by regarding
it as a direct sum of n2 copies of A, respectively B. A linear map ϕ : A → B
is completely positive if the linear map ϕ(n) : Mn(A) → Mn(B), defined by
ϕ(n)([aij]

n
i,j=1) = [ϕ(aij)]

n
i,j=1 is positive for all positive integers n.

Definition 1.3. ([16]) Let G be a locally compact group with identity e and
let T be the group of complex numbers of modulus one. A multiplier ω of G
is a function ω : G×G→ T with the properties :

i) ω(x, e) = ω(e, x) = 1 for all x ∈ G;
ii) ω(x, y)ω(xy, z) = ω(x, yz)ω(y, z) for all x, y, z ∈ G.

Definition 1.4. ([15]) A multiplier is normalized if ω(x, x−1) = 1 for all
x ∈ G.

Definition 1.5. ([3], [4]) Let H be a Hilbert space and G a locally compact
group with the identity e. A projective representation of G with multiplier
ω is a map u : G→ U(H) such that

i) ugg′ = ω(g, g′)ugug′ for all g, g′ ∈ G;
ii) ue = IH , where IH is the identity operator on H.

Definition 1.6. ([21]) A C∗-dynamical system is a triple (G,A, α), where
G is a locally compact group, A is a C∗- algebra and α is a continuous action
of G on A, i.e. a continuous homomorphism α : G → Aut(A), where Aut(A)
is the group of automorphism of A.

Definition 1.7. ([7]) Let (G,A, α) be a C∗-dynamical system and let u be a
projective unitary representation of G on a Hilbert space H. We say that a
completely positive linear map ϕ : A→ L(H) is projective u-covariant with
respect to the C∗-dynamical system (G,A, α) if ϕ(αg(a)) = ugϕ(a)u∗g for all
a ∈ A and g ∈ G.

Definition 1.8. ([5]) Let E be a Hilbert C∗-module over a C∗-algebra A and
let H1, H2 be Hilbert spaces . Let ϕ : A → L(H1) be a linear map. A map
Φ: E → L(H1, H2) is called :

i) ϕ-map if 〈Φ(x),Φ(y)〉 = ϕ(〈x, y〉), for all x, y ∈ E;
ii) ϕ-morphism if Φ is a ϕ-map and ϕ is a morphism;
iii) ϕ-representation if Φ is a ϕ-morphism and ϕ is a representation.

2. Main results

Following the results in [5] and [8], we generalize them in the projective
covariant case.
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Theorem 2.1. Let E be a Hilbert B-module, let (G,A, α) be a unital C∗-
dynamical system and let H1, H2 be two Hilbert spaces. If u is a projec-
tive unitary representation of G on H1 with the normalized multiplier ω and
ϕ : A→ L(H1) is a unital projective u-covariant completely positive linear map
and Φ: E → L(H1, H2) a ϕ−map, then there are :
(i) K1, K2 Hilbert spaces;

(ii) a unital representation π : A→ B(K1) and a π-representation
ψ : E → L(K1, K2);

(iii) a projective unitary representation v of G on K1 with the multiplier ω;
(iv) V : H1 → K1 an isometry and W : H2 → K2 a co-isometry such that for

all a ∈ A, g ∈ G and x ∈ E,
(a) ϕ(a) = V ∗π(a)V ,
(b) ug = V ∗vgV ,
(c) π is projective v-covariant,
(d) Φ(x) = W ∗ψ(x)V .

Proof. Following the proof of Stinespring’s Theorem (Theorem 1.1.1, [1]), we
form the algebraic tensor product A ⊗alg H1 and endow it with a pre-inner
product by setting 〈a⊗ ξ, b⊗ ζ〉A⊗algH1

= (ϕ(b∗a)ξ|ζ)H1 . To obtain K1 we

divide A ⊗alg H1 by the kernel N =
{
z ∈ A ⊗alg H1|〈z, z〉A⊗algH1 = 0

}
of

〈·, ·〉A⊗algH1
and complete. K1 becomes a Hilbert space with respect to the

inner product given by 〈z1 +N, z2 +N〉K1 = 〈z1, z2〉A⊗algH1 , z1, z2 ∈ A⊗algH1.
The isometry V : H1 → K1 is defined by V ξ = 1A⊗ ξ+N for all ξ ∈ H1.

It is easy to check that V ∗ : K1 → H1 is given by V ∗(a⊗ ξ +N) = ϕ(a)ξ.
The representation π of A on K1 is defined by π(a)(b⊗ ξ +N) = (ab)⊗

ξ +N for all ξ ∈ H1, a, b ∈ A.
We define v : G→ L(K1) by setting vg(a⊗ ξ+N) = αg(a)⊗ugξ+N for

all a ∈ A, g ∈ G, ξ ∈ H1.
Since 〈vg(a⊗ ξ +N), vg(b⊗ ζ +N)〉K1

=
〈αg(a)⊗ ugξ +N,αg(b)⊗ ugζ +N〉K1

= 〈αg(a)⊗ ugξ, αg(b)⊗ ugζ〉A⊗algH1
=

(ϕ(αg(b)
∗αg(a))ugξ|ugζ)H1 = (ϕ(αg(b

∗)αg(a))ugξ|ugζ)H1 =
(ϕ(αg(b

∗a))ugξ|ugζ)H1 = (ugϕ(b∗a)u∗gugξ|ugζ)H1 = (ϕ(b∗a)ξ|ζ)H1 =
〈a⊗ ξ, b⊗ ζ〉A⊗algH1

= 〈a⊗ ξ +N, b⊗ ζ +N〉K1
, for all g ∈ G, a, b ∈ A, ξ, ζ ∈

H1, vg extends linearly to an isometry on K1. It can be easily verified that vg
is a unitary operator on K1.

We show now that v is a projective representation with the multiplier ω.
Let a ∈ A, g1, g2 ∈ G, ξ ∈ H1. Since α is a group homomorphism and u is a
projective representation with the multiplier ω, we have

vg1g2(a⊗ ξ +N) = αg1g2(a)⊗ ug1g2ξ +N = αg1(a)αg2(a)⊗ ω(g1, g2)ug1ug2ξ +N

= ω(g1, g2)αg1(αg2(a))⊗ ug1(ug2ξ) +N = ω(g1, g2)vg1(αg2(a)⊗ ug2ξ +N)

= ω(g1, g2)vg1vg2(a⊗ ξ +N).

So we proved that v is a projective representation with the multiplier ω.
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Let a, b, x, y ∈ A and ξ, ζ ∈ H1. We have
(ϕ(y∗b∗ax)ξ|ζ)H1 = (ϕ((by)∗ax)ξ|ζ)H1 = 〈ax⊗ ξ, by ⊗ ζ〉A⊗algH1

= 〈π(a)(x⊗ ξ), π(b)(y ⊗ ζ)〉A⊗algH1
= 〈π(b)∗π(a)(x⊗ ξ), y ⊗ ζ〉A⊗algH1

= 〈π(b∗)ρ(a)(x⊗ ξ), y ⊗ ζ〉A⊗algH1
= 〈π(b∗a)(x⊗ ξ), y ⊗ ζ〉A⊗algH1

= 〈(b∗ax)⊗ ξ, y ⊗ ζ〉A⊗algH1
= 〈(y∗b∗ax)⊗ ξ, 1A ⊗ ζ〉A⊗algH1

= 〈(y∗b∗ax1A)⊗ ξ, 1A ⊗ ζ〉A⊗algH1
= 〈π(y∗b∗ax)(1A ⊗ ξ), 1A ⊗ ζ〉A⊗algH1

= 〈π(y∗b∗ax)V ξ, V ζ〉A⊗algH1
= (V ∗π(y∗b∗ax)V ξ|ζ)H1 .

Hence V ∗π(c)V = ϕ(c), ∀c ∈ A, so condition (a) is verified.
We verify now condition (b). Let g ∈ G and ξ ∈ H1. We have
V ∗vgV ξ = V ∗vg(1A⊗ξ+N) = V ∗(αg(1A)⊗ugξ+N) = V ∗(1A⊗ugξ+N) =

ϕ(1A)ugξ = IHugξ = ugξ, because ϕ is unital.
We prove condition (c). Let a, b ∈ A, g ∈ G, ξ ∈ H1.
Then vgπ(a)v∗g(b⊗ ξ +N) = vgπ(a)vg−1(b⊗ ξ +N)

= vgπ(a)(αg−1(b)⊗ ug−1ξ +N) = vg(aαg−1(b)⊗ ug−1ξ +N)

= αg(aαg−1(b))⊗ (ugug−1ξ) +N = αg(a)αg(αg−1(b))⊗ ω(g, g−1)ugg−1ξ +N
= αg(a)αgg−1(b) ⊗ IHξ + N = αg(a)b ⊗ ξ + N = π(αg(a))(b ⊗ ξ + N), so π is
projective v-covariant.

Let K2 = [Φ(E)H1]. We define ψ : E → L(K1, K2) by

ψ(x)(π(a)V ξ) = Φ(xa)ξ,

for all a ∈ A, ξ ∈ H1, x ∈ E.
We show that ψ(x) is well defined and bounded.
‖ψ(x)(π(a)V ξ)‖2 = ‖Φ(xa)ξ‖2 = 〈Φ(xa)ξ,Φ(xa)ξ〉 = 〈ξ, (Φ(xa))∗Φ(xa)ξ〉

= 〈ξ, ϕ(a∗ 〈x, x〉 a)V ξ〉 = 〈ξ, V ∗π(a∗ 〈x, x〉 a)V ξ〉 = 〈π(a)V ξ, π(〈x, x〉)π(a)V ξ〉
≤ ‖π(〈x, x〉)‖‖π(a)V ξ‖2 ≤ ‖x‖2‖π(a)V ξ‖2.

Hence, ψ(x) can be extended to K1.
We prove that ψ is a π-morphism. Let x, y ∈ E, a, b ∈ A, , ξ, ζ ∈ H1.
〈ψ(x)∗ψ(y)(π(b)V ξ), π(a)V ζ〉 = 〈Φ(yb)ξ,Φ(xa)ζ〉 = 〈(Φ(xa))∗Φ(yb)ξ, ζ〉

= 〈ϕ(〈xa, yb〉)ξ, ζ〉 = 〈V ∗π(a)∗π(〈x, y〉)π(b)V ζ〉 = 〈π(〈x, y〉)(π(b)V ξ), π(b)V ζ〉
Thus, ψ(x)∗ψ(y) = π(〈x, y〉).
Let W be the orthogonal projection onto K2. Then W ∗ : K2 → H2 is the

inclusion map (because, obviously, K2 ⊆ H2). Hence WW ∗ = IK2 , that means
W is a coisometry.

For x ∈ E, ξ ∈ H1, we have
W ∗ψ(x)V ξ = ψ(x)V ξ = ψ(x)(π(1A)V ξ) = Φ(x)ξ, so (d) holds. �

Remark 2.1. The pair of triples ((π, V,K1), (ψ,W,K2)) is a projective covari-
ant Stinespring representation of (ϕ,Φ) if conditions (i)− (iv) of Theorem 2.1
are satisfied.

Definition 2.1. ([20]) Let A be a C∗-algebra, E a Hilbert A-module and
let H,K be two Hilbert spaces. A map ψ : E → L(H,K) is called quasi-
representation if there is a ∗-homomorphism π : A→ L(H) such that

〈ψ(y)f1, ψ(x)f2〉 = 〈π(〈x, y〉)f1, f2〉
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for all x, y ∈ E, f1, f2 ∈ H.
We say that π is associated to ψ.

Quasi-representations generalize the notion of representations of Hilbert
C∗-modules on Hilbert spaces.

Definition 2.2. ([14]) Let G be a locally compact group. A continuous action
of G on a full Hilbert A-module E is a group morphism η : G→ Aut(E), where
Aut(E) is the the group of all isomorphisms of Hilbert C∗-modules from E to
E, such that the map (t, x) 7−→ ηt(x) from G × E to E is continuous. The
triple (G,E, η) is called a dynamical system on Hilbert C∗-modules.

Remark 2.2. ([14]) Any C∗-dynamical system (G,A, α) can be regarded as a
dynamical system on Hilbert C∗-modules.

Any continuous action η of G on E induces a unique continuous action
αη of G on A such that αηt (〈x, y〉) = 〈ηt(x), ηt(y)〉 for all x, y ∈ E, t ∈ G.

Moreover, for all x ∈ E and a ∈ A, we have ηt(xa) = ηt(x)αηt (a).

Definition 2.3. Let E be a Hilbert C∗-module over a C∗-algebra A, (G, η,E)
a dynamical system and H,K two Hilbert spaces, v : G→ U(H) and w : G→
U(K) two projective unitary representations. A quasi-representation ψ : E →
L(H,K) is called projective (w, v)-covariant with respect to (G, η,E) if

ψ(ηt(ξ)) = wtψ(ξ)v∗t

for all ξ ∈ E, t ∈ G. Then (ψ, v, w,H,K) is called a projective covariant
quasi-representation of (G, η, E).

Definition 2.4. Let E be a Hilbert C∗-module over a C∗-algebra A, (G, η,E)
a dynamical system and H,K two Hilbert spaces, u : G→ U(H) and u′ : G→
U(K) two projective unitary representations. A ϕ-map Φ: E → L(H,K) is
called projective (u′, u)-covariant with respect to (G, η,E) if

Φ(ηt(ξ)) = u′tΦ(ξ)u∗t

for all ξ ∈ E, t ∈ G.

Remark 2.3. If E is full and Φ: E → F is a ϕ-map which is projective (u′, u)-
covariant with respect to (G, η, E), then the map ϕ is projective u-covariant
with respect to the induced C∗-dynamical system (G,αη, A).

Theorem 2.2. Let E be a full Hilbert C∗-module over a C∗-algebra A, (G, η, E)
a dynamical system and H,K two Hilbert spaces, u : G→ U(H) and u′ : G→
U(K) two projective unitary representations. If ϕ : A → L(H) is completely
positive and Φ: E → L(H,K) is a ϕ-map which is (u′, u)-covariant with re-
spect to (G, η, E) , then there are

1) a) a Hilbert space X with a projective covariant representation (π, v) of
(G,αη, A)
b) an isometry V : H → X such that

i) ϕ(a)ξ = V ∗π(a)V ξ for all a ∈ A, ξ ∈ H
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ii) vtV ξ = V utξ for all t ∈ G, ξ ∈ H
2) a Hilbert space Y and a projective covariant quasi-representation (ψ, v, w,X, Y )

of (G, η,E) such that π is associated to ψ
3) a coisometry S : K → Y such that

a) Φ(x)ξ = S∗ψ(x)V ξ for all x ∈ E, ξ ∈ H
b) wtSl = Su′tl for all t ∈ G, l ∈ K

Proof. 1) a) Let 〈·, ·〉 be a A-valued positive semi-inner product on A ⊗alg H
defined by

〈a⊗ ξ, b⊗ ζ〉A⊗algH
= (ϕ(a∗b)ξ|ζ)H

for all a, b ∈ A, ξ, ζ ∈ H.
Let N =

{
z ∈ A⊗alg H|〈z, z〉A⊗algH = 0

}
.

〈·, ·〉 extends naturally on the quotient A ⊗alg H/N . To obtain X we
complete A⊗alg H/N .

Let π : A→ L(X) defined by

π(a)(b⊗ ξ +N) = ab⊗ ξ +N

for all a, b ∈ A, ξ ∈ H
and v : G→ U(X) defined by

vt(a⊗ ξ +N) = αηt (a)⊗ ut(ξ) +N

for all a ∈ A, ξ ∈ H, t ∈ G.
Since 〈vt(a⊗ ξ +N), vt(b⊗ ζ +N)〉 =

〈αηt (a)⊗ ut(ξ) +N,αηt (b)⊗ ut(ζ) +N〉 = (ϕ((αηt (a))∗αηt (b))ut(ξ)|ut(ζ))H =
(ϕ(αηt (a

∗)αηt (b))ut(ξ)|ut(ζ))H = (u∗tϕ(αηt (a
∗b))ut(ξ)|ζ)H =

(ϕ(a∗b)ξ|ζ)H = 〈a⊗ ξ +N, b⊗ ζ +N〉, by the covariance of ϕ, vt extends to
an isometry on X.

We verify that v is a projective representation with the multiplier ω. Let
a ∈ A, ξ ∈ H, t1, t2 ∈ G. We have

vt1t2(a⊗ξ+N) = αηt1t2(a)⊗ut1t2(ξ)+N = αηt1α
η
t2(a)⊗ω(t1, t2)ut1ut2(ξ)+

N = ω(t1, t2)vt1(α
η
t2(a)⊗ ut2(ξ) +N) = ω(t1, t2)vt1vt2(a⊗ ξ +N)

We prove that π is a covariant representation.
vtπ(a)v∗t (b⊗ ζ +N) = vtπ(a)(αηt−1(b)⊗ ut−1(ζ) +N) =

vt(aα
η
t−1(b)⊗ ut−1(ζ) +N) = αηt (a)αηt (α

η
t−1(b))⊗ utut−1ζ +N =

αηt (a)b⊗ ω(t, t−1)utt−1ζ +N = αηt (a)b⊗ ζ +N = π(αηt (a))(b⊗ ζ +N)
b) Let V : H → X defined by

V ξ = 1A ⊗ ξ +N

for all ξ ∈ H. It can be easily checked that V ∗ : X → H,

V ∗(a⊗ ξ +N) = ϕ(a)ξ.

i) This condition is verified as in the proof of Theorem 2.1 (iv) (a).
ii) vtV ξ = vt(1A⊗ ξ+N) = αηt (1A)⊗ut(ξ) +N = 1A⊗ut(ξ) +N = V utξ
2) Let Y = [Φ(E)H].
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Let wt = u′t/Y for all t ∈ G.Then t 7−→ wt is a projective representation
of G.

We define ψ : E → L(X, Y ) by ψ(x)(π(a)V ξ) = Φ(xa)ξ for all a ∈ A, ξ ∈
H, x ∈ E.

We prove that ψ is a quasi-representation:
〈ψ(y)(π(a)V ξ), ψ(x)(π(b)V ζ)〉 = 〈Φ(ya)ξ,Φ(xb)ζ〉 =

〈ϕ(〈ya, xb〉)ξ, ζ〉 = 〈V ∗π(〈ya, xb〉)V ξ, ζ〉 = 〈π(〈ya, xb〉)V ξ, V ζ〉 =
〈π(b)∗π(〈x, y〉)π(a)V ξ, V ζ〉 = 〈π(〈x, y〉)π(a)V ξ, π(b)V ζ〉, for all a ∈ A, x, y ∈
E, ξ, ζ ∈ H.

We prove that ψ is projective (w, v)-covariant.
For all a ∈ A, t ∈ G, x ∈ E, ξ ∈ H, we have
ψ(ηt(x))(π(a)V ξ) = Φ(ηt(x)a)ξ = Φ(ηt(x)αt(α

η
t−1(a)))ξ = Φ(ηt(xα

η
t−1(a))ξ =

u′tΦ(xαηt−1(a))u∗t ξ
On the other hand, by 1) a) and 1) b) ii), wtψ(x)v∗t (π(a)V ξ) =

wtψ(x)vt−1(π(a)V ξ) = wtψ(x)π(αηt−1(a))vt−1V ξ = wtψ(x)π(αηt−1(a))V ut−1ξ =
wtψ(x)π(αηt−1(a))V u∗t ξ = wtΦ(xαηt−1(a))u∗t ξ = u′tΦ(xαηt−1(a))u∗t ξ

3) By Theorem 5.2, [18], there is an orthogonal projection S from K into
Y .

a)S∗ψ(x)V ξ = ψ(x)V ξ = ψ(x)(π(1A)V ξ) = Φ(x1A)ξ = Φ(x)ξ
b) It is clear.

�

Definition 2.5. ([6], [13]) Let A be a C∗-algebra, H be a Hilbert space and k
be a positive integer.

A k-linear map ϕ : Ak → L(H) is called symmetric if ϕ = ϕ∗, where
ϕ∗ : Ak → L(H) is the k-linear map given by ϕ∗(a1, a2, . . . , ak) = ϕ(a∗k, . . . , a

∗
2, a
∗
1)∗.

A k-linear map ϕ : Ak → L(H) is called completely bounded if

‖ϕ‖cb = sup
n
‖ϕn‖ <∞,

where ϕn : Mn(A)→ L(Hn), ϕn(A1, A2, . . . Ak) =
[
Σn
l,r,...,t=1ϕ(a1il, a2lr, . . . , aktj)

]n
i,j=1

,

for Al = [alij]
n
i,j=1 ∈Mn(A), l = 1, k and ‖ϕn‖ = sup

{
‖ϕn(A1, A2, . . . , Ak)‖;Al ∈

Mn(A), ‖Al‖ ≤ 1, l = 1, k
}

.

A k-linear map ϕ : Ak → L(H) is called completely positive if

ϕn(A1, A2, . . . , Ak) ≥ 0

for all (A1, A2, . . . , Ak) ∈ Mn(A)k with (A1, A2, . . . , Ak) = (A∗k, . . . . . . , A
∗
2, A

∗
1)

and Am ≥ 0 if kis odd and m =
[
k+1

2

]
and for all n ∈ N.

Definition 2.6. ([11], [12], [13]) A k-linear map ϕ : Ak → L(H) is called
invariant if :

(a) for odd k = 2m− 1,

ϕ(a1c1, . . . , am−1cm−1, am, am+1, . . . , ak) = ϕ(a1, . . . , am−1, am, cmam+1, . . . , c1ak)

for all a1, . . . , ak, c1, . . . , cm ∈ A,
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(b) for even k = 2m,

ϕ(a1c1, . . . , amcm, am+1, . . . , ak) = ϕ(a1, . . . , am−1, am, cm−1am+1, . . . , c1ak)

for all a1, . . . , ak, c1, . . . , cm−1 ∈ A.

Definition 2.7. ([13]) A k-representation of A on H is a k-linear map
π : Ak → L(H) with the properties:

(i) for each l ∈
{

1, . . . , k
}

, the map πl : A → L(H) defined by πl(a) =
π(1A, . . . , 1A, a, 1A, . . . , 1A) is a representation of A on H, where a is on the
l-th position;

(ii) π(a1, . . . , ak) = π1(a1) · · · πk(ak) for all a1, . . . , ak ∈ A.

Definition 2.8. ([13]) Let A be a C∗-algebra, H,K be two Hilbert spaces, E
be a Hilbert A-module and k be a positive integer. Let ϕ : Ak → L(H) be a
k-linear map and Φ: Ek → L(H,K) a map. Then

(1) Φ is called a ϕ-map if

Φ(x1, . . . , xk)
∗Φ(y1, . . . , yk) = ϕ(〈x1, yk〉, . . . , 〈xk, y1〉)

for all x1, . . . , xk, y1, . . . , yk ∈ E.
(2) Φ is called a ϕ-representation of E if Φ is a ϕ-map and ϕ is a

k-representation of A on H. In this case we say that the pair (Φ, ϕ) is a
k-representation of E on H and K.

We say that a ϕ-map Φ is symmetric (respectively, invariant, com-
pletely bounded, completely positive) if the corresponding map ϕ is sym-
metric (respectively, invariant, completely bounded, completely positive). Sim-
ilarly we can define symmetric, invariant, completely bounded, completely pos-
itive ϕ-representations of E.

Let (G,A, α) be a C∗-dynamical system. The action α naturally induces
the action α̃ : G → Aut(Ak) by α̃t(a1, . . . , ak) = (αt(a1), . . . , αt(ak)) for all
a1, . . . , ak ∈ A and t ∈ G. ([11])

Following the definition in [11], [10], we introduce the notions of projec-
tive u-covariant k-linear map and projective (τ̃ , v, u)-covariant k-linear map.

Definition 2.9. Let u : G → L(H) be a projective unitary representation of
G on H. A k-linear map ϕ : Ak → L(H) is called projective u-covariant if

ϕ(α̃t(a1, . . . , ak)) = ϕ(αt(a1), . . . , αt(ak)) = utϕ(a1, . . . , ak)u
∗
t

for all a1, . . . , ak ∈ A and t ∈ G.

Definition 2.10. Let E be a Hilbert A-module, H,K be two Hilbert spaces and
u : G→ L(H) be a projective unitary representation. For any map τt : E → E
we define τ̃t : E

k → Ek by τ̃t(x1, . . . , xk) = (τt(x1), . . . , τt(xk)). A k-linear map
Φ: Ek → L(H,K) is called projective (τ̃ , v, u)-covariant if there is a map
τ : G → BA(E) and a projective unitary representation v : G → L(K) such
that

Φ(τ̃t(x1, . . . , xk)) = Φ(τt(x1), . . . , τt(xk)) = vtΦ(x1, . . . , xk)u
∗
t
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for all x1, . . . , xk ∈ E and t ∈ G.

We prove now the multilinear projective version of the Stinespring’s rep-
resentation theorem for a pair of two k-linear maps. ([5], [11], [12], [13])

Theorem 2.3. Let (G,A, α) be a unital C∗-dynamical system, u : G→ L(H)
be a projective unitary representation of G on a Hilbert space H with the
multiplier ω. Let ϕ : Ak → L(H) be an invariant, symmetric, completely
positive k-linear map, K be a Hilbert space, E be a Hilbert A-module and
Φ: Ek → L(H,K) be a ϕ-map. If ϕ is projective u-covariant and Φ is projec-
tive (τ̃ , v, u)-covariant, then there are Hϕ, KΦ two Hilbert spaces, an invariant,
symmetric k-representation (ΠΦ, πϕ) of E on Hϕ and KΦ, a projective unitary
representation σ of G on Hϕ, a bounded linear operator Vϕ ∈ L(H,Hϕ) and a
coisometry WΦ : K → KΦ such that:

a) i) Hϕ = sp
{
πϕ(a1, . . . , ak)Vϕξ a1, . . . , ak ∈ A, ξ ∈ H

}
ii) KΦ = sp

{
ΠΦ(x1, . . . , xk)Vϕξ x1, . . . , xk ∈ E, ξ ∈ H

}
b) ϕ(a1, . . . , ak) = V ∗ϕπϕ(a1, . . . , ak)Vϕ for all a1, . . . , ak ∈ A;
c) πϕ is projective σ-covariant : πϕ(α̃t(a1, . . . , ak)) = σtπϕ(a1, . . . , ak)σ

∗
t for

all a1, . . . , ak ∈ A, t ∈ G;
d) Vϕut = σtVϕ for all t ∈ G;
e) ΠΦ is projective (τ̃ , v, ũ)-covariant, where ũt = idA

⊗m ⊗ ut;
f) vtΠΦ(x1, . . . , xk)σt−1 = ΠΦ(τ̃t(x1, . . . , xk))(α

⊗m

t−1 ⊗ idH)
for all x1, . . . , xk ∈ E, t ∈ G.

The triple of pairs ((ΠΦ, πϕ), (Hϕ, KΦ), (Vϕ,WΦ)) is called the projective
covariant Stinespring’s representation associated to a k-linear ϕ-map.

Proof. By [10], [9], there is (πϕ, Hϕ, Vϕ) the minimal Stinespring’s representa-
tion associated to ϕ such that a)i) and b) hold,

There are (ΠΦ, KΦ,WΦ) as in Theorem 3.3 ([13]) and a)ii) holds.
We define the unitary representation σ of G on Hϕ as in the proof of

Proposition 4.1, [13].
We prove that σ is a projective representation with the multiplier ω.
Let a1, . . . , ak ∈ A, ξ ∈ H, t1, t2 ∈ G. We have
σt1t2(πϕ(a1, . . . , ak)Vϕξ) = πϕ(α̃t1t2(a1, . . . , ak))Vϕut1t2ξ =

πϕ(α̃t1(α̃t2(a1, . . . , ak)))Vϕω(t1, t2)ut1ut2ξ =
ω(t1, t2)πϕ(α̃t1(α̃t2(a1, . . . , ak)))Vϕut1ut2ξ =
ω(t1, t2)σt1(πϕ(αt2(a1, . . . , ak))Vϕut2ξ) = ω(t1, t2)σt1σt2(πϕ(a1, . . . , ak)Vϕξ)

By Proposition 4.1 and Theorem 4.4 ([13]), c), d), e) and f) are satisfied.
�
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[13] J. Heo, M. Joiţa, A Stinespring type theorem for completely positive multilinear maps
on Hilbert C∗-modules, Linear and Multilinear Algebra (2017)
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