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FLOQUET THEORY FOR
MULTITIME LINEAR DIAGONAL RECURRENCE

Cristian Ghiu1, Raluca Tuligă2, Constantin Udrişte3, Ionel Ţevy4

Floquet theory, for periodic linear differential equations, is extended
in this paper to multitime linear diagonal recurrences. We find explicitly a
monodromy matrix. The Floquet point of view brings about an important
simplification: the initial linear diagonal recurrence system is reduced to a
linear recurrence system with constant coefficients along “diagonal lines”.
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1. Discrete multitime recurrences

The multivariate recurrences are based on multiple sequences and come
from areas like analysis of algorithms, computational biology, information the-
ory, queueing theory, filters theory, statistical physics etc. That is why, the
problem of multi-variate recurrences remains an area of active current research.

Floquet theory, first formulated for periodic linear ODEs ([1], [5], [8])
was extended to PDEs ([4]). We have extended this theory to the multitem-
poral first order PDEs [7] and now to multitime diagonal-periodic recurrences,
borrowing mathematical ingredients from our papers [2], [3], [6]. In Floquet
theory it is necessary to find explicitly the associated monodromy matrix and
its eigenvalues (called Floquet multipliers).

2. Linear discrete multitime diagonal recurrence with
periodic coefficients

An element t = (t1, . . . , tm) ∈ Nm is called discrete multitime. A function
of the type x : Nm → Rn = Mn,1(R) is called multivariate sequence. Also, for
convenience, we denote µ(t) = min{t1, t2, . . . , tm} and 1 = (1, 1, . . . , 1) ∈ Nm.
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Let m ≥ 2 and A : Nm → Mn(R). Our aim is to continue the study of a
linear discrete multitime diagonal recurrence system (see [2])

x(t + 1) = A(t)x(t), ∀t ∈ Nm. (1)

In the paper [2] one proves the next result.

Theorem 2.1. Let m ≥ 2, A : Nm → Mn(R), b : Nm → Rn = Mn,1(R). We
consider the (m− 1)-sequences f1, f2, . . . , fm : Nm−1 → Rn, such that

fα(t1, . . . , t̂α, . . . , tm)
∣∣∣
tβ=0

= fβ(t1, . . . , t̂β, . . . , tm)
∣∣∣
tα=0

, (2)

∀t1, . . . , tα−1, tα+1, . . . , tβ−1, tβ+1, . . . , tm ∈ N,

for any α, β ∈ {1, 2, . . . ,m}. Then the unique m-sequence x : Nm → Rn which
verifies x(t + 1) = A(t)x(t) + b(t), ∀t ∈ Nm, and

x(t)
∣∣∣
tβ=0

= fβ(t1, . . . , t̂β, . . . , tm), ∀(t1, . . . , t̂β, . . . , tm) ∈ Nm−1,∀β ∈ {1, . . . ,m},

is defined either by the formula

x(t) = A(t− 1)A(t− 2 · 1) · . . . · A(t− tβ · 1) · fβ(t1 − tβ, . . . , t̂β, . . . , tm−1 − tβ)

+ b(t− 1) +
tβ∑

k=2

A(t− 1)A(t− 2 · 1) · . . . · A(t− (k − 1) · 1)b(t− k · 1),

if µ(t) = tβ ≥ 2,

or by the formula

x(t) = A(t− 1) · fβ(t1 − 1, . . . , t̂β, . . . , tm−1 − 1) + b(t− 1), if µ(t) = tβ = 1.

The function

Φ: Nm → Mn(R), Φ(t) =


µ(t)∏
k=1

A(t− k · 1), if µ(t) ≥ 1,

In, if µ(t) = 0

is called the fundamental matrix (transfer matrix) associated to the recurrence
(1). In fact, Φ(·) is the unique matrix function which verifies the problem

Φ(t + 1) = A(t)Φ(t), ∀t ∈ Nm,

Φ(t)
∣∣∣
tβ=0

= In, ∀(t1, . . . , t̂β, . . . , tm) ∈ Nm−1,

∀β ∈ {1, 2, . . . ,m}.

(3)

This follows applying the Theorem 2.1 for n (vector) recurrences to whom is
equivalent the problem (3) (one applies the Theorem 2.1 for each column of
the matrix Φ(·)).



Floquet theory for multitime linear diagonal recurrence 5

If the functions f1, f2, . . . , fm : Nm−1 → Rn verify the relations (2), then
one observes (Theorem 2.1) that the unique m-sequence x : Nm → Rn which
verifies the recurrence (1) and

x(t)
∣∣∣
tβ=0

= fj(t
1, . . . , t̂β, . . . , tm), ∀(t1, . . . , t̂β, . . . , tm) ∈ Nm−1, ∀β,

can be written in the form

x(t) = Φ(t)fβ(t1 − tβ, . . . , t̂β, . . . , tm−1 − tβ), if µ(t) = tβ.

If the matrix function A(·) is constant, i.e., A(t) = A, ∀t, then the
fundamental matrix becomes Φ(t) = Aµ(t).

A linear discrete multitime diagonal recurrence is called T -diagonal-
periodic (T ∈ N∗) if

A(t + T · 1) = A(t), ∀t ∈ Nm. (4)

This is the only multi-periodicity compatible to the diagonal recurrence, inde-
pendently of the initial conditions.

Proposition 2.1. Suppose the recurrence (1) is T -diagonal-periodic and we
introduce the function

Ã : Nm → Mn(R), Ã(t) =
T−1∏
k=0

A
(
t + (T − 1− k) · 1

)
, ∀t ∈ Nm.

Then, for any k ∈ N∗, the fundamental matrix satisfies

Φ
(
t + kT · 1

)
= Φ(t)

(
Ã

(
t− µ(t) · 1

))k

. (5)

Proof. If tβ = µ(t), then tβ + kT = min{t1 + kT, t2 + kT, . . . , tm + kT}.
Induction after k. For k = 1:
The case tβ = 0:
Φ

(
t+T ·1

)
= A

(
t+(T − 1) ·1

)
A

(
t+(T − 2) ·1

)
· . . . ·A

(
t+(T −T ) ·1

)
= InÃ(t) = Φ(t)Ã(t).
Case tβ ≥ 1:
Φ

(
t+T ·1

)
= A

(
t+T ·1−1

)
A

(
t+T ·1−2·1

)
·. . .·A

(
t+T ·1−(tβ +T )·1

)
= A

(
t + T · 1− 1

)
A

(
t + T · 1− 2 · 1

)
· . . . · A

(
t + T · 1− tβ · 1

)
·

·A
(
t−tβ ·1+(T−1)·1

)
A

(
t−tβ ·1+(T−2)·1

)
·. . .·A

(
t−tβ ·1+1

)
A

(
t−tβ ·1

)
= A

(
t− 1

)
A

(
t− 2 · 1

)
· . . . · A

(
t− tβ · 1

)
·

·A
(
t−tβ ·1+(T−1)·1

)
A

(
t−tβ ·1+(T−2)·1

)
·. . .·A

(
t−tβ ·1+1

)
A

(
t−tβ ·1

)
= Φ(t)Ã

(
t− tβ · 1

)
.

Suppose the relation (5) is true for any k, and we shall verify for k + 1:

Φ
(
t+(k+1)T ·1

)
= Φ

(
t+kT ·1+T ·1

)
= Φ(t+kT ·1)Ã

(
t+kT ·1−(tβ +kT )·1

)
= Φ(t)

(
Ã

(
t− tβ · 1

))k

Ã
(
t− tβ · 1

)
= Φ(t)

(
Ã

(
t− tβ · 1

))k+1

. �
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Suppose that we are in the conditions of the Proposition 2.1. The matrix

function D : Nm → Mn(R), D(t) = Ã
(
t − µ(t) · 1

)
, ∀t ∈ Nm, is called the

monodromy matrix associated to the T -diagonal-periodic recurrence (1). For
k = 1, the formula (5) can be written

Φ
(
t + T · 1

)
= Φ(t)D(t), ∀t ∈ Nm. (6)

We observe that the relation D
(
t + 1

)
= D(t), ∀t ∈ Nm holds.

Moreover, let us suppose that, for any t ∈ Nm, the matrix A(t) is invert-

ible, hence Ã(t) is also invertible; it follows that for each t ∈ Nm, there exists

B̃(t) ∈ Mn(C) (which is not unique), such that B̃(t)T = Ã(t). For each t, we

fix such a matrix B̃(t); obviously the matrix B̃(t) is invertible.
Define the function

B : Nm → Mn(C), B(t) = B̃
(
t− µ(t) · 1

)
, ∀t ∈ Nm. (7)

We observe that the relation

B
(
t + 1

)
= B(t), ∀t ∈ Nm (8)

is true, i.e., the matrix B verifies a special recurrence. It follows immediately
the relation

D(t) = B(t)T , ∀t ∈ Nm. (9)

Moreover, one observes that if for any t, the matrix A(t) is invertible, then the
matrices Φ(t) and D(t) are invertible too.

Theorem 2.2. Let m ≥ 2 and A : Nm → Mn(R), with A(t) invertible, for all
t ∈ Nm. Suppose there exists an integer T ≥ 1 such that the relation (4) is true.
Then there exists P : Nm → Mn(C), with the property that P (t+T ·1) = P (t),
∀t, and such that the fundamental matrix of the T -multi-periodic recurrence
(1) is written

Φ(t) = P (t)B(t)µ(t), ∀t ∈ Nm (10)(
where B(·) is the function defined by the formula (7)

)
.

Proof. Let P : Nm → Mn(C), P (t) = Φ(t)B(t)−µ(t), ∀t ∈ Nm. It is sufficient to
show P (t + T · 1) = P (t), ∀t ∈ Nm.

Let t = (t1, t2, . . . , tm) ∈ Nm and tβ = µ(t). Obviously, tβ+T = µ(t+T ·1)

and P (t + T · 1) = Φ(t + T · 1)B(t + T · 1)−tβ−T . From the relation (8), we
deduce B(t+k ·1) = B(t), ∀k ∈ N, and particularly B(t+T ·1) = B(t). From
the relations (6), (9), it follows Φ(t + T · 1) = Φ(t)B(t)T .

Hence P (t + T · 1) = Φ(t)B(t)T B(t)−tβ−T = Φ(t)B(t)−tβ = P (t). �

In the condition of the Theorem 2.2, from the formula (10) and the fact
that the matrix Φ(t) is invertible, it follows that P (t) is also invertible.

The most important result of Floquet type is



Floquet theory for multitime linear diagonal recurrence 7

Theorem 2.3. Let m ≥ 2 and A : Nm → Mn(R), with A(t) invertible, for all
t ∈ Nm. Suppose that there exists an integer T ≥ 1 such that the relation (4)
is true. Let B : Nm → Mn(C) be the function defined by the formula (7).

We consider the recurrences

x(t + 1) = A(t)x(t), ∀t ∈ Nm; (11)

y(t + 1) = B(t)y(t), ∀t ∈ Nm. (12)

If y(t) is a solution of the recurrence (12), then x(t) := P (t)y(t) is a
solution of the recurrence (11). And conversely, if x(t) is a solution of the
recurrence (11), then y(t) := P (t)−1x(t) is a solution of the recurrence (12).

Proof. Let y(t) be a solution of the recurrence (12) and x(t) := P (t)y(t); hence
y(t) := P (t)−1x(t). Let t ∈ Nm and tβ = µ(t). It follows

y(t + 1) = B(t)y(t) ⇐⇒ P (t + 1)−1x(t + 1) = B(t)P (t)−1x(t)
⇐⇒ x(t + 1) = P (t + 1)B(t)P (t)−1x(t).
We use the formula (10) and deduce that the foregoing relations are

equivalent to

x(t + 1) = Φ(t + 1)B(t + 1)−tβ−1B(t)B(t)tβΦ(t)−1x(t).
This relation is equivalent to (according the formula (8))

x(t + 1) = Φ(t + 1)B(t)−tβ−1B(t)B(t)tβΦ(t)−1x(t)
⇐⇒ x(t + 1) = Φ(t + 1)Φ(t)−1x(t) ⇐⇒ x(t + 1) = A(t)Φ(t)Φ(t)−1x(t)
⇐⇒ x(t + 1) = A(t)x(t).
The converse is proved similarly. �

3. Conclusions

This paper presents original results regarding the multivariate recurrence
equations as continuation of [2], [3]. The original results have a great poten-
tial to solve problems in various areas such as ecosystem dynamics, financial
modeling, and economics.

The authors lay no claims to the paper’s being a complete presentation of
all current methods for investigation the linear multivariate recurrences with
periodic coefficients. Indeed, the material presented here is a reflection of our
scientific interests regarding Floquet theory.
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