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ON THE AERODYNAMIC CHARACTERISTICS OF A CLASS 
OF AIRFOILS WITH CONTINUOUS CURVATURE AT 

SUBSONIC, TRANSONIC AND SUPERSONIC REGIMES 

C. BERBENTE,1 S. DĂNĂILĂ2 

Lucrarea prezentă introduce o clasă de profile generate analitic, cu curbură 
continuă pe intrados şi pe extrados. În particular, se studiază aşa numitele „profile 
delfin”, dar şi alte forme interesante pentru diverse regimuri de curgere  sunt 
posibile. Ştiind că gradientul de presiune influenţează drastic evoluţia stratului 
limită, menţinerea unei curburi continue este importantă. Metoda utilizează funcţii 
spline polonomiale de ordinul trei. Rezultatele obţinute cu ajutorul codului 
FLUENT 6 pentru curgeri cu strat limită laminar şi turbulent sunt interpretate în 
raport de continuitatea curburii.  

The present paper introduces a  class of analytically generated aerodynamic 
profiles with continuous curvature on both upper and lower side. In particular, one 
studies a number of so called Dolphin profiles, but other shapes are also of interest 
for various flow regimes. Knowing the influence of the pressure gradient on the 
boundary layer flow, on one hand, and the influence of the airfoil shape on the 
pressure gradient distribution, on the other hand, maintaining the curvature 
continuity is important. The method is based on polynomial spline functions, with a 
degree of continuity up to second order derivative. In order to study the influence of 
the continuity of curvature radius on the aerodynamic characteristics, a systematic 
series of numerical test for two different Dolphin-type airfoils, with and without 
contiguous connection in curvature, respectively, were performed. The large amount 
of numerical results, generated by the FLUENT 6 code, is interpreted in respect to 
the continuity of curvature radius. 

1. Introduction 

It is well known that at supersonic speeds airfoils with sharp leading edges 
are adequate in order to create oblique low intensity shock waves and thus 
reduced drag coefficients. A series of analytical explicit third order formulas for 
such high speed inviscid regimes were established for example in the 60’s by 
Carafoli and Berbente by using a unitary expression for pressure distribution in 
supersonic-hypersonic regime [1,2]. Recently, I. Ţăposu and his coworkers 
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developed a theoretical (using inviscid models) and experimental study for a class 
of sharp leading edge airfoils –called ”Dolphin”- [3,4,5] to be used even at 
subsonic speeds where thick round leading edge is usually recommended. The 
quoted authors report advantageous aerodynamic behaviors, experimentally 
confirmed at low speeds (hydrodynamic tunnel), as: delayed separation and 
maximum lift at angles of attack up to 25-30°. In these studies, parabola of second 
degree, connected in slope, generate the airfoil geometry. This yields to sudden 
jumps in radius of curvature in points of connection (two inflection points and the 
maximum thickness point, both on the upper and on the lower surface), impaired 
as instabilities sources, for example in incompressible flow calculations based on 
singularities distributions (sources, vortices, etc.).  

In the follows we will try to improve the study of these Dolphin profiles at 
different flow regimes (subsonic, transonic and supersonic) checking out, 
simultaneously with the velocity field calculations, the influence of the airfoil 
geometry on the boundary layer flow. We will generate airfoil shapes without 
discontinuities on curvature radius and will give a special attention to the effect of 
curvature on the boundary layer evolution.  

2. Airfoil geometry 

The airfoil shape is generated by polynomial spline functions of third 
degree connected in four points. Lets be ix , 4,,0 …=i , a set of points on the 
profile chord, where 00 =x  and 14 == cx  are the leading edge and the trailing 
edge, respectively; 1x  and 3x  are the inflection points and kx =2  is the maximum 
thickness point (Fig.1). Supposing a symmetrical airfoil, only the upper surface 
will be considerate. Let’s be iy , 4,,0 …=i  the corresponding ordinates of airfoil 
shape on the assumed set of chord points. So, we have: 

0,0 00 == yx , ε== 22 , ykx , 0,1 44 === ycx . (1)

 
Fig. 1. Airfoil geometry 

A contiguous shape up to second order derivative can be obtained by 
polynomial spline function at least third degree. Denoting by )(3 xp i  the restriction 
of the polynomial spline function on the interval [ 1, +ii xx ], we have [7] 
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32
3 )()()()( iiiiiiii xxaxxbxxmyxp −+−+−+= , ],[ 1+∈ ii xxx , 3,,0 …=i , (2)

where im , ia , ib , 3,,0 …=i  are, up to now, unspecified coefficients. The im  
coefficients represent the point slopes and the ib ’s are proportional to the point 
curvature radius.  
 The continuity conditions up to second order derivatives, including, yield to 
following relations [7]: 
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Slopes im  are the solution of the system of equations: 
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Usually, the coordinates ( ii yx , ), 4,,0 …=i , together with the slopes on the 
boundary points ( 0m  and 4m , respectively) are given and the problem is entirely 
determined (all coefficients im , ia , ib , 3,,0 …=i , are known). However, in the 
present analysis, we are interested to keep as parameters, for example, the 
inflection point positions, 1x , 3x , and the maximum thickness position, k . 
Accordingly to the definition of Dolphin profile we’ll assume zero slopes at both 
leading and trailing edges: 

040 == mm . (5)

Consequently to the definition of inflections and maxims, we have: 

01 =′′y , 02 =′y , 03 =′′y  (6)

Imposing conditions (6) for the polynomials (2) yield: 

01 =b , 02 =m , 03 =b . (7)

 On the other hand, the maximum thickness, ε=2y  have to be given, five 
parameters: 1x , 1y , 2x , 3x , 3y , remain to be determined from three equations (7). 
Therefore, two independent parameters remain. Through the possible chooses are 
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the pairs: a) ( 1x , 2x ), positions of the first inflection and the maximum thickness 
points; b) ( 1x , 3x ), positions of inflection points; c) ( 1y , 3y ) with ε<1y , ε<3y , 
the thickness airfoil in the inflection points, etc.  
 Taking into account conditions (5), (6), as solution of system (4) yields: 
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Replacing: 

10 xh = , 11 xkh −= , kxh −= 32 , 33 1 xh −= , (9)

the following expressions result: 
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 Canceling the coefficients 1b  and 3b , from (7) yield: 

01 =b , 0)(
3
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Finally, for the parameters 1x , 1y , k , 3x , 3y , the following three relations, 
deduced from (12) and (8), result: 
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 From equations (13) and (14) and (15), we obtain the solutions: 
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and evidently, only the second has signification.  
 Now, the slops 1m  and 3m  can be calculated. So, from (12) we obtain: 
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 It is interesting to calculate the curvature radius at lading and trailing 
edges, respectively: 
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 The coefficients ia , ib , 3,,0 …=i , have next expressions: 
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 In this way the airfoil shape is entirely determinate. Although, 
theoretically, we have two free parameters on dispose, however, the expressions 
of coefficients im , ib , ia , 3,,0 …=i , depend mainly on the position k of the 
maximum thickness. That suggests a weak flexibility than expected in variation of 
inflection points positions 1x  and 3x .  

 In order to study the effect of continuity on curvature radius, we assume as 
reference the airfoil shape generated by point connected parabola arcs. Let’s be 

)(2 xp i  the restriction of the second order polynomial spline function on interval 
[ 1, +ii xx ]: 

2
,2 )()()( iiiiii xxbxxmyxp −+−+= , ],[ 1+∈ ii xxx , 3,,0 …=i . (20)
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Imposing the continuity in values and slops on intermediate points, yield: 
 

 
Fig,2.  Airfoil generated by polynomial spline functions 

)()( 11,21,2 +++ = iiii xpxp ; )()( 11,21,2 +++ ′=′ iiii xpxp , (21)

or:  
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Solving the above system of equations, we obtain: 
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where iii xxh −= +1 . Taking as parameters inflection points positions 1x , 3x  and the 
maximum thickness position, kx =2 , for 0420 === mmm , we obtain: 
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and the airfoil coordinates at inflections are: 

ε
k
xy 1

1 = ; ε
k
x

y
−
−

=
1
1 3

3 . 
kx

b
1

0
ε

= ; 

)( 1
1 xkk

b
−

−=
ε ;

)1)(( 3
2 −−
=

kkx
b ε ;

)1)(1( 3
3 −−
=

kx
b ε  

(25)

together with the ib  coefficients (25). 
Fig. 2 (upper side) plots the resulting airfoils for 1.02 =ε , 25.01 =x , 

5.0=k . Solid line corresponds to the Dolphin airfoil generated by third degree 
polynomial spline function (D3DPS) and dashed line represents the airfoil 
obtained by second-degree polynomial connected arcs (D2DPS). On the same 
plot, in lower side, to make visible differences between the shapes, the transverse 
coordinate is multiplied by a factor of 10. On the neighborhood of the sharp 
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landing edge, the positive slope dxdy /  of the D3DPS-airfoil is larger than the 
corresponding slope of D2DPS-airfoil. In the vicinity of the maximum thickness, 
initially, on the ascending branch the slope of D2DPS-airfoil exceeds the slope of 
the D3DPS-airfoils. For kx > , the relation between slopes of the two analyzed 
profiles is reversed. 

 
Fig. 3 Slope distribution 

 
That suggests, for D3DPS-airfoils, at-least in incompressible flows, a 

grater negative (favorable) pressure gradient, and a smaller positive (adverse) 
pressure gradient, with respect to D2DPS airfoil. Knowing the influence of the 
pressure gradient on the development of boundary layer flow, we expect an 
improving of the aerodynamic characteristic for airfoils with contiguous curvature 
radius.  

3. Numerical aspects 

To compare airfoils generated by third degree polynomial spline function 
(D3DPS) with airfoil generate by second-degree polynomial connected arcs 
(D2DPS), a series of computational tests was carried out using FLUENT 6 code. 
For numerical experiments, the D3DPS and D2DPS airfoils with 10% thickness 
ratio were chosen. Also, the other geometric elements involved in airfoils 
geometry creation were taken identically for both airfoils: 25.01 =x , 5.0=k , 

75.03 =x . . In order to obtain accurate information on influence of curvature 
radius continuity on the aerodynamic characteristics, the numerical results were 
obtained on the same computational mesh (only the solid surface was changed 
accordingly to the airfoil shape). 
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For in viscid flow calculations an unstructured triangular mesh with 11270 
cells and 16957 interfaces was build (fig.4), imposing 40 equidistant points on 
airfoils surface (20 on the upper surface and 20 on the lower surface, 
respectively). The radius of the external circular boundary was assumed to be 
about 5 times the profile chord.  

For viscous cases, the computational the structured computational grid is 
presented in fig.5 (12350 cells, 24960 interfaces). A number of double sided 
refined 100 points, on the solid profile surface was employed (50 on the upper 
surface and 50 on the lower surface, respectively). The computational domain was 
extended about 15 chord lengths upstream and about 30 chord lengths 
downstream. On the vicinity of both, upper and lower airfoil surfaces, boundary 
layer zones were included.  

4. Inviscid flow model results 

Fig. 6 presents the incompressible pressure distribution at zero angle of 
attack. As expected, the influence of curvature radius is reflected in the slope of 
pressure distribution on the airfoil. Moreover, the pressure coefficient peaks 
reached on the D2DPS overrides the corresponding value of D3DPS-profile.  

  

   
Fig.4.  Computational grid for inviscid flows.       Fig.5. Computational grid for viscous flows. 
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Fig. 6.  Incompressible pressure distribution, 0=α . 

 
Fig. 7.  Incompressible pressure distribution, 

D10=α . 
At nonzero incidence (fig.7), both airfoils produce the same pressure  

distribution, due the identical camber of mean line, as already knowing from the 
linear airfoil theory. For transonic flow, the obtained numerical results are plotted 
in fig. 8 and 10, for M=0.85 and incidence, 0=α . Although the shock location is 
indifferent at curvature radius continuity, a diminishing in intensity shock wave 
for the D3DPS airfoil is present (fig.8). Fig. 10 plots the pressure contours around 
the D3DPS airfoil at zero incidences. The shock wave “thickness” observed in 
figure is specific to all first order upwind Euler solvers. 

 

Fig. 8. Inviscid flow, M=0.85, 0=α . 

 
 

 
Fig. 9. Inviscid flow, M=2, 0=α  

Fig. 9 and 11 present the pressure distribution and Mach contours, 
respectively, at M=2 and incidence, D0=α . Again, the pressure gradient and the 
extreme values of pressure coefficient are higher on the D2DPS airfoil.  
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Fig. 10 Pressure contours for D3DPS, M=0.85, 

D0=α  

      
Fig. 11 Mach contours for D3DPS, M=0.85, 

D0=α  

5. Constant viscosity fluid flow (laminar flow) 

The obtained results for the constant viscosity fluid flow (laminar flow) 
are presented in fig. 12-14. These plots are similar to those presented for inviscid 
fluid flow. In fig.15 we represent the skin friction coefficient distribution on the 
solid airfoil surfaces at M=0.85 and zero incidence. The continuity of the 
curvature radius influences the friction coefficient only upstream of shock wave. 
The calculated aerodynamic drag coefficients at zero angle of attack for D3DPS 
airfoil are: 01732.0=DC  at incompressible flow, and 06128.0=DC  at M=0.85. 
For D2DPS airfoil the corresponding values are 01936.0=DC  in incompressible 
flow and 06603.0=DC  at M=0.85. We observe a diminution of about 10% in 
drag coefficient value due the continuity of curvature radius. 

    
Fig.12. Pressure distribution, incompressible 

laminar flow D0=α  

,.   
Fig.13 Pressure distribution, incompressible 

laminar flow, D10=α  
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Fig.14. Pressure distribution, laminar flow,  
M=0.85, D0=α  

  
Fig.15 Skin friction coefficient distribution 

laminar flow, M=0.85, D0=α  

 

6. Turbulent flow 

For turbulent flow calculations, the standard ε−k  turbulence model was 
adopted, combined with wall function formulation of boundary conditions. 
Therefore, the distance to the wall of first row grid points was calibrated each 
time to obtain a value of about 40 for the dimensionless parameter +y  [8]. 

Table 1 presents the global aerodynamic coefficients as function of 
incidence at different Mach numbers. From the above data one can conclude the 
positive effect of the radius continuity on the drag coefficient, DC , at low 
incidences (0°−2° ): a diminution of DC  for 3DPS airfoil as compared to the 2DPS 
airfoil up  to 9 % in the range of such small angles of attack corresponding to the 
cruise regimes for commercial airliners of large speeds.   At M=2 and α = 0, one 
gets a 19% diminution in CD   at turbulent flow. 
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In Table 2, a comparison between the analytical Carafoli- Berbente inviscid 
formulas, CLA  , CDA  and Fluent 6, CLF , CDF for the lift and drag coefficients is 
given, at Mach number M=2 and various angles of attack. The agreement 
especially at non zero angles of attack is surprisingly good. 

   Table 2 
Comparison between the analytical inviscid formulas (Carafoli-Berbente) and Fluent 6 

 
M 
 

α  
(deg) 

DFC  CDA %Error  LFC  CLA %Error  

2 
0 0.030861 0,028523 8.85 0 0 0 
10 0.1071 0.106321 0.724 0.4183 0.42900 –2.56 
20 0.3743 0.36748 1.84 0.900 0.90935 –1.09 

7. Conclusions 

The main effect of the continuity of curvature radius is the smooth 
variation of pressure gradient on the airfoil surface. This effect is benefic for the 
pressure drag and also for the boundary layer development. Compared with an 
airfoil without continuity on curvature radius, the drag reduction is about 9%, at 
moderate angle of attack. 
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