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TRAIN CONTROL PROBLEM 

Gabriel POPA1, Constantin UDRIŞTE2, Ionel ŢEVY3 

This paper deals with the optimization of the railway transport system from 

the traction point of view. Optimizing the traction segment in a railway company 

means especially respecting the timetable and of course, the lowest fuel/electric 

power consumption. Our aim is three-fold: (1) to review and detail the optimal 

control theory of train movement compared with the presentations in the papers [1, 

2 6 - 16]; (2) to determine the continuous transition from one phases to another for 

a globally optimal strategy on a track; (3) to formulate and to solve the problem of 

stochastic optimal control of train movement. It is reconfirmed that the optimal 

driving strategy for a train takes the form of a power-speed hold-coast-brake 

strategy, unless the track contains steep grades. 

Keywords: optimal control involving ODEs, train optimal control, optimal 

stochastic control, bang-bang control. 

1. Mathematical and physical ingredients 

The actual requirements of the dynamic market economy are forcing the 

railway system to transform into a reliable alternative to the road and air traffic. 

From this perspective, the railways have to fulfil two key elements: (1) 

economical efficiency and reliability; (2) to offer what the potential customer 

needs. In particular, the railway system has to fulfil the following specific 

conditions: (1) freight service must be safe, cheap, fast and accessible (taking into 

account the complete service pack to be offered to customers situated far from the 

railway line); (2) long distance passengers service must be fast, highly 

comfortable (representing a true alternative to the airways) and to allow 

conditions for leisure, rest and entertainment; (3) short distance passenger service 

(including the metropolitan railways) must ensure fast links from the centers of 

the cities to the suburbs at low prices, compared to the bus services.  

These are the main requirements demanded by the potential customers 

desiring prompt, safe and affordable services. It is important to know that their 

perception of the quality level of the transport service changes continuously. 
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Railway operators have many analysis elements which might be influencing their 

economic efficiency. One of the main elements is the respect of the timetables or 

the decrease of the running times. The running time is the main referential, 

especially when it is related to the fuel or power consumption. The optimization 

of the running times and the fuel/electric power consumption is strictly related to 

the safety and modern signalling system. 

The specialists in the train control problems used the following data: T is 

the time allowed for the journey, x is the distance between two stations, u(t) is the 

accelerations applied to the train, v(t) is the speed of the train, and − r(v(t)) is the 

resistive acceleration due to the friction. The movement of the train is governed 

by the Newton law  

 

𝑥̈(𝑡) = 𝑢(𝑡) − 𝑟(𝜈(𝑡)),                                                                             (1) 

 

where r(v), v[0,) is strictly increasing and convex function and the acceleration 

u(t) (control variable) is limited by the relation |u(t)| 1. The theory (see energy 

consumption) involves also the positive part of u(t), defined by 

 

𝑢+(𝑡) =
1

2
(𝑢(𝑡) + |𝑢(𝑡)|)                                                                         (2) 

 

The increasing and convex function r(v) is exemplified by the formula 

 𝑟(𝜈) = 𝑎 + 𝑏𝜈 + 𝑐𝜈2, 𝜈 ∈ [0,∞),                                                             (3)   

 

where a, b, c are known real numbers subject to a > 0, b > 0, c > 0. For 

simulations, it is used 

 

𝑟(𝜈) = 0.015 + 0.00003𝜈 + 0.000006𝜈2                                               (4) 

2. Train control problem 

The problem of finding the best way to drive to the next destination can be 

formulated as an optimal control problem (local energy minimization principle). 

That is, we wish to find the sequence of control settings that will get the train to 

the next destination on time, and with minimal energy consumption. 

 

Mathematical assumptions (i) U=L([0,T]) is the set of measurable and 

bounded functions on the interval [0,T], endowed with the norm 

 
‖𝑢‖∞ = 𝑠𝑢𝑝|𝑢(𝑡)|, 𝑡 ∈ [0, 𝑇]                                                                   (5) 
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(ii) v=C0,1([0,T]) is the set of Lipschitz functions on the interval [0, T], 

endowed with the norm 

 
‖𝑣‖ = ‖𝑣‖∞ + ‖𝑣̇‖∞.                                                                                (6) 

 

A feasible pair (u,v)ϵF =U xV must satisfies ||u|| 1 and  v(0) = v(T) = 0. 

In the following problem, x and v are state variables and u is the control 

variable. 

Deterministic Problem Minimize the mechanical energy consumption 

 

𝐽(𝑢(·) = ∫ 𝑢+(𝑡)𝑣(𝑡)𝑑𝑡
𝑇

0
                                                                          (7) 

 

subject to 

(i) the ODE constraints 

 

𝑥̇(𝑡) = 𝑣(𝑡),    𝜈̇(𝑡) = 𝑢(𝑡) − 𝑟(𝑣(𝑡)),    𝑣(0) = 𝑣(𝑇) = 0,                    (8) 

(ii) the isoperimetric constraint 

 

∫ 𝜈(𝑡)𝑑𝑡 = 𝑋,
𝑇

0
                                                                                          (9) 

 

(iii) the control inequality constraint 

 
|𝑢(𝑡)| ≤ 1.                                                                                               (10) 

 

Solution.We shall look to apply the Pontryagin maximum principle. For 

that we use the Hamiltonian 

 

𝐻(𝑥, 𝑢, 𝜈) = −𝑢+ν + 𝑝1𝜈 + 𝑝2(𝑢 − 𝑟(𝜈)),                                            (11) 

 

where p1= p1(t) and p2=p2(t) are the Lagrange multipliers. The Hamiltonian can 

be rewritten as a piecewise function of degree at most one with respect to u, 

namely 

 

𝐻(𝑥, 𝑣, 𝑢) = {
𝑝2𝑢 + 𝑝1𝜈 − 𝑝2𝑟(𝜈),   for − 1 ≤ u < 0 

𝑢(𝑝2 − 𝜈) + 𝑝1𝜈 − 𝑝2𝑟(𝜈),    for 0 ≤ u ≤ 1
                    (12)    

     

The adjoint ODEs 

 

𝑝1̇(𝑡) = −
𝛿𝐻

𝛿𝑥
,     𝑝2̇(𝑡) = −

𝛿𝐻

𝛿𝜈
                                                                (13) 
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become 𝑝1̇(𝑡) = 0    𝑝2̇ (𝑡) = 𝑢+(𝑡) − 𝑝1 + 𝑝2(𝑡)
𝛿𝑟

𝛿𝜈
(𝑡)                                    (14) 

 

Consequently, p1(t)=p1 (constant). For p2(t), we have explicitly 

 

𝑝2̇(𝑡) = 𝑢(𝑡) − 𝑝1 + 𝑝2(𝑡)
𝛿𝑟

𝛿𝜈
(𝑡)        for   0 ≤ 𝑢 ≤ 1                            (15) 

 

𝑝2̇(𝑡) = −𝑝1 + 𝑝2(𝑡)
𝛿𝑟

𝛿𝜈
(𝑡)                for  − 1 ≤ 𝑢 < 0.                         (16) 

 

If the Hamiltonian is linear in the control variables and the control 

variables have simple bounds then the optimal control is a combination of bang- 

bang control and singular arcs. 

The Hamiltonian is piecewise linear (function of degree at most one) in the 

control, the control variable have simple bounds, and the switching functions are 

p2(t) and p2(t)−v(t),  respectively. Therefore the optimal control is a combination 

of bang-bang control and singular arcs. The optimal control u*(t) is 

discontinuous: it jumps from a minimum to a maximum and viceversa in response 

to each change in the sign of switching function. 

(i) The optimal control as determined by the switching function p2(t) is 

 

𝑢∗(𝑡) = {

0, for 𝑝2(𝑡) > 0 bang − bang control

−1, for 𝑝2(𝑡) < 0 bang − bang control

undetermined, for 𝑝2(𝑡) = 0

            (17) 

 

Suppose t=ts is the  switching time, i.e., a solution of the equation p2(t)=0. 

Then the optimal control is rewritten.  

 

𝑢∗(𝑡) = {

either 0 or − 1, for 𝑡 ∈ [0, 𝑇] and − 1   for  𝑡 ∈ [𝑡𝑠, 𝑇]

0, for 𝑡 ∈ [0, 𝑡𝑠)and  0      for  𝑡 ∈ [𝑡𝑠, 𝑇]

−1, for 𝑡 ∈ [0, 𝑡𝑠) 

        (18) 

 

The most interesting case is those of finite number (or countable set) of 

switching times. 

(ii) The optimal control as determined by the switching function p2(t)−v(t) 

is 

 

𝑢∗(𝑡) = {

1, for  𝑝2(𝑡) > 𝑣(𝑡)bang − bang control

0, for 𝑝2(𝑡) < 𝑣(𝑡)bang − bang control 

undetermined, for 𝑝2(𝑡) = 𝑣(𝑡)   

       (19) 
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Suppose t=ts  is the  switching time, i.e., a solution of the equation 

p2(t)=v(t). Then the optimal control is rewritten 

 

𝑢∗(𝑡) = {

𝑒𝑖𝑡ℎ𝑒𝑟 1 𝑜𝑟 0, for 𝑡 ∈ [0, T]
1, 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡𝑠)   and 0 for 𝑡 ∈ [𝑡𝑠, 𝑇]
0, 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡𝑠)  and 1 for 𝑡 ∈ [𝑡𝑠, 𝑇]

             (20) 

 

The most interesting case is those of finite number (or countable set) of 

switching times. 

3. Maximum acceleration, coast and maximum brake 

There are three cases which correspond respectively to maximum 

acceleration, coast and maximum brake. These all occur in a typical optimal 

control strategyof the train, but their presence is only piecewise, splitting the 

interval [0,T] into subintervals, i.e., T=T1+...+Tn. 

 

Case 1 (phase 1: maximum acceleration): 

 

𝑝2(𝑡) > 𝜈(𝑡) ⟹ 𝑢∗(𝑡) = 1.                                                                    (21) 

 

The time t is in a first subinterval [0,T1] of the interval [0,T]. This case 

include the optimal adjoint evolution 

 

𝑝1(𝑡) = 𝑝1, 𝑝2̇(𝑡) = 1 − 𝑝1 + 𝑝2(𝑡)
d𝑟

d𝜈
(𝑡)                                            (22) 

 

and the optimal initial evolution 

 

𝑥̇(𝑡) = 𝜈(𝑡),   𝜈̇(𝑡) = 1 − 𝑟(𝜈(𝑡)).                                                         (23) 

 

For details, we shall use the expression (1) for r(v). Then the second initial 

ODE become 

 
𝑑𝜈

𝑐𝜈2+𝑏𝜈+𝑎−1
= −d𝑣                                                                                   (24) 

 

Let 1=b2−4c(a−1)  be the discriminant of the polynominal cv2+ bv+ a−1. 

If 1 0, then we find the roots 

 

𝛼 =
−𝑏−√𝛥1

2𝑐
 , 𝛽 =

−𝑏+√𝛥1

2𝑐
.                                                                       (25) 
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We remark that   0  and  < 0 for  >1  , and  > 0  for  < 1. In our 

theory, we need  > 0 and v [0,) or v [0,). Taking into consideration the 

conditions v(0)=0, v(T)=0, we must work on the interval [0,) only. Then we find 

 

∫
𝑑𝜈

𝑐𝜈2+𝑏𝜈+𝑎−1
=

{
 
 

 
 

1

𝑐(𝛼−𝛽)
ln

𝜈−𝛼

𝛽−𝜈
          for   Δ1 > 0

−
1

𝑐(𝜈−𝛼)
                       for     Δ1 = 0

2

√−Δ1
atan

2cν+b

√-Δ1
        for       Δ1 < 0.

                          (26) 

Conclusions:  

(i) For 1>0, the optimal evolution is 

 

𝑡 = 𝐶1 −
1

𝑐(𝛼−𝛽)
ln

𝜈−𝛼

𝛽−𝜈
,   𝜈(𝑡) =

𝛼+𝛽𝑒𝑐(𝛼−𝛽)(𝐶1−𝑡)

1+𝑒𝑐(𝛼−𝛽)(𝐶1−𝑡
,                                    (27) 

 

𝑥(𝑡) = 𝛼(𝑡 − 𝐶1) +
1

𝑐
ln(𝑒𝑐(𝛼−𝛽)(𝐶1−𝑡) + 1) + 𝐶2.                                 (28) 

 

Imposing the condition v(0)=0, we find 

 

𝐶1 =
1

𝑐(𝛼−𝛽)
ln

−𝛼

𝛽
.                                                                                    (29) 

 

Similary, the condition x(0)=0 produces 

 

𝐶2 = 𝛼𝐶1 −
1

𝑐
ln(𝑒𝑐(𝛼−𝛽)𝐶1 + 1).                                                            (30) 

 

Eliminating the parameter t, we obtain x=x(v). By parametric pilot, we 

find v=v(x).  

Let us consider the ODE  𝜈̇(𝑡) = 1 − (𝑐𝜈2(𝑡) + 𝑏𝜈(𝑡) + 𝑎). If a < 1, then 

its equilibrium (critical) point is the positive solution β of the equation  

0=1− (cv2+bv+a). The solution β is a supremum of the function v(t) since in its 

left the function v(t) is increasing (limt→v(t)=) and in the right is decreasing to  

limt→-v(t)= < 0. The train movement suppose v(t) is bounded and increasing. 

(ii) For 1  0, the ODE  𝜈̇(𝑡) = 1 − (𝑐𝜈2(𝑡) + 𝑏𝜈(𝑡) + 𝑎) shows that 

thefunction v(t) is decreasing. Hence this case is not convenient for a strating 

phase (acceleration). 

 

Case 2 (phase 2: coast): 

 

𝑝2(𝑡) < 𝜈(𝑡) ⟹ 𝑢∗(𝑡) = 0.                                                                    (31) 
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The time t is in a second subinterval [T1,T] of the interval [0,T]. This case 

include the optimal adjoint evolution 

 

𝑝1(𝑡) = 𝑝1, 𝑝2̇(𝑡) = −𝑝1 + 𝑝2(𝑡)
𝑑𝑟

𝑑𝜈
(𝑡)                                                (32) 

 

and the optimal initial evolution 

 

𝑥̇(𝑡) = 𝜈(𝑡), 𝜈̇(𝑡) = −𝑟(𝜈(𝑡)).                                                              (33) 

 

Obviously, the speed v(t) 0 is decreasing (see the second ODE), as 

requires the coast phase. Introducing the expression (1) for r(v), we obtain the 

details. 

 

Case 3 (phase 3: maximum brake): 

 

𝑝2(𝑡) < 0 ⟹ 𝑢∗(𝑡) = −1.                                                                      (34) 

 

The time t is in a third subinterval [T3,T4] of the interval [0,T]. This case 

include the optimal adjoint evolution 

 

𝑝1(𝑡) = 𝑝1, 𝑝2̇(𝑡) = −𝑝1 + 𝑝2(𝑡)
𝑑𝑟

𝑑𝜈
(𝑡)                                                (35) 

 

and the optimal initial evolution 

 

𝑥̇(𝑡) = 𝜈(𝑡), 𝜈̇(𝑡) = −1 − 𝑟(𝜈(𝑡)).                                                       (36) 

 

Obviously, the speed v(t) 0 is decreasing (see the second ODE), as 

requires the maximum brake phase. Introducing the expression (1) for r(v), we 

obtain the details. 

4. Singular control 

If the switching function vanishes identically for some time interval, the 

control u has no influence on the Hamiltonian function H, i.e., the maximum 

principle fails. This is referred to singular control. 

 

Case 1 (intermediary phase: velocity hold): 

 

𝑝2(𝑡) = 𝜈(𝑡) ⟹ 𝑢∗(𝑡) ∈ [0,1].                                                               (37) 
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The time t is in a subinterval [T2,T3] of the interval [0,T]. Since the 

equality p2(t)=v(t) must be maintained on a non-trivial interval, it follows 𝑝̇2(𝑡) =
𝜈̇(𝑡). From the evolution ODE and from the second adjoint ODE, we find the 

conditions 

 
𝑑

𝑑𝜈
(𝜈𝑟(𝜈)) = 𝑝1.                                                                                      (38) 

 

Hence v(t)r(v(t))=p1v(t), i.e., r(v)=p1 with the solution v(t)=V (velocity 

hold) on our interval, since r(v) is strictly increasing and convex. The optimal 

control is u*(t)=r(V). Hence v(t), (t)[T1,T2] and the continuity of phases give the 

condition V=v(T2). The function  (v)=vr(v) is strictly increasing and convex.  

Now d/dv(t) r(0)=a and this situation can only occur if  p1  a >0. 

 

Case 2 (partial brake): 

This case requires that p2(t)=0 is true on a  non-trivial interval   

[0,t0)[0,T] and corresponds to partial braking. Since, u+
*(t)=0, the second adjoint 

equation implies 0=p1, and consequently on this interval the initial ODEs and the 

adjoint ODEs are inactive. Hence H*=0. Since, v(0)=0, an optimal strategy can 

only start with u*(t)=1, for p2(t) > v(t) > 0, and switch to u*(t)=0  at the moment 

t1, for  0 < p2(t) < v(t). Set (t)=p2(t)/v(t). Then (t1)=1. On the other hand, for 

u*(t)=0, t[t0,t1][t1,T] the second initial ODE and the second adjoint ODE 

become  

 

𝜈̇(𝑡) = −𝑟(𝜈(𝑡)),   𝑝2̇(𝑡) = 𝑝2(𝑡)
d

d𝜈
𝑟(𝜈(𝑡)).                                        (39) 

 

Consequently, 

 

𝜂̇(𝑡) =
1

𝜈(𝑡)

d

d𝜈
𝑟(𝜈(𝑡)) > 0.                                                                      (40) 

 

This gives (t) > 1 for t > t1 wich contradicts the double inequality 

0<(t)< 1. Consequently, we cannot switch from u*(t)=1 to u*(t)=0 and this case 

cannot occur (it rests p10). 

 

5.  Energy-efficient speed profile  

The book [9] suggested that an energy-efficient speed profile should 

contain at least three or four phases coupled by continuity: (i) maximum 

acceleration, coast and maximum brake; (ii) maximum acceleration, hold speed, 
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coast and maximum brake. All the experiments confirmed that these strategies are 

indeed efficient. 

 

Accelerate-brake strategy The set F is non-empty. Indeed the initial 

condition problem 

 

𝜈̇(𝑡) = 1 − 𝑟(𝜈(𝑡)),    𝜈(0) = 0                                                              (41) 

 

has a unique solution v1(t), t  0, and the final condition problem 

𝜈̇(𝑡) = −1 − 𝑟(𝜈(𝑡)),    𝜈(𝑇) = 0                                                           (42) 

 

has a unique solution v2(t), t  T. Further there exists a unique point t=T1 where 

v1(T1)=v2(T1) (the two phases are joined by continuity). The pair of piecewise 

functions 

 

𝑢(𝑡) = {
1              for   𝑡 ∈ (0, 𝑇1)
−1          for    𝑡 ∈ (𝑇1, 𝑇)

                                                           (43) 

 

and       𝜈(𝑡) = {
𝜈1(𝑡)              for   𝑡 ∈ (0, 𝑇1)
𝜈2(𝑡)             for    𝑡 ∈ (𝑇1, 𝑇)

                                                    (44) 

 

satisfies the conditions and represents an accelerate-brake strategy. 

 

Accelerate- coast-brake strategy Let us look for more feasible pairs. We 

choose T2[0,T1] and find the unique solution v3(t), t  T2  of the problem 

 

𝜈̇(𝑡) = −𝑟(𝜈(𝑡)),    𝜈(𝑇2) = 𝜈1(𝑇2).                                                       (45) 

 

In the condition 𝜈3(𝑇) ≥ 0, there exists a unique point 𝑇3 ∈ [𝑇1, 𝑇], with 

v3(T3)=v2(T3) it follows that the pair 

 

𝑢(𝑡) = {

1                   for   𝑡 ∈ (0, 𝑇2)

0                    for   𝑡 ∈ [𝑇2, 𝑇3]

−1             for  𝑡 ∈ (𝑇3, 𝑇)
                                                     

(46) 

 

and      𝜈(𝑡) = {

𝜈1(𝑡)                  for   𝑡 ∈ (0, 𝑇2)

𝜈3(𝑡)               for    𝑡 ∈ [𝑇2, 𝑇3]

𝜈2(𝑡)               for    𝑡 ∈ (𝑇3, 𝑇)

                                                 (47) 
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represents an accelerate-coast-brake strategy. 

Mathematical reasoning made above confirms again the theory, and they 

can be summarized by 

Theorem 1. An efficient speed profile consists in at least four steps 

coupled by continuity: 

(1) The condition v(0)=0 imposes that the first phase must be ”maximum

acceleraion”, on the interval [0,T1], solution of the inequation p2(t)>v(t).

It follows v(T1)<.

(2) Then, p2(t)=v(t) , for t[T1,T2],, when v(t)=v(T1) , i.e., hold speed.

(3) Further, 0 < p2(t) < v(t), for t[T2,T3), and p2(T3)=0  i.e., coast case.

(4) Finally, p2(t)<0,  for t[T3,T], and v(T)=0 i.e., total brake.

6. Numerical simulation

The numerical simulation scenarios in [9] reveals the optimal control of 
the train movement. Our numerical simulations shows that the speed 

(acceleration) profile for „accelerate-hold-cost-brake” strategy is represented by 

the shape in the Fig. 1 ( Fig. 2). 

Fig. 1. Speed profile 

7. Discrete train control problem

The movement process of the train can be conceptualized also in discrete

time. This is perhaps the greatest source of confusion among practitioners, both in 

terms of implementation and psyhical interpretation. In general, the train 

movement occurs in continuous time but we observe it at fixed discrete-time 
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intervals. Thus, continuous time in conceptually and theoretically appealing, but 

in practice it is perhaps more intuitive to interpret movement in discrete intervals.  

 

 
 

Fig. 2. Acceleration profile 

 

Minimize the mechanical energy consumption 

 

𝐽(𝑢𝑘(∙)) = ∑ 𝑢+𝑘𝜈𝑘
𝑁−1
𝑘=1                                                                           (48) 

 

subject to 

 

(i) The Ode constraints 

 

𝑥𝑘+1 − 𝑥𝑘 = 𝑣𝑘, 𝑣𝑘+1 − 𝑣𝑘 = 𝑢𝑘 − 𝑟(𝑣𝑘),                                             (49) 

1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑣(0) = 𝑣(𝑁) = 0, 
                                                   

(ii) The isoperimetric constraint 

 

∑ 𝜈𝑘 = 𝑋,𝑁−1
𝑘=1                                                                                            (50) 

 

(iii) The control inequality constraint 

 

|𝑢𝑘| ≤ 1.                                                                                                (51) 
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Here xk, uk, are the state variables. The maximum principle of Pontryagin 

shows that if we denote by pk and qk  the costate or adjoint variables, and denoting 

 

𝐻𝑘 = −𝑢+𝑘𝜈𝑘 + 𝑝𝑘𝜈𝑘 + 𝑞𝑘(𝑢𝑘 − 𝑟(𝜈𝑘)),                                              (52) 

 

Then 𝑝𝑘 − 𝑝𝑘−1 = −
𝛿𝐻𝑘

𝛿𝑥𝑘
,    𝑞𝑘 − 𝑞𝑘−1 = − 

𝛿𝐻𝑘

𝛿𝜈𝑘
,   2 ≤ 𝑘 ≤ 𝑁 − 1       (53) 

 

and      𝐻𝑘
∗ = 𝑚𝑎𝑥𝑢𝑘𝐻𝑘,   1 ≤ 𝑘 ≤ 𝑁.                                                                 (54) 

 

8. Optimal stochastic movement of the train 

Notably, the speed of movement in intrinsically linked in current 

continuous-time random walk formulations, and this can have important 

implications when interpreting train behavior (see [3-5]). 

Let t[0,T]. Let x(t) be the stochastic position variable, v(t) be the 

stochastic speed variable, (x(t),v(t)) be a stochastic or diffusion process, W(t) be a 

Wiener process,  σ be a diffusion coefficient and u(t) be the random control 

variable. The stochastic process (x(t),v(t)) is usually a Markov process. 

 

Stochastic problem (train stochastic optimal control problem) Find 

 

𝑚𝑎𝑥𝑢𝐼(𝑢(∙)) = 𝐸 {−∫ 𝑢+(𝑡)𝜈(𝑡)𝑑𝑡
𝑇

0
}                                                   (55) 

 

constrained by  

           d𝑥(𝑡) = 𝜈(𝑡)𝑑𝑡,   d𝜈(𝑡) = (𝑢+(𝑡) − 𝑟(𝜈(𝑡))) d𝑡 + σdW(t),                (56) 

x(0) = 0, 𝜈(0) = 0. 
 

Solution In our context, we use a control Hamiltonian stochastic 1-form  

 

ℋ(𝑡, 𝑥, 𝑢, 𝑝) = (−𝑢+𝜈 + 𝑝1𝜈 + 𝑝2(𝑢+ − 𝑟(𝜈)))𝑑𝑡.                              (57) 

 

and its pullback. The adjoint linear stochastic differential system 

 

d𝑝1(𝑡) = −
𝛿ℋ

𝛿𝑥
,  d𝑝1(𝑡) = −

𝛿ℋ

𝛿𝜈
                                                             (58) 

 

is         d𝑝1(𝑡) = 0,   d𝑝2(𝑡) = (𝑢+(𝑡) − 𝑝1 + 𝑝2(𝑡)
𝑑𝑟

𝑑𝜈
(𝑡)) d𝑡.                        (59) 

 

Consequently, p1(t)=p1 (constant). For p2(t), we can write explicitly 
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d𝑝2(𝑡) = (𝑢(𝑡) − 𝑝1 + 𝑝2(𝑡)
d𝑟

d𝜈
(𝑡)) d𝑡          for         0 ≤ 𝑢 ≤ 1          (60) 

d𝑝2(𝑡) = (−𝑝1 + 𝑝2(𝑡)
d𝑟

d𝜈
(𝑡)) d𝑡                     for         − 1 ≤ 𝑢 ≤ 0      (61) 

9. Conclusions 

Circumstances which make train control a pressing problem at the present 

time are very well known. However, automatic control can not be done without 

knowledge of the mathematical theory of optimal control. That is why, in our 

paper we clarify the idea of cost functional, ODE constraints, isoperimetric 

constraint, Pontryagin maximum principalefor a train control problem (see [1, 2, 

6-16]). 

This article is addressed not only to mathematicians wanting to know more 

about mathematical issues associated with concrete applications, but also to 

engineers already acquainted with classical techniques of optimal control, wishing 

to get more familiar with the more modern approaches of geometric control and 

other mathematical notions that have demonstrated significant enhancements in 

classical train problem, or to discipline to nontrivial examples in transport 

problems.  

The article presents a scholarly research application, with mathematical 

solutions for strategy development of optimization of energy consumption with 

implications in the field of railway transportation. It is a first step to achieve an 

intelligent railway vehicle. Control system of the vehicle drive regime for 

optimization of energy consumption is an emerging technology for railway 

traction. Optimization energies resource consumption is for railway system a high 

priority both in terms of the efficiency of the system and in terms of protecting the 

environment. Acceptance and usage of new technologies for drive regime of 

traction railway vehicles will determine new technologie applications for railway 

infrastructure and new strategies for vehicle driving and traffic management for a 

high economic efficency of railway system. 
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