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AUTOMATIC CLASSIFICATION OF GRAIN SAMPLE 
ELEMENTS BASED ON COLOR AND SHAPE PROPERTIES 

Miroljub MLADENOV1, Stanislav PENCHEV2, Martin DEJANOV3, Metin 
MUSTAFA4 

An approach for assessment of the main quality features of grain sample 
elements using image analysis is presented. The goal is to classify the sample 
elements to one of the normative groups, depending on the object color and shape 
features. The assessment of these features is performed separately, whereupon the 
results from the two assessments are fused to make the final object’s classification. 
Methods and tools for object color and shape analysis and assessment, as well as 
for fusing the results from these two assessments are proposed. The performance of 
the procedures developed is evaluated. 

Keywords: grain quality assessment, computer vision, feature extraction, 
classification 

1. Introduction 

The main characteristics of the grain quality are grain appearance, shape, 
color, smell, flavour, moisture content, presence of impurities – grain and non – 
grain ones. The whole grains with appearance, shape and color inherent for the 
variety and hybrid, as well as the broken grains bigger than the half of the whole 
grain, are considered standard. There are several groups, which are considered as 
grain impurities: broken grains smaller than the half of the whole grain, heat-
damaged grains, small, shriveled and green grains, sprouted grains, moldy grains 
and infected grains. The group of the non – grain impurities consists of: corn-cob 
particles, leaf and stem fractions, pebbles, soil, sand, dust and metal particles, 
smutty grains, as well as harmful elements (bunt). 

Most of the grain quality characteristics mentioned above (except moisture 
content, smell and flavour) are related to the color, shape and dimensions of the 
grain sample elements. The main trend in the last few years is to use Computer 
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Vision Systems (CVS) for evaluation of such characteristics [1]. Many results are 
published, in which color and color texture analyses were used to assess some 
particular quality features. In [2] 25 textural features of individual kernels are used 
in the assessment of the authenticity of five different kinds of cereal grains. The 
textural features are extracted from different colors and color band combinations 
of images. Different grain color features are used to assess variety [3], infections 
[4], germination [5], weed identification [6], etc. 

Morphological features, related to the grain shape and geometrical 
parameters are used for assessment of the grain variety too. A set of eight 
morphological features is presented in [7] to recognize five different kinds of 
cereal grains. A broader investigation, with a total of 230 features used for 
classification of barley, Canada Western Amber Durum wheat, Canada Western 
Red Spring wheat, oats, and rye is presented in [8]. Assessment of the grain 
sample purity is performed by profile analysis of corn kernels using one-
dimensional digital signals based on its binary images [9], by modeling the shape 
using a set of morphological features [10] and by shape curvature analysis [11]. 
Mechanical damage was determined using both single-kernel and batch analysis 
by extracting from kernel images the damaged area stained by green dye and by 
calculating the percentage of total projected kernel surface area that was stained 
green [12]. Mold damage was determined using single-kernel analysis by isolating 
the moldy area on kernel images and by calculating the percentage of total 
projected kernel surface area covered by mold [12]. 

The references cited above present some results concerning the assessment 
of specific grain quality features. The main goal of this paper is to present an 
approach for a complex assessment of the maize grain quality. This approach is 
based on the analysis of the object color, shape and dimensions using CVS, as 
well as the fusion of the results of the separate analyses. The categorization of the 
grain sample elements in three quality groups is the final goal of this complex 
assessment. The approach is realized within the frame of the INTECHN project 
“Development of Intelligent Technologies for Assessment of Quality and Safety 
of Food Agricultural Products”, funded by the Bulgarian National Science Fund. 
The INTECHN platform methods and tools for recognition of the color 
characteristics and shape of grain sample elements, as well as the methods for 
combining the results from color and shape analysis, are presented. Some of the 
results obtained at this stage of project implementation are given too. 

2. Materials and methods  
2.1. Image acquisition hardware. 
Within the frame of the INTECHN project, CVS is used (Fig. 1) to assess 

such characteristics of grain sample elements, which are usually evaluated by an 
expert based on visual estimation only. The images of the grain sample elements 
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(2) are taken using a color CCD camera, model DFK31AU03 (THE 
IMAGINGSOURCE, Germany) (1) with lens PENTAX B2514D (Hoya 
Corporation, Japan) (3). The illumination system includes two luminescent ring-
shaped units with different diameters (4). A portable computer model Dell Vostro 
1720 is used for implementation of the INTECHN platform software procedures. 

 
Fig. 1. INTECHN platform CVS 

2.2. Grain sample classification groups 
Groups (classes) and subgroups (subclasses), in which the elements from 

the maize grain sample have to be distributed, are presented in Table 1. 
Table 1 

Maize grain classes and subclasses 
Normative classes Color classes Shape classes 
1cst - standard kernel (whole 
grains and broken grains bigger 
than the half of the whole grain,) 
with appearance, shape and color 
inherent for the variety 

1cc- grains with color inherent for 
the variety, back side 

1csh- whole grains 
with inherent for the 
variety shape 2cc- grains with color inherent for 

the variety, germ side 
3cc- heat-damaged grains 2csh- broken grains 

bigger than the half of 
the whole grain 2cst-grain impurities: broken 

grains smaller than the half of the 
whole grain, heat-damaged grains, 
small grains, shriveled  grains, 
green grains, sprouted grains, 
infected (with Fusarium) grains, 
smutty grains. 

4cc- green grains 

5cc- moldy grains 3csh- broken grains 
smaller than the half 
of the whole grain and 
small and shriveled 
grains 

6cc- smutty grains 

3cst- non grain impurities: corn-
cob particles, leaf and stem 
fractions, pebbles, soil and sand, as 
well as harmful elements 

7cc- infected (with Fusarium) 
grains
8cc- sprouted grains 4csh- non grain 

impurities 
9cc- non grain impurities 

 
It is evident from the table, that the main characteristics, which determine 

the grouping of grain sample elements in classes and subclasses, are related to the 
objects’ color and shape. Because of the color and shape features are described in 
a different manner, it is advisable the assessment of these characteristics to be 
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made separately. After that, the results from the two assessments have to be fused 
to obtain the result about the object’s classification in one of the normative 
classes.  

Maize grain samples of the Kneja-433 variety are used in the investigation. 
The Maize Research Institute-Kneja, Bulgaria, produces this variety. The samples 
are gathered in one corn-growing season of one crop year and from one growing 
location. 

2.3. Determination of the color class of grain sample elements 
The analysis of the color characteristics of maize grain sample elements 

shows, that the following typical color zones can be found in different sample 
element images: color zone 1cz–grain back side zone, 2cz–grain germ zone, 3cz–
heat-damaged grain zone, 4cz–green grain zone, 5cz–mold grain zone, 6cz–
smutty grain zone, 7cz–Fusarium infected grain zone, 8cz–germ zone (in sprouted 
grains), 9cz- grain tip cap zone, 10cz-grain crown zone and 11cz. The 11cz color 
zone includes pixels, whose color characteristics are different from the pixel 
features of the other ten color zones. Each of the zones defined consists of a set of 
neighboring pixels, which have similar color features. 

Table 2 
Color class determination using typical combinations of color zones 

Color zones Color class 
1 2 3 4 5 6 7 8 9 10 11  

1 0 0 0 0 0 0 0 1 1 0/1 1 
1 1 0 0 0 0 0 0 1 1 0/1 2 
1 1 1 0 0 0 0 0 1 0 0/1 3
1 0 0 1 0 0 0 0 1 1 0/1 4 
0 0 0 0 1 0 0 0 1 1 0/1 5 
1 0 0 0 0 0 1 0 0 1 0/1 7
1 0 0 0 0 0 0 1 1 1 0/1 8 

 
The decision if the object corresponds to one of the color classes presented 

in Table 1, depends on the presence in the object region of a typical for this class 
combination of color zones. The possible combinations for each of the color 
classes are predetermined. Examples of color zone combinations, which 
correspond to different color classes, are presented in Table 2.  Therefore, the task 
for recognition of the color class is reduced to a task for detecting a typical 
combination of color zones within the object region.  

2.3.1. Extraction of color zones from the object image 
The extraction of a specific zone in a color image is a typical classification 

task for association of the pixels to one of the predetermined classes. This 
procedure includes the following steps: development of color zone models, 
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evaluation of the color features of each pixel from the object region, followed by 
the association of the pixels to one of the models defined and detection of regions 
with neighboring pixels, whose number exceeds some threshold value. 

Development of color zone models. The following approach is used to 
develop color zone models. Firstly, the operator marks consecutively regions in 
the grain image, which include pixels with features inherent for the specific color 
zone. This action is repeated in different grain images. In this way, a set of pixels 
(training set) with similar color features is completed for each color zone. These 
sets are used to develop models of the first ten color zones. If we present these 
sets of pixels in the RGB space, it can be seen that they form comparatively 
compact regions. 

The color zone models are represented by the zone centre (the average of 
the RGB values of the pixels from the training set) and the zone boundary surface. 
The boundary surface is determined through a threshold value of the covariance of 
the RGB values. It is relevant to remark that models are created only for the first 
ten zones, presented in Table 2. A correct model for 11cz color zone cannot be 
created because the color features of the pixels from this zone are sufficiently 
different in each subsequent grain sample. 

Тhe task for color zone modeling is reduced to a task for approximation of 
the color zone regions. For this purpose specific classifier architectures, based on 
Radial Basis Elements (RBEs) are developed. Their application is determined by 
the simplicity of the classification procedure and the accuracy of the class region 
approximation. Furthermore, if we set an appropriate value of the RBE bias and a 
minimal threshold ∆ of its output, it becomes clear what part of input objects will 
be included within the class boundary and it is easy to change the dimensions of 
the particular class region. 

The following classifiers [13] are used for class region approximation:  
Classifier with standard RBEs (CSRBE). Only one RBE is used for 

approximation of each class area. The RBEs centers correspond to RGB average 
values of the pixels from training sets. The RBEs biases are set in correspondence 
with their standard deviations. The CSRBE approximates round shaped classes 
only. The CSRBE can be considered as a referent classifier, because its 
architecture includes standard RBEs and it realizes the classification strategy 
described above. 

Classifier with decomposing RBEs (CDRBE). The CDRBE classifier 
architecture includes three layers. The first layer consists of m (m is the number of 
classes) transforming elements, which recalculate input vectors coordinates in 
local coordinate systems whose axes coincide with class axes of inertia. The 
second layer consists of n x m RBEs that are distributed in m sub layers. The 
number of RBEs in each sub layer is equal to n (n is the input vector 
dimensionality). The RBEs centers coincide with average values of the 
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projections of the training sets vectors onto corresponding coordinates of the class 
local coordinate system. The RBEs biases are set in correspondence with the 
standard deviations of these projections. The third layer consists of m RBEs. The 
weights of all RBEs are equal (1, 1... 1). The RBEs outputs are the weighted 
distances of input vector to the centers of non – spherical classes.  

The CDRBE classifier gives a possibility to form classes whose 
dimensions along the directions of separate coordinate axes are different. 
Changing the RBEs biases and the threshold ∆ we can vary the class shape from a 
sphere to the shape close to a parallelepiped. 

2.3.2. Association of the object pixels with one of the color zones 
defined 

Description of the pixel color features. The possibility for using the 
RGB, HSV and XYZ color models for description of the pixel color features is 
analysed. Four color texture models [13] are developed for the same purpose. It is 
expected that these models will better underline color ratios of the pixels from 
different color zones. The texture models can be presented by the following 
equations: 
First texture model. It is constructed on the basis of RGB model. Its components 
are the normalized differences between the R, G and B components: 
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Second texture model. This model includes non-linear transformation onto R, G 
and B components as follows: 
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Third texture model. It is similar to the second model. The pixel intensity is 
added as fourth coordinate: 
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Fourth texture model. This model converts input RGB space into one-
dimensional texture feature Тk: 
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 For separation of the object region from the background, the best results 
are obtained using the second texture model. When extracting different color 
zones within the object region, the best performance have the HSV, RGB color 
models, as well as the first and second texture model. Therefore, the operator, 
who performs the INTECHN platform training, has the possibility to choose the 
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appropriate color or texture model based on the results obtained during the 
training procedure. 

Association of the pixels from the object region with one of the models 
defined. As it was mentioned above, in the object image, besides pixels, 
corresponding to one of the color zones, there are those that have sufficiently 
different color features. For part of the grain sample elements, for example the 
non – grain impurities, pixels could get into the boundary of one of the color zone 
models, but a big part of them would get outside the color zone boundaries or 
could be located in a random place in the feature space. These pixels could be 
considered as noisy vectors. It could be assumed that the comparatively compact 
color zone regions are submerged in a noisy environment. Therefore, the task for 
color zone extraction could be interpreted as a task for classification in classes, 
whose boundaries have definite shapes, dimensions and location in the feature 
space, but are situated in a noisy environment. 

Having in mind this formulation, the use of popular classification 
strategies like discriminant analysis, cluster analysis, support vector machines, K–
nearest neighbors and some others, which build boundaries between class regions, 
is obviously not a good choice. This is due to the fact, that for the class, which 
corresponds to the color zone 11, a correct model cannot be created. If we develop 
a model of this class using training set consisting of non-grain impurities, it could 
be expected that a big part of the pixels of elements from the testing set of this 
group would get outside the class model. Thus, this will be an incorrect 
classification. 

In unison with this formulation, models of the classes, corresponding to 
the first ten zones, are created using pixels from the respective training sets. The 
description of each pixel from the object region is used as a classifier input. The 
output with the maximum value is selected. If this value exceeds the threshold ∆, 
the pixel is associated with the respective color zone model. Otherwise, it is 
rejected by the classifier and is considered as a noise.  

Detection of color zones with an excess number of pixels. To detect a 
color zone, a set of pixels with color features inherent for this zone has to be 
detected within the frame of the object region. The number of pixels has to exceed 
some threshold value. The classifier for color zone recognition (CCZR) is 
presented in Fig. 2. It is used for detection of different color zones in the object 
region. 

The classifier architecture includes ten analogous parallel channels. Each 
channel is used to separate pixels from a particular color zone. The first classifier 
layer transforms the RGB pixel description into the preliminary chosen color or 
texture model. The second layer includes structures for modeling of each typical 
color zone (CSRBE or CDRBE). The next layer includes ten accumulative 
elements, which are used to count the pixels, classified in each of the color zones. 
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The last classifier layer consists of threshold elements for each color zone. 
They determine whether the accumulated number of pixels of the respective zone 
exceeds the threshold value of the ratio between those accumulated pixels and the 
total number of pixels in the object region. The threshold value for each of the 
zones is predetermined after an appropriate analysis during the training procedure. 
While the previous layers are used for the analysis of each pixel in the image, the 
threshold layer is used after the analysis of all the pixels in the object region. 
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Fig. 2. Classifier for detection of grain color zones (CCZR) 

2.4. Determination of the grain sample elements’ shape 
2.4.1. Classification groups related to the shape of the grain sample 

elements 
In keeping with Table 1, according to the shape, the grain sample elements 

are divided into three main classes (1csh, 2csh and 3csh) and one additional class 
(4csh), which corresponds to non-grain impurities. To increase the accuracy of the 
shape recognition procedure, each of the main classes is additionally divided into 
six subclasses. This is made to obtain comparatively compact class regions. Such 
region can not be created for the 4csh class, because the shape of the elements 
from this group varies within a wide range.  

2.4.2. Shape description of the grain sample elements 
To represent the shape of the grain sample elements ten – dimensional 

vector descriptions are used. The following approach is used to obtain shape 
description of the investigated objects. First, the binary image of the object zone is 
created. After that the object’s peripheral contour is extracted, the bisection line of 
the contour is detected and an odd number of cross – sections perpendicular to the 
bisection line are built (Fig. 3). 
The cross – sections relative length hi = si/D, as well as the size and the sign of the 
difference between two neighbour sections 21 Δ−Δ=Δi  are calculated. Finally 
the object shape description is presented in the following form: 
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( )nnhhhshX ΔΔΔ= ,,2,1,,,2,1 ……             (5) 

 
Fig. 3. Object shape description: D – length of the bisection line; hi = si/D – length of a cross – 

section; 21 Δ−Δ=Δi  - difference between neighbor cross – sections. 

It is typical for maize kernels that their contour line has a huge asymmetry 
at the part where the grain tip cap exists and at the opposite part (grain crown 
region). It is easy to locate the tip cap region in the whole grains and to build 
contour descriptions and models with proper orientation. For broken grains, 
depending on what part of the whole grain has remained (the one with the germ or 
the one without it) the contour descriptions can be sufficiently different. That is 
why it is necessary for 2csh and 3csh classes (or, more precisely, for their 
corresponding subclasses) to define two types of descriptions and models: for 
shapes where the tip cap exists in the remaining part of the grain, and for those 
without a tip cap.  

2.4.3. Development of shape class models of the grain sample elements 
The task for object shape recognition is divided into two stages: 1) 

development of shape subclass models and 2) association of an unknown object to 
one of these subclasses.  

The task for development of shape subclass models is additionally divided 
into two steps. The first step includes the creation of the training set of contour 
descriptions for each of the six subclasses that correspond to the whole grains. 
The average description and the covariance are calculated from the training set of 
each group. The average description is used as a centre of a particular subclass, 
while the covariance defines its boundary. 

At the second step, artificial contour models of the broken kernels are 
generated from the contour models of the whole grains. It is done by setting to 
zero the last, the last two, the last three and the last four cross – sections from the 
respective whole grain description. Such approach is conditioned by the fact that 
it is impossible to create a compact model of real broken grains, because the shape 
of these elements varies within a wide range.  

Like the task for development of color zone models, the task for 
development of shape class models is reduced to a task for approximation of the 
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18 shape subclasses. The possibility for using the CSRBE and CDRBE classifiers 
is investigated for this purpose. Furthermore, another variant of a classifier based 
on RBEs is developed.  It is intended for classification in overlapping classes, as 
some of the shape classes are expected to be so. 

Classifier with RBEs which takes into consideration the class 
potentials (CRBEP). The CRBEP classifier [13] approximates the class areas 
using standard (or decomposing) RBEs and takes into consideration the class 
potentials. The accumulated during classification number of vectors in each of the 
classes is interpreted as a class potential. It introduces an additional correction of 
the assessment formed by i-th RBE. The effect of the correction comes down to 
the displacement of the boundary between the two overlapping parts of class 
regions. The displacement depends on the ratio of accumulated number of vectors 
in each of the classes. 

2.4.4. Association of an unknown object to one of the shape class 
models 

The shape description of each unknown object is used as a classifier input. 
The output with the maximum value is selected. If this value exceeds the 
threshold ∆, the unknown object is associated with the respective shape subclass 
model. Otherwise, the classifier rejects it. If the input object is not associated with 
one of the shape subclasses, it is classified to the fourth class. 

2.5. Fusing of the results from the color and shape analysis 
Different variants for fusing the results from color and shape analysis of 

grain sample elements are developed at different stages of the investigation. The 
algorithms developed could be associated with hierarchical clustering algorithms. 
Their typical feature is that different criteria for class merging are used at different 
levels of data fusion. 

Variant 1. A comparatively simple fusion scheme is used in the first 
algorithm, presented in Fig. 4. The input data (input classes) is separated in two 
groups – objects’ color data and objects’ shape data. The first group contains the 
ten color zones, described in section 2.3. The second group consists of the 
eighteen shape subclasses.  

The color class (1cc, 2cc… 8cc) is determined at the first stage of data 
fusion based on predetermined combinations of color zones. The shape subclasses 
are merged into the three main shape classes (1csh, 2csh and 3csh). 

The color and shape classes are fused at the second stage of the algorithm. 
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Fig. 4. Fusing of the results from color and shape analysis. Variant 1. 

 
The result of this procedure is the final decision for object classification in 

one of the three normative classes (1cst, 2cst and 3cst). The assessment whether 
the object shape is classified in one of the three main shape classes or not is used 
as a fusion criterion for the color classes 1cc to 5cc. The shape is not important for 
the 6cc, 7cc and 8cc classes. 

Variant 2. Color topological and combined topological models of color 
zones are used in the second algorithm (Fig. 5). 
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Fig. 5. Fusing of the results from color and shape analysis. Variant 2. 

 
The topological models represent the plane distribution of the color zones 

within the object region. Such models are created when three or more color zones 
typical for the grains are found in the object region. The combined topological 
models represent the plane distribution of some shape elements (the region of 
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grain tip cap or crown region) and the color zones found. These models are 
created when only two typical color zones are found. 

The final categorization of the objects, for which such topological models 
are found, is performed taking into account the object’s area as a criterion. When 
only one typical color zone is found, the object shape and the object area are the 
most important for the final categorization. When the object belongs to the 6cc, 
7cc or 8cc classes, the object shape is not important for its categorization. 

3. Experimental results 

3.1. Training and testing sets 
The developed procedures for grain quality assessment are validated, 

trained, and tested with the sets, presented in Table 3. Elements from the 4cc and 
6cc color classes are not included in color class recognition because such elements 
are rarely met in maize grain samples.  

Table 3. 
Training and testing sets 
Color class recognition 

Classes 1cc 2cc 3cc 5cc 7cc 8cc 9cc 
Training sets 10 10 12 15 18 19  
Testing sets 47 81 44 24 74 39 168 

Object shape classification 
Classes 1csh 2csh 3csh 4csh    
Training sets 120 135 135     
Testing sets 122 63 11 256    

Classification in normative classes 
Classes 1cst 2cst 3cst     
Testing sets 117 118 242     

3.2. Results from the object color analysis 
The classification errors in color class recognition are presented in Table 

4. The Testing error1 represents the results when the group of the non-grain 
impurities is not used for testing. The Testing error2 represents the case, when this 
group is included in the testing samples. 

Table 4 
Classification errors in color class recognition 

CSRBE Selected classifier – CDRBE 
Train. error Test. errors Train. errors Test. errors1 Test. errors2 

eo=6.9% eo=77% eo=0.7% eo=10% eo=30.6% 
 
The classification error rate eо is calculated using the equation: 
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It gives the relative part of all incorrectly classified objects, where N is the 
number of classes; FPi is the number of elements from the i-th class, which are 
incorrectly classified to other classes and TPi is the number of elements from the 
i-th class, which are correctly classified. 

 
Analysis of the results  
1. The testing results concerning the object color zone extraction and color 

class recognition are acceptable, bearing in mind the nature of the investigated 
objects. The error eо=10% is obtained without elements from the class 9cc in the 
testing set. When we include such kind of elements (256 in number), the 
classification error increases to 30.6%. This result is due to the fact, that typical 
for the grains color zones are found in a big part of the non-grain impurities. The 
big testing error is conditioned by the big percentage of the non-grain impurities 
in the testing set too. The percentage of these elements is intentionally increased. 
It is about 57% of the all elements in the testing set.  

2. The selection of a proper classifier for color class recognition has a 
significant influence over the training and testing classification accuracy. When 
the CDRBE classifier is used, the training and testing errors decrease with 6.2% 
and 67% respectively, comparing to the referent CSRBE classifier.  

3.3. Results from the object shape analysis 
The results from the object shape recognition are presented in Table 5 

(non-grain impurities are included in the testing sets). 
Table 5 

Classification errors in object shape recognition using CSRBE, CDRBE and CRBEP 
CSRBE CDRBE Selected classifier-CRBEP 

Train. errors Test. errors Train. errors Test. errors Train. errors Test. errors 
eo=0% eo=36.5% eo=3.6% eo=27.5% eo=0% eo=35.6% 

 
Analysis of the results 
1. The results from the classification of the objects from the testing sample 

in the shape classes show, that the rate of the objects from the 1csh class, which 
are assigned to other classes, is comparatively small (4.9%). On the other hand, 
the rate of objects assigned to this class, which actually belong to other classes, is 
sufficiently bigger (35.2%). The rate of the objects from the 3csh class, which are 
assigned to the 2csh and 4csh classes, is big too. 
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2. The error rate in recognition of the shape class 3csh (parts of grains) is 
large too. This is an expected result, because a typical shape of the objects from 
this class cannot be defined. In many cases, even a qualified expert would not 
recognize such objects if only shape would be taken into consideration. During 
the classifier training, artificial models of the broken grains are created based on 
the whole grain models. That is why the classification error rates for training 
samples of 2csh and 3csh classes are small. This explains the big difference 
between the training and testing classification results for these two classes. 

3.4. Classification in the normative classes 
The results from object classification in the normative classes (non-grain 

impurities are included in the testing sets), using the two variants of data fusion, 
are presented in Table 6. The object distribution in the normative classes 
(confusion matrix) is shown in Table 7.  

Table 6 
Testing errors in the normative class recognition 

Color and shape data fusion 
CDRBE–CDRBE CDRBE–CSRBE Selected variant 

CDRBE– CRBEP
Variant1

eo=15.7% eo = 15.7% eo=15.3% 
Variant2 

eo= 8.6% eo= 8.8% eo=8.6% 
Table 7 

Classification of the testing sample elements in the normative classes 
Color and shape data fusion 

 Actual classes 
Variant1 Variant2 

1 2 3 1 2 3 
Predicted classes 1 84 5 2 115 3 2 

2 31 80 0 1 101 20 
3 2 33 240 1 14 220 

Total number 117 118 242 117 118 242 
 
Analysis of the results 
1. Object classification in the normative classes (1cst, 2cst and 3cst) is 

based on the complex assessment of the color and shape characteristics of the 
grain sample elements. For this purpose, the results from color and shape analyses 
are fused. The data fusion procedure improves sufficiently the final classification 
accuracy. The classification error e0 (selected variant CDRBE– CRBEP) is 15.3% 
when data fusion Variant1 is used, and 8.6% - when Variant2 is used. 

2. In spite of the big errors in color and shape class recognition (30.6% and 
35.6% respectively), the error in the final categorization of the grain sample 
elements decreases sufficiently (8.6%). This result is due to the application of the 
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fusion procedures. These procedures decrease or ignore the influence of the 
factors, which determine the big errors in color and shape class recognition. The 
main factor, which influences on the accuracy of the color class recognition, is the 
presence of inherent for the grains color zones in a big part of the non-grain 
impurities. The big variations of the shape of the broken grains are the most 
significant factor, which determines the big errors in the shape class recognition. 

3. The results from object classification in normative classes show, that the 
choice of an appropriate procedure for fusing the results from color and shape 
analyses has a significant influence over the final classification accuracy. When 
using the second algorithm (Variant 2), which is based on the color or combined 
topology assessment, the classification error rate decreases almost twice 
comparing to the first algorithm (Variant 1), in which color class assessment is 
based only on the presence of the typical combinations of color zones. 

4. Conclusions 

The results from the investigation can be summarized as follows: 
1. The developed methods and tools for description and analysis of the 

color characteristics and the shape of the grain sample elements give the following 
accuracy at this stage of the project implementation. The testing classification 
accuracy in recognition of object color classes is 90% and in object shape 
recognition - 73%, when the non-grain impurities are excluded from the testing 
sets. The classification accuracy decreases when they are included in the test 
samples,. The testing errors in recognition of color and shape classes increase with 
20.6% and 8.4%, respectively. 

2. In spite of the big errors in color and shape class recognition (30.6% and 
35.6% respectively), the error in the final categorization of the grain sample 
elements decreases sufficiently (8.6%). This result is due to the application of the 
fusion procedures because they decrease or ignore the influence of the factors, 
which determine the big errors in the color and shape class recognition.  

3. The use of the color or combined topology of color zones within the 
object region leads to an improvement of the final classification accuracy. Under 
the specific experimental circumstances, the classification accuracy is 91.4% 
while it is 84.7%, when the color class assessment is based on the combinations of 
typical color zones only. The classification error rate decreases 1.8 times.  

4. The INTECHN validation and training procedures ensure the selection 
of the optimal model for input data representation, the optimal classifier, and 
classifier parameters for specific classification task. For example, the selection of 
a proper classifier for recognition of the object color and shape classes has a 
significant influence over the classification accuracy. When the CDRBE classifier 
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is used in color class recognition, the training and testing errors decrease with 
6.2% and 67% comparing to the referent CSRBE classifier. 
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