
U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 3, 2025 ISSN 2286-3540

PRACTICAL SOURCE CODE WEAVING FOR DISTRIBUTED
WORKFLOW ABSTRACTIONS

Silviu-George PANTELIMON1, Radu-Ioan CIOBANU2, Ciprian DOBRE3

Aspect-oriented programming (AOP) is a modern software de-
velopment paradigm that helps automate programming and increase software
quality. A frequently used technique in AOP is called aspect weaving, which
allows developers to reduce boilerplate code (lines of code repeated in multi-
ple places with little to no variation), making it easier to add new features
to existing source code. However, most frameworks that support AOP in
various programming languages, with few exceptions, have not taken full
advantage of this technique, especially when working on multiple projects
with a shared code base (e.g., distributed systems like microservices). This
paper proposes a novel approach that uses source code weaving to create
complex workflows within a distributed application. By incorporating the
workflow specifications directly into the code, our method aims to provide a
unified abstraction for the distributed system, to simplify code and enable a
better visibility of the distributed processes.

Keywords: code generation, categorial optics, programming paradigms

1. Introduction

In the current software development market, there are several libraries
and frameworks for different purposes that enable easy-to-use Aspect-Oriented
Programming (AOP) [9]. AOP is generally used to insert new features (not
necessarily in a transparent manner) into existing code, which would be diffi-
cult to do otherwise. Suppose that we need to log the execution of some pro-
cedures in a complex application with many distinct modules. Here, logging
becomes a cross-cutting concern because it needs to be executed in multiple
parts of the code. With AOP, the logging aspect would encapsulate the logging
logic and decouple it from the rest of the procedures.

1Ph.D. Student, Faculty of Automatic Control and Computer Science, National
University of Science and Technology Politehnica Bucharest, Bucharest, Romania, sil-
viu.pantelimon@upb.ro

2Professor, Faculty of Automatic Control and Computer Science, National University of
Science and Technology Politehnica Bucharest, Bucharest, Romania, radu.ciobanu@upb.ro

3Professor, Faculty of Automatic Control and Computer Science, National University of
Science and Technology Politehnica Bucharest, Bucharest, Romania, ciprian.dobre@upb.ro

5

6 Silviu-George Pantelimon, Radu-Ioan Ciobanu, Ciprian Dobre

In reality, by using AOP, developers may risk losing fine-grained control
over application logging. An alternative in practice is to use dependency in-
jection and an attribute/annotation processor to add a logging service as an
object, where specified. For such a case, a form of weaving is still involved in
many implementations, usually at compile-time, to avoid runtime overhead.
With weaving techniques, we can generate code and introduce the logger into
an annotated class readily available for use. For developers, the code becomes
easier to write, more concise, and, therefore, more maintainable.

Using the same principles, but in a distributed context, we propose using
attribute-oriented programming (@OP) with source code weaving to imple-
ment distributed workflows. Suppose that we want to implement a distributed
workflow for registering a new publication from an external database in a
CRIS1 platform, which is an information system that stores and manages con-
textual metadata describing research-related impact indicators. Let us assume
that we want to implement a distributed workflow for registering data about a
new publication of a researcher. Any CRIS platform usually has two connected
nodes: a data processing node, and a storage node connected to a database.
As the publication arrives in the platform from an external source, it is san-
itized and pre-processed by the first node, and then it is sent to the storage
node to be persisted. On the storage node, a data aggregation process is trig-
gered automatically for each publication author, so that the processing node
can recalculate scientometric indicators.

By analyzing the specifications of the aforementioned CRIS platform, we
can interpret the workflow as a cross-cutting concern. The idea is to encap-
sulate the specifications into generated code that would produce the desired
(software) behavior for each distributed node. A widely used method would
be to employ a saga pattern [5]. A saga is simply a sequence of transactions
that update distributed services and publish a message or event to trigger the
next transaction step. Many frameworks implement this pattern by declaring
state machines in each node, which communicate with each other by exchang-
ing events and triggering state transitions upon event reception. While this
approach is undoubtedly practical, the downside is that the implementation is
split between the distributed nodes, which means that we do not have a proper
abstraction of the workflow, leading to intrinsic tangling in the system. Thus,
this paper proposes an alternative AOP-based saga design construct and its
corresponding technique to eliminate these problems.

In our approach, we encapsulate the specification as a single annotated
interface in the shared code of the distributed system, representing every step
of the workflow. For the case above, sanitizing the publication would be speci-
fied by a method in the annotated interface, which would then be used to weave
the necessary source code. The developer would only have to use the generated
code for their implementations separately for each program on different nodes.

1Current Research Information System

Practical Source Code Weaving for Distributed Workflow Abstractions 7

In this way, we can obtain a single contained specification that also encom-
passes the cross-cutting concern for the entire workflow as an abstraction in
the code, with the added benefit that it involves more compile-time operations
(rather than runtime) and is more maintainable for the developer.

The applicability of this solution is not limited to CRIS platforms. It
is simply an example where we have experience implementing workflows that
aggregate data from various sources. There are mission-critical business pro-
cesses, like distributed transactions in e-Commerce or finance, that require a
high degree of confidence in the code performing the transaction. Having parts
of the code generated from some specifications kept in a single place may pro-
vide means by which such systems can be maintained more easily with faster
time of development.

2. Similar Solutions

We should note some technologies used by the industry as a reference for
software design. The most notable example that attempts this is JHipster [8], a
framework that provides tools and a domain-specific language, JDL, to enable
developers to rapidly implement web applications in Spring. However, some
developers may find this framework difficult to learn as they need to under-
stand the JDL and the command line tool. Besides, some may find that it adds
unnecessary components by default and induces too much complexity to the
software architecture. Therefore, many developers may opt out of using such a
solution and prefer to write the necessary code for their purpose themselves, so
any tool used should not be very invasive to what the developers are comfort-
able with. A good place where JHipster may be best used is in simple CRUD
applications. For more complex applications with intricate business logic, it
may not be as useful for these types of requirements. An alternative would be
to have code generation tools integrated into the programming language itself
with more customization support.

Another example in which code generation is employed in modern appli-
cation development in synchronous communication between services is gRPC [6].
gRPC is a standard for remote procedure calls using the Protocol Buffer format
to serialize the exchanged data. It is a good example where formal specifica-
tions are transposed into actual code. For example, in .NET, the gRPC library
uses a .proto file where the contract and services are defined to generate the
classes for the contracts, the abstract services which have to be implemented,
and the clients for these services. It demonstrates how much of the source code
can be derived from simple specifications.

While these tools work in practice, we would like to make some adjust-
ments to these solutions. In both cases, having a distinct domain language
is added to the development environment, which is similar to what AOP so-
lutions such as AspectJ [7, 10] do. Another approach of weaving in features

8 Silviu-George Pantelimon, Radu-Ioan Ciobanu, Ciprian Dobre

is what the JPA2 [3] does: from an interface, an implementation for complex
database access is generated in compilation. The interface methods can be
arbitrary, either following some naming conventions or being annotated with
the corresponding database queries. The advantage of the JPA design is that
the specifications are tightly coupled with the code and most IDEs3 have cus-
tom support for the syntax. However, in this instance, unlike in AOP, no
cross-cutting concern is addressed. But, looking at how the JPA functions, we
would like to combine this approach of using an interface and @OP to address
the distributed workflow as a cross-cutting concern, as will be described in the
following sections.

3. Proposed solution

In the following, we describe our proposed solution, in which we intend
to avoid some common pitfalls of working with an AOP framework, such as
duplicated cross-cutting code or the application of incorrect advice [1].

For our goals, we must provide some basic assumptions for our develop-
ment environment:

• Whenever we talk about AOP, other paradigms, or design patterns, we
need to be aware that there has to be integration with the IDE. The
developer has to be provided with both the necessary tools to work with
the solution, but also with information about potential problems with the
implementation.

• We assume that the implementation of the distributed system shares a
common codebase for each node implementation, so we can share the
metadata in our @OP approach to weave code into multiple projects all
at once.

• We assume the workflows are structured as a directed acyclic graph, in
representation and in the implementation. We impose this constraint to
restrict the number of possible states the system is in, and to ensure that
the workflow terminates.

• The workflow executes in an asynchronous manner and, as in most modern
distributed cloud applications, we assume the asynchronous communica-
tion channel is a message queue.
With these assumptions, we propose the following steps in implementing

a workflow, as shown in figure 1:
• First of all, the developer creates a library that is shared among the dif-

ferent projects where we can declare our specifications of the workflow.
• In the shared library, an interface (as in OOP) representing the workflow

is declared, decorated by an attribute identifying the interface as workflow
specification.

2Java Persistency API
3Integrated Development Environments

Practical Source Code Weaving for Distributed Workflow Abstractions 9

• The programmer explicitly declares what event objects are used to realize
the saga, by where they occur in the methods of the interface, declaring
what steps are taken in the saga and what sequence of events triggers
these steps.

• On an incomplete or bad definition of the workflow, a code analyzer
prompts a compilation error specific to the workflow declaration, which
the programmer has to resolve to be able to compile the solution.

• After the correct definition of all the steps of the workflow, the generator
emits the source code to handle the steps. With respect to modern pro-
gramming standards, part of the generated code will be abstract (such as
interfaces), defining a contract between the rest of the generated code that
is concrete and the programmer that will implement these abstractions.

• The programmer implements these interfaces as handles in the distributed
nodes with the appropriate code, thus enabling the workflow to be imple-
mented in distinct processes.

• The handlers re-enter the compilation pipeline and are used for the gen-
eration of some other utility functions, such as the dependency injection
declarations or the generation of event consumers to call the event han-
dlers.
To exemplify, we shall take the aforementioned example and add a few

more steps, as shown in figure 2.
It can be seen here that we added a few attributes to the interface that

will change the implementation details. The important thing to note here is
that we use the interface as both an abstraction and a formal specification,
to encapsulate the workflow structure. Although we could have specified the
workflow as a directed acyclic graph in a distinct file, we actually want to
apply type theoretical and categorial theoretical operations on it, and a tighter
coupling with the programming language would confer us a few advantages.
For instance, we can use the syntax trees and semantic model exposed by the
compiler to have fine grained control over what code is produced.

Going further, we can view the interface as a category where methods
are objects and event types are morphisms between them. This nuanced view
carries with itself operations known in category theory which can be applied
to our example on multiple levels. Having the workflow as data structure in
our code we can therefore apply functors as in figure 3 so we can map each
method onto interfaces for event handlers and the event messages onto generic
type specializations. This mapping as described cannot be expressed properly
in most languages even if they support generic programming, and this is the
reason why we need code generation.

The code generation process allows us to take the structure provided
by the interface and metadata and transform it via a functor preserving the
structure of the interface enabled workflow. The important aspect here is that
the structure of the interface is evaluated by the compiler and generator, so the

10 Silviu-George Pantelimon, Radu-Ioan Ciobanu, Ciprian Dobre

Fig. 1. The proposed development and compilation pipeline.

[Workflow (de f au l tHand l e rL i f e t ime : L i f e t ime . Scoped , de fau l tDe l iveryTimeout : 5000)]
pub l i c i n t e r f a c e IPubl icat ionWorkf low {

pub l i c (San i t i z edPub l i c a t i on , Publ icat ionMetadata) S an i t i z e (RawPublication rawPubl icat ion) ;
pub l i c Publ icat ionSaved SavePubl i cat ion (San i t i z edPub l i c a t i on s an i t i z e dPub l i c a t i o n) ;
pub l i c Pub l i ca t i onProce s s ed Reca l cu l a t eMet r i c s (Publ icat ionMetadata publ icat ionMetadata) ;
[HandlerOptions (de l iveryTimeout : 4000)]
pub l i c void F i n a l i z e (Publ icat ionSaved publ icat ionSaved , Pub l i ca t i onProce s s ed pub l i c a t i onProce s s ed) ;

}

Fig. 2. A workflow specification example.

structure is visible to them as an internal semantic model. From evaluating
the syntax and with access to that internal model, we can map it to other
models. Therefore, we can implement functors over the abstract model of the
workflow via maps between these internal models.

Furthermore, we can obtain interesting properties for the code genera-
tion. Primarily, we can compose the functors to enable a modular code gener-
ation process if necessary. Secondarily, we can use the functors to template the
saga structure like in a dependent type. The workflow described as an inter-
face could, in principle, be used to parameterize a generic type with a specific
behavior. For example, one could implement classic functional types such as

Practical Source Code Weaving for Distributed Workflow Abstractions 11

()

Sanitize

SavePublication RecalculateMetrics

F inalize

()

ISanitizeHandler

ISavePublicationHandler IRecalculateMetricsHandler

IF inalizeHandler

RawPublication

SanitizedPublication PublicationMetadata

PublicationSaved PublicationProcessed

GenerationFunctor

Event<RawPublication>

Event<SanitizedPublication> Event<PublicationMetadata>

Event<PublicationSaved> Event<PublicationProcessed>

Fig. 3. Example of a mapping.

lists over the workflow. In this context, rather than one event triggering the
workflow, a collection of events are processed by a cumulative workflow which
could succeed if any or all of individual workflows succeed. With this perspec-
tive, we can work with the workflow structure on multiple levels: conceptual,
code and behavioral.

Regarding the generated code placement, the workflow interface is de-
clared in a shared library. All projects need to view the same workflow topol-
ogy in the first place, and also need to have the same data contracts provided to
correctly communicate between each other. The generator extracts the model
from the interface and transforms each individual method in that interface
into a handler interface serving as an abstraction placed in the same library,
to be visible for projects using them. Multiple projects could use the same
abstraction. For instance, we could have a project using the abstraction to
implement the production logic and another to implement tests cases for the
workflow. The handler interface may add or encapsulate data types in their
signature, in addition to the given definition in the corresponding method.

12 Silviu-George Pantelimon, Radu-Ioan Ciobanu, Ciprian Dobre

Fig. 4. Code generation placement.

As in figure 4, the shared library/assembly where the workflow interface
is declared will contain, after the code generation, the handler interfaces that
can be seen by other projects referencing that shared code.

When a project implements a handler interface, the code generator will
see the new class and re-trigger the generation process. In this step, there may
be different components that need to be created if the handler implementation
is present. The implementation itself is a minimal requirement to implement
other components such as the message consumer. A consumer in the broader
context of asynchronous communication is an endpoint that waits for an event
to trigger some logic (the logic in this case being implemented by the handler).
However, we need to make it clear that the consumer should not use the
implementation directly, but instead use the abstraction as provided. The
code generation process must be subjected to the same standards and level of
scrutiny as manually written code, for instance, by respecting SOLID principles
(Single-responsibility, Open-closed, Liskov Substitution, Interface Segregation,
Dependency Inversion).

While there are some advantages of using AOP over @OP with source
code weaving, like the fact that it adds new features to already existing code,
with our approach the concepts AOP deals with are transformed to help us
implement the workflows:

• Aspect: the workflow encapsulated in the interface becomes the aspect or
module that cuts across multiple projects/processes.

• Joint point: the joint points become implementations of generated ab-
stractions that need to be executed to enable the business logic.

• Advice: The advice becomes a specific implementation wrapping around
a joint point like an event consumer. Basically, in our approach this is

Practical Source Code Weaving for Distributed Workflow Abstractions 13

a case of inversion of control, as the joint point is called by the advice
rather than triggering it.

• Pointcut: There is no proper correspondent in this case, there are no
regular expressions to associate a joint point with an advice. At most,
the pointcut is represented by implementing the generated abstractions.
The whole point of changing the paradigm and employing more sophis-

ticated methods is to get the desired application behavior with fine-grained
control. Moreover, employing some inversion of control is beneficial to modern
applications as it streamlines the application control flow. While it may seem
that our approach is rather different than common AOP, this paradigm is the
standard in terms of encapsulating cross-cutting concerns. So, we simply em-
ploy another method for a specific use-case to overcome the shortcomings of
the original paradigm, while keeping the same notion of aspects.

An advantage code generation can give us is that, for specific instances,
we can generate code blocks needed to implement the logic for these use-case.
As in our example, the last step requires two messages of different types to
arrive and produce a result. In a scenario where we cannot assume the order
of message arrivals because the communication is asynchronous, we build a
custom logic. We store each event in a database with a shared generated
sequence number and call the event handler on both only by the consumer
who saved the greatest sequence number and has all the event messages. It is
a simple logic for which we can generate appropriate code while the developer
does not need to take more steps than in other scenarios.

4. Implementation Details

4.1. Source Generators with Roslyn

For our implementation we used the Roslyn compiler platform [11] for
source generation in .NET for C#. Roslyn is a versatile tool providing us
with the necessary features to implement out solution. It supports both code
generators and code analyzers for diagnostics.

To explain how the code generator works, we need to understand how the
Roslyn API works while the programmer codes. Whenever the source code in
a project is changed, the compiler sends it to the Roslyn pipeline, where there
is a code analyzer or generator that is called after the source code is parsed.

Roslyn uses two models to represent the output after parsing the source
files: a syntax tree representation of the various symbols defined in the lan-
guage’s grammar (in this case in C#) and a semantic model that puts the
symbols found in the syntax tree in context and attributes them a meaning.

When writing a code generator, we need to work with both, but not in the
same way the pipeline uses them. While many examples of code generators we
found use raw string templates to generate source code, this is not sustainable,
neither for our purposes nor from a general programming perspective. Instead,
we do the reverse set of operations from the pipeline: we start from an already

14 Silviu-George Pantelimon, Radu-Ioan Ciobanu, Ciprian Dobre

existing semantic representation for which we construct the syntax tree, and
then reify it to code.

The reason for choosing this approach is that we can generate code more
dynamically instead of defining code templates for every extremely specific
instance, and because we can use the already existing Roslyn API to compose
source code with syntax tree builders.

On top of the Roslyn API, we added an intermediary representation using
the semantic model. For each symbol we extract from the semantic model (e.g.,
classes, interfaces, method members, type definitions, etc.), we specifically
represent it as an object tailored for that instance. We do it because, on
one hand, we extract these representations from the semantic model exposed
by the compiler API. On the other hand, we also create new representations,
adding them to the compilation pipeline. For example, we can extract a class
representation in a ClassRepresentation object (a class defined by us) from
an ITypeSymbol Roslyn exposes, so we get information such as the members
it contains or its methods. We can also build a new class representation by
constructing it directly, if we need to. In both instances, we can build the
syntax tree and add the source file from the same representation, but it is
easier working directly with the Roslyn models instead of switching back and
forth between the syntax tree and the semantic model. We simply transform
the intermediary representation into another and then reify it.

Additionally, while we are still using the Roslyn API to simplify the
syntax tree building, we wrapped it into extension methods4. The benefit of
that is that the syntax is easier to read and write by using method chaining
rather than by nested function calls, a technique which itself is nothing new
but is worth noting that it is facilitated by using extension methods. From
what we have seen, using method-chaining and encapsulating frequently used
syntax can significantly reduce the code required to build a specific syntax
tree.

Other features of Roslyn that we used are incremental generators. In
short, the developer builds the generation pipeline via basic functional oper-
ations (projections, filters, aggregations) from the syntax trees and semantic
model, and sets the output, the source files, and the diagnostics. Incremental
generators ensure that, on each step in the specified pipeline, the intermediary
values are cached. At each execution, if the new values generated at each step
remain the same as the previous cached values, the next step is not triggered
again.

4Extension methods are methods added to a class/interface after it was written, but called
like normal methods.

Practical Source Code Weaving for Distributed Workflow Abstractions 15

4.2. Implementing the Generation Functor

To start describing the generation functor, we should firstly describe the
source category, which, in our case, is the annotated interface. Let WF be a
generic workflow interface defined as follows:

• Ev(WF) - the set of event message types in the workflow.
• Ob(WF) = M ∪ EP - the set of objects, i.e., the set of methods M in

the interface and set of entry-points EP in the workflow, an entry-point
being a operation that triggers events from the outside of the workflow to
initiate some logic.

• Hom(WF) = {patha,b|patha,b =
⋃

i∈N,xi⊆Ev(WF) xi; a, b ∈ Ob(WF); if a =

b then patha,b = ∅} - the set of morphisms which are the sequences of
event messages sent from a method or an entry-point to another method
where composition is the concatenation of the sequences.
Decomposing the workflow, we can easily describe the functor piece-wise

through simple maps:
• A bijective function fEv : Ev(WF) → Ev(WFG) and a dependent type
Event <> such that ∀a ∈ Ev(WF) fEv(a) = Event < a >. Basically, we
can take for granted a generic type in the programming language and this
function is implemented by the language.

• A function fM : M → HG that rewrites the methods as handler inter-
faces. If a method is a tuple m = (name, ret_type, [par_type]) ∈ M then
fM(m) = ($”I{name}Handler”, [(”Handle”, ret_type, [fEv(par_type)])]).
Then the set Ob(WFG) = HG ∪ EP.

• A function fHom : Hom(WF) → Hom(WFG) such that ∀a ∈ Hom(WF)
and ∀x ∈ a then fEv(x) ∈ fHom(a).
So we can define the target category WFG such that the code generator

functor FG : WF → WFG is defined as the tuple (fEv, fM , fHom). This functor
represents the code generation only for the event handlers as an example. The
functor is further illustrated here:

Fig. 5. The functor mapping illustrated element by element.

16 Silviu-George Pantelimon, Radu-Ioan Ciobanu, Ciprian Dobre

In reality, we can devise more functors such as this depending on our
requirements. Moreover, the programming language we are using already im-
plements genericity. If we need to modify the generated code, we will only need
to tweak the fM function. For example, we could introduce a new parameter
in the handler interfaces if we need to pass additional data structures.

This example intended to show how easily we can encapsulate the code
generation as a functor and use categories to conceptualize the workflow. We
could have done this without a reference to categories and use a simple set the-
oretical model, but there is one nuance to this method. Because the way we
described our categories, the composition of paths is preserved. This means,
non-formally, that how the workflow behaves, i.e., the chain of events repre-
sented by the interface, is conceptually preserved in the resulting code.

4.3. Code Generation with Optics

An idea we toyed with was to involve optics in the code generation pro-
cess. Optics are bidirectional data accessors [4], and we find this idea inter-
esting for several reasons. The first one is that they might modularize code
generation steps, while another reason is that outside of Haskell implementa-
tions, they were not adopted as design patterns in object-oriented languages.

Definition 4.1. Let there be two categories C and D with objects S,A ∈ C

and T,B ∈ D. A (generalized) (L○, R○)-optic from (S, T) to focuses (A,B) is,
according to [4], an element of:

Optic L○, R○((A,B), (S, T)) :=

∫ M∈M
C(S,M L○A)⊗D(M R○B, T)

where M is a monoidal category with two (left) actions L○, R○ acting on
C respectively D.

The usual representation found in the literature is shown in figure 6.
Conceptually, an optic decomposes an object via an action, getting the focused
object and a context. The context is used to recompose another object via a
potentially different action. From a programming perspective, we can imagine
that these objects are types. We use the optic to extract an inner data structure
and by passing the context we can reassemble another type. If we had replaced
the two actions with the cartesian product, basically composing types as tuples,
the optic would simply deconstruct and reconstruct data structure to access
and write nested data.

Practical Source Code Weaving for Distributed Workflow Abstractions 17

Fig. 6. A graphical representation of a generic optic.

Depending on what actions are used, the optic reduces to a specific
"shape" via a Yoneda reduction. For example, if the first action is a prod-
uct, the optic is a lens, while if the other action is a coproduct, the optic is a
prism5.

For the sake of keeping the implementation description short, we will fo-
cus on lenses and adapters to show how we implemented the source generation.

Definition 4.2. A (classical) lens from (S, T) to focuses (A,B) is an element
of:

Lens((A,B), (S, T)) := C(S,A)⊗D(S ×B, T)

Definition 4.3. An adapter from (S, T) to focuses (A,B) is an element of:

Adapter((A,B), (S, T)) := C(S,A)⊗D(B, T)

The usefulness of optics relies on the fact that compatible optics can be
composed to create other optics in the desired shape. However, as with all
patterns, they become even more useful the more degrees of freedom we have
acting on them. Therefore, we also use an interesting property of optics:

Theorem 4.1. Let there be functors F : C → C′ and G : D → D′ exhibiting
tensorial (left-)costrength respectively tensorial (left-)strength over the respec-
tive actions of an (L○, R○)-optic. The pair (F,G) determines a functor between
optics according to [2]:

OpticF,G : OpticC,D → OpticC′,D′

This a useful property we can use in some instances. To exemplify, we
can take the following example to transform a workflow interface into multiple
event handle interfaces.

5As generalized optics are defined an optic can be both a lens and a prism.

18 Silviu-George Pantelomion, Radu-Ioan Ciobanu, Ciprian Dobre

Fig. 7. The elementary code generation steps organized into optics.

We can identify several steps to access components from the workflow
interface and structure the resulted code. We group the elementary steps into
a lens and two adapters as shown in figure 76.

One adapter changes the method signature to return a Task (a type of
promise) and add a cancellation token parameter like most asynchronous meth-
ods have in C#. The other adapter extracts the method signature and adds
the name "Handle" to a method signature to get a proper interface method.

The lens simply extracts the method list from the workflow interface and
encapsulates a method into an interface with information from the workflow
interface to generate a name for that handler interface.

From these building blocks, we can first compose the two adapters. Be-
cause the resulted adapter has the same focuses, we can shortcut them and
append them like a simple transformation to the lens. The resulted optic is
still a lens with the same signature as the original.

Finally, we can apply a functor on the resulted lens as the pair (Identity,
IEnumerable), lifting this lens to another. The identity functor has costrength
with any type of operation and the IEnumerable7 functor is strong in relation
to the cartesian product, so we can apply it on the lens. The purpose is to get
the same type of focuses at the end, so we can once again shortcut them into
a single transformation.

Putting all together into code in object-oriented semantics, the schema
resulted in figure 8 becomes a simple function built through method-chaining as
in figure 9. The C# library used to implement optics for the source generator
is published by us on a public Gitlab8.

6The diagram notation is borrowed from Bruno Gavranović.
7IEnumerable is an interface providing iterators for collections and acts as a functor in

C#.
8https://gitlab.com/Say10/saytenoptics

https://www.brunogavranovic.com/posts/2022-02-10-optics-vs-lenses-operationally.html
https://gitlab.com/Say10/saytenoptics

Practical Source Code Weaving for Distributed Workflow Abstractions 19

Fig. 8. The final transformation resulted by optic composition
and functor application.

var g ene r a t eHand l e r In t e r f a c e s =
WorflowToHandlerLens

. PrependUpdate (
ReturnAndParametersHandlerAdapter

. Compose (MethodNameToHandleAdapter)

. CondenseAdapter ())
. ApplyEnumerableOnRightLens ()

. CondenseLens () ;

Fig. 9. A code generation transformation enabled by optics.

To make a disclaimer here, we do not not claim that this approach is
the best method for generating code by step-wise transforming code repre-
sentations. It is, however, a method worth studying for code modularization
techniques. In this example, if we would need to change the generated code,
we could simply insert another optic where we shortcut the focuses.

Another way the mentioned functor between optics helps in the con-
structing code generation pipelines is that we can shortcut optics by "adjust-
ing" the focuses through the functors. For example, we can use elements of
these types of lenses and apply the functors and compose the two morphisms
(an example that can be extended to other types of optics):

Lens((A,FA), (S, T)) → Lens((FA, FA), (FS, T)) → [FS, T]

Lens((GA,A), (S, T)) → Lens((GA,GA), (S,GT)) → [S,GT]

An example of how prisms can be used in our code generation method
is the case of generating diagnostics. In the example bellow we have a prism
which is also a lens that has two operations, a "match" operation that either
produces a list of error diagnostics if their parameters are not valid or just
passes the interface and a "build" operation that takes two interface repre-
sentations and outputs a list of diagnostics regarding whatever or not the two
interfaces share data types in their signatures.

20 Silviu-George Pantelimon, Radu-Ioan Ciobanu, Ciprian Dobre

Definition 4.4. A (generalized) prism from (S, T) to focuses (A,B) is an
element of:

Prism((A,B), (S, T)) := C(S, T • A)⊗D(B, T)

Fig. 10. An example of a prism also acting as a lens that ana-
lyzes an interface definition and outputs a list of diagnostics.

While in this case we can directly connect the focuses of the prism to
obtain the necessary transformation as in figure 10, it would not give us the
desired behavior because it would pass the same interface to the "build" op-
eration and get us the wrong diagnostics. Instead we can represent this prism
ignoring that it is also a lens as in figure 11.

Practical Source Code Weaving for Distributed Workflow Abstractions 21

Fig. 11. The same prism represented without the lens aspect.

We can see here that we cannot connect the two focuses together because
they are of different types. Instead we can apply a functor that is costrong
in relation to the cartesian coproduct, namely the functor F that ∀a, F (a) =
a×R, in this case R is another interface representation.

The functor is costrong because a × (b + c) → b + (a × c) ∀a, b, c in a
cartesian closed category.

Fig. 12. The prism resulted after applying the functor.

As seen in figure 12 we get the desired focuses which we can connect, but
to retain the same prism shape the costregth of the functor is applied resulting
in the prism from figure 13.

22 Silviu-George Pantelimon, Radu-Ioan Ciobanu, Ciprian Dobre

Fig. 13. The prism resulted after applying the costrength of the functor.

This new prism we can use to get a transformation that for any two
interfaces can produce a list of diagnostics or compose it with other optics to
build a more complex pipeline.

We should note that a problem we faced working with optics is that,
while composition is relatively easy once the compatible parts were identified,
the optics themselves were difficult to express in object-oriented semantics.
The reason stems from the language’s implementation of generic programming
and type inference, which does not always translate well from purely functional
setting (e.g. proper functor implementations). These limitations are not char-
acteristic to C#, but also other very common programming languages such as
Java and Kotlin.

Our final remark on this approach is that we can combine the usage of
optics with the incremental source generator. We can use the optics alone to
transform code and use the caching mechanism when passing from one optic
to another to avoid re-computing an output from an optic.

5. Perspectives on the evaluation

We have thought about evaluating our proposed solution in one way or
another, but there are two aspects to consider here. First, with respect to the
code generation, the entire code generation and analysis process takes very
little time to finish. We tried to measure this on different workstations, but
the entire pipeline finishes in less than one millisecond. It has less to do with
our usage of optics and more to do with the compiler platform itself and how
it is optimized.

Second, there is the question of the generated code. We would not insist
on the performance evaluation as much as we would on the utility of this
solution compared to others. The main idea of this solution is to improve the
development time for developers and comprehension of the workflow. This is

Practical Source Code Weaving for Distributed Workflow Abstractions 23

difficult to quantify, as it highly depends on the developer’s comfort in using
such solutions. However, we imagine that the best way to provide a proper
comparison is to take an existing system and migrate the code to our solution.
The metrics to compare before and after the migration would be the number of
reported incidents related to the workflow and the time to repair these issues.

We leave the evaluation as a topic for future investigation as it relates to
the development process itself, which is hardly quantifiable.

6. Conclusions

In this paper, we have shown a novel approach to modern distributed
applications software development. In our proof-of-concept, we have employed
concepts related to AOP, but changed the framework used to accommodate
more sophisticated development tools for particular applications.

Our solution employs the usage of source code generation, which has
become a trend in many current application development frameworks used in
the market. This is no surprise, as they can overcome some programming
language limitations.

A contribution we made here was to use optics as an experimental method
to transform code in the desired shape. We hope that, in the future, we can
expand on this idea from multiple angles. For one, we would like to involve
other types of optics (e.g. prisms, grates, traversals), and secondly, we would
like to have a better formalization of the code generation process as functors
enabled by optics.

We want to keep the discussion of this paper open-ended, because there
is still a lot of research to be done, not only from a formal perspective but also
from the perspective of software development practices.

REF EREN CES

[1] Alves, P., Figueiredo, E., Ferrari, F.: Avoiding code pitfalls in aspect-oriented program-
ming. In: Programming Languages: 18th Brazilian Symposium, SBLP 2014, Maceio,
Brazil, October 2-3, 2014. Proceedings 18. pp. 31–46. Springer (2014)

[2] Balan, A., Pantelimon, S.G.: Optics, functorially. 17th International Workshop on
Coalgebraic Methods in Computer Science (CMCS 2024) (2024)

[3] Böck, H.: Java persistence api. In: The Definitive Guide to NetBeans™ Platform 7, pp.
315–320. Springer (2012)

[4] Clarke, B., Elkins, D., Gibbons, J., Loregian, F., Milewski, B., Pillmore, E., Román,
M.: Profunctor optics, a categorical update. Compositionality 6 (2024)

[5] Garcia-Molina, H., Salem, K.: Sagas. ACM Sigmod Record 16(3), 249–259 (1987)
[6] Giretti, A.: Creating an asp. net core grpc application. In: Beginning gRPC with ASP.

NET Core 6: Build Applications using ASP. NET Core Razor Pages, Angular, and
Best Practices in. NET 6, pp. 155–221. Springer (2022)

[7] Gradecki, J.D., Lesiecki, N.: Mastering AspectJ: aspect-oriented programming in Java.
John Wiley & Sons (2003)

[8] Halin, A., Nuttinck, A., Acher, M., Devroey, X., Perrouin, G., Baudry, B.: Test them
all, is it worth it? assessing configuration sampling on the jhipster web development
stack. Empirical Software Engineering 24, 674–717 (2019)

24 Silviu-George Pantelimon, Radu-Ioan Ciobanu, Ciprian Dobre

[9] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP’97—Object-Oriented Program-
ming: 11th European Conference Jyväskylä, Finland, June 9–13, 1997 Proceedings 11.
pp. 220–242. Springer (1997)

[10] Soares, S., Laureano, E., Borba, P.: Implementing distribution and persistence aspects
with aspectj. ACM Sigplan Notices 37(11), 174–190 (2002)

[11] Vasani, M.: Roslyn Cookbook. Packt Publishing Ltd (2017)

	1. Introduction
	2. Similar Solutions
	3. Proposed solution
	4. Implementation Details
	4.1. Source Generators with Roslyn
	4.2. Implementing the Generation Functor
	4.3. Code Generation with Optics

	5. Perspectives on the evaluation
	6. Conclusions
	REFERENCES

