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KINEMATICS OF THE HEXAPOD PARALLEL ROBOT 

Rosario SINATRA1, Fengfeng XI2, Stefan STAICU3 

Articolul prezintă o modelare recurentă pentru cinematica unui robot paralel 
Hexapod. Controlat de şase forţe, prototipul robotului paralel este un system 
mecanic spaţial cu şase grade de libertate şi cu şase lanţuri cinematice de lungimi 
constante care se conectează la platforma mobilă. Cunoscând poziţia şi mişcarea 
generală a platformei, se dezvoltă problema de cinematică inversă şi se determină 
poziţiile, vitezele şi acceleraţiile fiecărui element al robotului. În final se obţin 
ecuaţii matriceale compacte şi grafice de simulare pentru deplasările, vitezele şi 
acceleraţiile de intrare ale celor şase acţionori. 

Recursive modelling for the kinematics of the Hexapod parallel robot are 
established in this paper. Controlled by six forces, the parallel manipulator 
prototype is a space six-degrees-of-freedom mechanical system with six fixed-length 
legs connecting to the moving platform. Knowing the position and the general 
motion of the platform, one develop the inverse kinematics problem and determine 
the position, velocity and acceleration of each manipulator element. Finally, 
compact matrix relations and graphs of simulation for the input displacements, 
velocities and accelerations of six actuators are obtained. 
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1. Introduction 

Parallel manipulators are closed-loop mechanisms presenting very good 
potential in terms of accuracy, stiffness and ability to manipulate large loads. In 
general, these manipulators consist of two main elements coupled through 
numerous legs acting in parallel. One body is arbitrarily designated as fixed and is 
called base, while the other is regarded as movable and hence is called moving 
platform of the manipulator. Several mobile legs or limbs, made up as serial 
robots, connect the movable platform to the fixed frame. The bodies of the robot 
are connected one to the other by spherical joints, universal joints, revolute joints 
or prismatic joints. Typically, the number of actuators is equal to the number of 
degrees of freedom such that every link is controlled at or near the fixed base [1]. 

 Parallel mechanisms could be found in practical applications, where it is 
advisable to orient a rigid body in space of high speed, such as aircraft simulators 
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[2], positional tracker and telescopes [3], [4]. The first design for industrial 
purposes can be dated back to 1962, when Gough implemented a six-linear jack 
system for use as a Universal tire-testing machine. In fact, it was a huge force 
sensor, capable of measuring forces and torques on a wheel in all directions. Some 
years later, Stewart published a design of a platform robot to be use as a flight 
simulator.  

In comparison with serial mechanisms, parallel manipulator is a complex 
mechanical structure, behaving some special characteristics such as: greater 
stiffness, potentially higher kinematical precision, stabile capacity and suitable 
position of actuators arrangement.  However, they suffer due to the problems of 
relatively small useful workspace and design difficulties.  

Considerable efforts have been devoted to the kinematics and dynamic 
analysis of fully parallel manipulators. Among these, the class of manipulators 
known as Stewart-Gough platform focused great attention (Stewart [2]; Merlet 
[5]; Parenti Castelli and Di Gregorio [6]). They are used in flight simulators and 
more recently for Parallel Kinematics Machines. The prototype of Delta parallel 
robot (Clavel [7]; Tsai and Stamper [8]; Staicu [9]) developed by Clavel at the 
Federal Polytechnic Institute of Lausanne and by Tsai and Stamper at the 
University of Maryland as well as the Star parallel manipulator (Hervé and 
Sparacino [10]) are equipped with three motors which train on the mobile 
platform in a three-degree-of-freedom general translation motion. Angeles [11], 
Gosselin and Gagné [12], Wang and Gosselin [13], Staicu [14] analysed the direct 
kinematics, dynamics and singularity loci of the Agile Wrist spherical parallel 
robot with three concurrent actuators. 

The analysis of parallel manipulators is usually implemented through analytical 
methods in classical mechanics, where projection and resolution of vector 
equations on the reference axes are written in a considerable number of 
cumbersome, scalar relations and the solutions are rendered by large scale 
computations together with time consuming computer codes [15], [16]. 

The Hexapod manipulator represents a new development in machine tools by 
utilizing parallel kinematical structures. At the beginning, hexapods were 
developed, based on the Stewart-Gough platform. More recently, commercial 
hexapods have been used by many companies in the development of high 
precision machine tools [17], [18], [19], such as Variax from Giddings & Lewis, 
Tornado from Hexel Corp. And Geodetic from Geodetic Technology Ltd. Sliding-
leg Hexapods with constant lengths have been envisaged, for example, HexaM 
from Toyoda [20]. 

Dynamic modelling and analysis of parallel mechanisms is an important part of 
hexapod design and control. A great deal of work has been done in this area. For 
example, Fitcher [21] used the Plücker line coordinates for dynamic analysis of 
parallel manipulators. Sugimoto [22] applied the motor algebra to address the 
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same problem. Merlet [23] discussed the force transformation between the joint 
space and the task space, while Do and Yang [24] studied the inverse dynamics 
based on the Newton-Euler formulation. Geng et al. [25] studied the same 
problem using Lagrange’s formalism. Hashimoto and Kimura [26] applied the 
parallel computational schemes to the inverse dynamics formulated based on the 
Newton-Euler method. Fijany and Bejczy [27] utilized a hierarchical graph-based 
mapping approach to improve the parallel computational schemes. 

It should be noted that the previous studies on the dynamics analysis of parallel 
mechanisms were based on the assumption that leg inertia is negligible. This may 
be true for Stewart platform-based fight simulator, because the moving platform is 
much heavier. For machine tools, especially for high-speed machining, the 
moving platform is lighter and leg of inertia may not be negligeable. Ji [28] first 
addressed the problem of the effect of leg inertia on the Stewart platform 
dynamics and provided a dynamic modelling based on the Newton-Euler 
approach. Recently, Codourey [29] developed a dynamic model including leg 
inertia for a revolute type of parallel mechanism called Delta. So far, however, no 
quantitative studies have been made on the effect of leg inertia. This problem is 
important, because the leg inertia of the Hexapod is compatible to that of the 
moving platform and dynamics becomes significant when operating at high 
speeds. 

The natural orthogonal complement method has been applied to studying the 
serial or parallel manipulators and the flexible mechanisms (Angeles and Lee 
[30], Zanganeh et al. [31], Xi et al. [32]). In this development, the Newton-Euler 
formulation is used to model the dynamics equations of each individual body, 
including the moving platform and the legs. 

In the present paper, a new recursive matrix method is introduced. It has been 
proved to reduce the number of equations and computation operations 
significantly by using a set of matrices for kinematics modelling.  

2. Inverse kinematics 

A spatial 6-DOF parallel manipulator, which can be existent in several 
applications including machine tools, is proposed in this paper. Since the 
pneumatic joints can easily achieve high accuracy and heavy loads, the majority 
of the 3-DOF or of the 6-DOF parallel mechanisms use the actuated prismatic 
joints. 

The Hexapod under consideration is a six-degree-of-freedom parallel 
mechanism with constant length sliding legs. As shown in Fig. 1, it is a composed 
of six guide-ways, six legs, a base and a moving platform. Each leg is connected 
on one extremity by a universal joint to the guide-way along which the leg slides 
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and on the other one by a spherical joint to the moving platform to which a tool is 
attached. The lengths of the legs and their guide-ways are constant. 

Symbolically represented by six pairs of spherical joints 4A , 4B , 4C , 4D , 4E , 4F a 
polygonal moving platform  is driven by six sliding legs. Other two polygonal 
parallel platforms, which are connected by six guide-ways attached at the 
points 00 , BA , 0C , 0D , 0E , 0F  constitute the fixed base of the manipulator. In what 
follows we consider that the moving platform is initially located at a central 
configuration, where the moving platform is not rotated with respect to the fixed 
base and the mass centre G is at an elevation hOG =  above the centre of the fixed 
base.  

For the purpose of analysis, a Cartesian coordinate system )( 0000 TzyOx  we 
attached to the fixed base with its origin located at the centre O  of the fixed 
platform, the 0Oz  axis perpendicular to the base and the 0Ox axis pointing to the 
midpoint line linking the points 00 , AF . Another coordinate central frame 

GGG zyGx  could be linked just at the centreG of the moving platform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                               Fig. 1 General scheme of the Hexapod parallel robot 
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To simplify the graphical image of the kinematical scheme of the mechanism, in 
what follows the intermediate reference systems has been represented by only two 
axes, so as is often used in most of robotics papers [1], [5], [11]. The kz axis is 
represented, of course, for each component element kT . It is noted that the relative 
rotation with angle 1, −kkϕ or the relative translation of the body kT with the 
displacement 1, −kkλ must always be pointed along the direction of the kz axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                          Fig. 2 Kinematical scheme of first leg A  of the mechanism 
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acceleration AA
1010 λγ = , a moving Hooke joint characterized by the mass 2m , the 

angular velocity AA
2121 ϕω =  and the angular acceleration AA

2121 ϕε = , and a leg of 
constant length 3l , which is connected to the universal joint at the bottom end and 
a passive spherical joint at the other. This leg has a relative rotation 
about AzA 33 axis with the angle A

32ϕ , so that AA
3232 ϕω = , AA

3232 ϕε = (Fig. 2).   
Finally, a ball-joint or a spherical joint is attached to the moving platform, 

which can by schematised as a polygon. Following notations are used: 0l  radius 

of the circle associated to the moving platform, )
3

sin(2 00 απ
−= lLp

long side, 

00 sin2 αllp =  short side, 0L  radius of the circle associated to the fixed base, 

)
3

sin(2 00 απ
−= LLb

long side, 00 sin2 αLlb = short side, 2/)(22 1 pb LLls −==  

guide-way length, 
1

00
0sin

l
lL −

=β  inclination of the guide-way,γ guide-way angle, 

)
6

sin()(2sin 0
3

0 απβ −=
l
l  initial inclination of the leg and ββ coscos 301 llh +=  as 

initial position of the centreG of moving platform. 
At the central configuration, we also consider that the angles of orientation 

giving the positions of sliders, legs, universal joints and spherical joints are given 
by 

                        
.,

3
2,

3
2

3
2,

3
2,

010101

010101

αααπααπα

απααπααα

−=+−=−−=

+=−==

FED

CBA

  

                        
0222 3

απααα −−=== ECA , 0222 3
απααα +=== FDB  

                        0333 2
3

απααα −=== ECA , 0333 2
3

απααα +−=== FDB .                    (1) 

Assuming that the each leg is connected to the fixed base by the slider and the 
universal joint such that it cannot rotate about the longitudinal axis, the orientation 
of the leg A with respect to the fixed base can be described by two Euler angles, 
namely a rotation angle A

21ϕ about the AzA 22 axis, followed by another rotation of 
angle A

32ϕ about the rotated AzA 33 axis. 

Pursuing the first leg A in the 4321 AAAOA way, we obtain the following matrices 
of transformation [33]: 
                            2132322121211310 ,, θθθθ β

ϕ
βα

ϕ
αβ aaaaaaaaaa TATA === ,                  (2) 

where 
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Analogous relations can be written for other five legs of the mechanism. 
Six independent displacements A

10λ , B
10λ , C

10λ , D
10λ , E

10λ , F
10λ  of the active links 

are the input variables that can give the instantaneous position of the mechanism. 
In the inverse geometric problem, it can be considered that three 
coordinates GGG zyx 000 ,, of mass centreG of the moving platform and others three 
Euler angles ,, 21 αα 3α of successive rotations about the GGG GzGyGx ,, axes gives 
the position of the mechanism. Since all rotations take place successively by 
respect to the moving coordinate axes, the resulting rotation matrix is obtained by 
multiplying three basic rotation matrices: 
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Then, the general rotation matrix R of the platform from )( 0000 TzyOx  to 

GGG zyGx  reference system is given by 

                                                          123 RRRR =                                                 (5) 
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 It is assumed that the coordinates of the platform’s centreG and the and the 
angles 

321 ,, ααα , which are expressed by following analytical functions 
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                                            )3,2,1(),
3
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παα ,                        

can describe the general absolute motion of the moving platform.  
The set of 18 variables FFFAAA

322110322110 ,,,...,,, ϕϕλϕϕλ  will be determined by 
several vector-loop equations established along the branches of the leg-guide-way 
system, as follows: 
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Knowing the general motion of the platform by the relations (6), the inverse 
kinematical problem has been developed determining the absolute 
velocities A

k
A

kv 00 , ω and accelerations ,0
A
kγ

A
k0ε  of each of the moving bodies. 

First, the angular velocities of six legs and the velocities of the joints in terms 
of the angular velocity of the moving platform and the velocity of its centreG  
were computed: 
                                   3322121116060 uRuRRuRR TTTTGTG αααωω ++==  
                                    TGGGGTG zyxvRr ][ 000600 == .                                              (9) 
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The motions of the compounding elements of each leg (for example the leg A ) 
are characterized by following skew-symmetric matrices [34]: 
                                )3,2(,~~~

31,1,0,11,0 =+= −−−− kuaa A
kk

T
kk

A
kkk

A
k ωωω ,                        (10)  

which are associated to the absolute angular velocities given by the recursive 
formula: 
                                            31,0,11,0 ua A

kk
A
kkk

A
k −−− += ωωω .                                (11) 

Following relations give the velocities A
kv 0 of joints kA : 

            31,1,0,11,0,11,0
~ uvravav A

kk
A
kk

A
kkk

A
kkk

A
k −−−−−− ++= ω ,  )3,2(01, ==− σσσ

Av .      (12) 
Equations of geometrical constraints (7) will be derivated with respect to time in 

order to obtain the following matrix conditions of connectivity established for the 
characteristic relative velocities of first leg A (for example): 

    Av10 +310uau TT
j 321l

Aω TT
j au 20 2323

~ uau T =− 130332 uaul TT
j

Aω 4
600

~ A
G

GTT
j

GT
j rRuru ω+ ,         (13) 

                                                    )3,2,1( =j  
where 
                      RuRRRuRRRuRRR TTTTGTG

3312221211116060
~~~~~ αααωω ++==               (14) 

denotes the skew-symmetric matrix associated to the absolute angular 
velocity G

60ω  of the moving platform [35], [36]. From these equations, we obtain 
the relative velocities ,10

Av AA
3221,ωω  as functions of angular velocity of the platform 

and velocity of mass centreG . Derived from (13), the complete Jacobian matrix 
of the robot is a fundamental element for the analysis of singularity loci and 
workspace of the robot.  

As for the relative accelerations A
10γ , A

21ε , A
32ε of the elements of first leg A of the 

mechanism, following other conditions of connectivity are imposed 
                           A
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j
AAωω  

                        13232032213
~2 uauaul TTT

j
AAωω+ , 

                           )3,2,1( =j ,                                                                                (15) 
where an useful square matrix is introduced: 
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The accelerations A
k0γ of the joints kA and the angular accelerations A

k 0ε are 
expressed by some recurrence relations, founded by derivatives of equations (10), 
(11) and (12): 
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If other five kinematical chains of the manipulator are pursued, analogous 
relations can be easily obtained. 

The relations (13) and (15) represent the inverse kinematics model of the 
Hexapod parallel robot. For simulation purposes let us consider a manipulator, 
with the following characteristics: 
             0*

1 =α , 0*
2 =α , 

12
*
3

πα = , 
360
πα = , 

4
πγ = , 3=Δt s  

                        05.0*
0 −=Gx  m, 0*

0 =Gy  m, 05.0*
0 −=Gz  m                                       (18) 

                        6.000 == OAL  m, 3.0440 === GAll  m, 5.03 =l  m.   
Based on the algorithm derived from above equations, a computer program was 

developed to solve the inverse kinematics of the Hexapod manipulator, using the 
MATLAB software. For illustration, it is assumed that for a period of three 
second the moving platform starts at rest from a central configuration and moves 
along or rotates about one of three orthogonal directions. A numerical study of the 
robot kinematics is carried out by computation of the time-history evolution of the 
displacements ,10

Aλ ,10
Bλ C

10λ , D
10λ , E

10λ , F
10λ , the velocities ,10

Av ,10
Bv ,10

Cv ,10
Dv ,10

Ev Fv10  and 
the accelerations ,10

Aγ ,10
Bγ C

10γ , D
10γ , E

10γ , F
10γ of the six prismatic actuators. Following 

examples are solved to illustrate the algorithm. 

 
           Fig. 3 Displacements i

10λ of six actuators                    Fig. 4 Velocities iv10 of six actuators 
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For the first example, the moving platform moves along the vertical 0z  

direction with variable acceleration while all the other positional parameters are 
held equal to zero. As it can be seen from Figs. 3, 4, 5 it is proved to be true that 
all input displacements, velocities and accelerations are permanently equal to one 
another.  

 

        
               Fig. 5 Accelerations i

10γ of six actuators              Fig. 6 Displacements i
10λ of six actuators 

 
 
Concerning the comparison in the case when the centre G  moves along a 

rectilinear trajectory along the horizontal 0x axis without rotation of the platform, 
it is remarked that the distribution of displacement, velocity and acceleration 
depicted in Figs. 6, 7, 8 is the same, at any instant, for two of six actuators  

 
 

       
               Fig. 7 Velocities iv10 of six actuators                 Fig. 8 Accelerations i

10γ of six actuators  
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               Fig. 9 Displacements i

10λ of six actuators                Fig. 10 Velocities iv10 of six actuators  

For the third example it was considered the rotation motion of the moving 
platform about 0z  direction with a variable angular acceleration 3α . The 
displacements, velocities and accelerations of the six actuators (Figs. 9, 10, 11) 
are calculated by the program and plotted versus time. 

                                
                                            Fig.11 Accelerations i

10γ of six actuators 
  
The simulation through the MATLAB program certifies that one of the major 

advantages of the current matrix recursive approach is the well structured way to 
formulate a kinematical model, which leads to a computational efficiency. The 
proposed method can be applied to various types of complex robots, when the 
number of components of the mechanism is increased.  

3. Conclusions 

Within the inverse kinematics analysis some exact matrix relations that give in 
real-time the position, velocity and acceleration of each element of the parallel 
robot have been established in present paper. The method described above is quite 
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available in forward and inverse mechanics of all serial or parallel mechanisms, 
the platform of which behaves in translation, rotation evolution or general 6-DOF 
motion. 
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