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TRAVELLING WAVES AND SHAPIRO STEPS IN A TUMOR-
GROWTH MODEL  

Decebal VASINCU1, Călin Gheorghe BUZEA2, Maricel AGOP3, Daniel 
TIMOFTE4 

In a simplified approach of Ivancevic cancer growth phzsical model, we 
show that important features appear. A numerical analysis of this model is 
performed, involving travelling wave solutions for some choices of parameters. 
Moreover, a reduced travelling wave equations system results which exhibits an 
amplitude dependence on the “pseudo-period”, indicating a strong nonlinearity and 
an characteristic increase in Shapiro steps. 
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1. Introduction 

 Distinct from simple genetic diseases where an inherited mutation in a 
single gene is sufficient to determine the pathological phenotype, cancer, among 
pathogenetic diseases, has the most complex mechanism where typically 
numerous mutations are present. Current medical theory views the pathology of 
cancer as an example of a complex adaptive system whose behavior expresses the 
interplay between order and chaos. With some cancers, tumorigenesis is driven by 
chaotic behavior, while other cancers show more order in their formation. 
Accompanying the transformation from normal to neoplastic tissue is an overall 
decrease in the complexity of the cell [1-5]. 

Invasion methodology - tumor invasion and metastases is a complex, 
dynamic, multi-step process [6,7]: i) initial invasion of tumor through basement 
membrane; ii) movement into connective tissue surrounding tumor cells; iii) 
invasion of tumor cells into blood vessels; iv) circulating tumor cells are arrested 
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in blood vessels of a distant organ or tissue; tumor cells invade organ from blood 
vessels; v) tumor cells then grow within tissue to form a metastatic tumor that 
may become clinically evident; vi) process of tumor invasion and metastases 
results from alterations in cell-to-cell and cell-to-matrix adhesion and increased 
matrix degradation. Extracellular matrix degradation - Several stages during the 
process of tumor invasion and metastases require increased degradation or 
breakdown of extracellular matrix or connective tissue surrounding tumor cells. 
The extracellular matrix is a complex mixture of proteins including different types 
of collagen, elastin, fibronectin, and laminin. Digestion of extracellular matrix is 
carried out by several groups of proteolytic enzymes [8]. Cell adhesion - Tumor 
invasion and metastasis is also characterized by alterations in both cell-to-cell and 
cell-to-matrix adhesion. Cellular adhesion both to adjacent cells and surrounding 
extracellular matrix is mediated by a variety of molecules. Angiogenesis - New 
blood vessel formation (angiogenesis) is an important factor for continued growth 
and development of both malignant tumors and metastases. Development of new 
blood vessels in tumors is stimulated by a wide variety of angiogenic factors 
produced by both tumor cells and stromal cells. In addition, several naturally 
occurring antiangiogenic factors have been identified, most notably angiostatin 
and endostatin. Formation of metastases in specific tissues - Some tissues and 
organs are more susceptible to the formation of metastases (e.g. liver, lung, and 
bone), whereas metastases are relatively uncommon in other tissues (e.g. kidney 
and heart). Several factors have been proposed to explain the formation of 
metastases in particular tissues including the expression of specific cell adhesion 
molecules in vascular endothelium of particular organs that are able to arrest 
circulating tumor cells. Another feature of metastases is the phenomenon of 
dormancy or latency of metastatic tumors such that many years can elapse 
between the diagnosis and the apparent curative treatment of the primary tumor 
and the clinical appearance of metastatic tumors. Dormancy appears to occur 
when growth of the metastatic tumor is balanced by an equivalent or even higher 
rate of tumor cell death by apoptosis.  

The process of invasion of tissue by cancer cells is crucial for metastasis 
(the formation of secondary tumors) which is the main cause of mortality in 
patients with cancer. In the invasion process itself, adhesion, both cell-cell and 
cell-matrix, plays an extremely important role. 

The main aims of this paper are (i) to lay the foundation for developing a 
new quantitative/qualitative theoretical model of tumor invasion; (ii) to 
mathematically investigate the importance of ECM - matrix degradative enzymes 
- tumor interactions in governing the migration of tumor cells [1,2]. Consequently, 
we propose a simplified approach of the Ivancevic cancer growth model [9]. A 
numerical analysis of this model is performed using computational routines for 
solving non-linear PDEs in Wolfram Mathematica. These results first indicate that 



Travelling waves and shapiro steps in a tumor-growth model                   211 

the model might exhibit travelling wave solutions for some choices of parameters 
and then it is indisputably demonstrated numerically, in a subsequent section. 
Finally, a reduced system of equations obtained from the above model provides 
some remarkable features. 

2. Numerical Analysis of the Cancer Evolution Model 

We propose the following normalized one-dimensional nonlinear system 
of PDEs to depict tumor progression, (Ivancevic cancer growth model [9] with 
constant tumor cell density): 
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It is focused on three key variables involved in tumor cell invasion, 

namely MM (complex mixture of macromolecules – the extracellular material) 
concentration (denoted by f), MDE (matrix-degradative enzymes) concentration 
(denoted by m), and oxygen concentration (denoted by c). Each of the three 
variables (f, m, c) is a function of the spatial variable x and time t. Here αη=1k , 

ν=3k , δφ=4k  where α, γ, δ, φ, ν, η represents tumor cell volume 
(proliferation/non-proliferation fraction), number of tumor cells, diffusion from 
the surface (saturation  level), natural decay of oxygen, production of oxygen by 
MM, degradation of MM by MDE, respectively, dm is the diffusion of MDE and 
dc the diffusion of oxygen [9]. All these are non-dimensional parameters. Note, 
that even if the cell density is being modelled as a constant in Ivancevic’s model, 
it is reintroduced into the dynamics via the cell number, γ [9]. This is a system of 
three diffusion equations with nonlinear source terms and is considered to hold on 
some spatial domain Ω (a region of tissue) with appropriate initial conditions for 
each variable. We assume that the oxygen and MDEs remain within the domain of 
tissue under consideration and therefore no-flux boundary conditions are imposed 
on ∂Ω, the boundary of Ω.  

We assume the initial MDE concentration profile is proportional to the 
initial tumor cell density by taking )exp()0,( 2xxm ε−= ,where ε is a positive 
constant, the surrounding tissue was totally degraded by the tumor and the oxygen 
is not present (f(x, 0) = 0, c(x, 0) = 0).  Also we impose periodic boundary 
conditions for the matrix degradative enzymes (the plasminogen activator (PA) 
system and the large family of matrix metalloproteinases (MMPs) that have been 
repeatedly implicated in all of the steps of tumor invasion and metastasis) 

),(),( maxmin txmtxm = . The following numerical results were obtained using 
computational routines for solving non-linear PDEs in Wolfram Mathematica. In 
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the next simulations, the parameter values used are as follows: k1 = 0.3, dm = 
0.0005, γ  = 26.5, dc = 0.5, k3 = 0.5, k4 = 1 and ε = 10 (see the relationships with 
the constant parameters that described the system in the cancer growth model [10] 
and Ivancevic’s model [9]. We show in Figs. 1a-c the dependence of the fields f, 
m and c on the space coordinate x and time coordinate t, in surface plot 
representations. Furthermore, Figs. 2a-c show the same above mentioned fields 
dependence on the coordinate x, this time for discrete values of t  = 10, 15, 20, 25, 
30. 

 

 
a)                                                                                                      b) 

 

 
c) 

Figs. 1. 3D plot of the solution of (1a-c) for a) MM concentration f(x,t) b) MDE concentration 
m(x,t) and c) oxygen concentration c(x,t). 
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Figs. 2. Plot of the solution of (1a-c) for a) MM concentration f(x,t) b) MDE concentration m(x,t) 
and c) oxygen concentration c(x,t) for different values of time (t = 10-30), clearly showing the 

presence of a traveling wave. 

The followings result: i) both fields f(x, t) and m(x, t) present similar 
dependence on coordinates x and t – it is normal since there is a direct relationship 
between f, that represents the MM concentration and m , the MDE concentration – 
the later acts upon the former by degrading it; ii) since the fields f(x, t) and m(x, t) 
“bifurcate” (like in the case of Ivancevic’s model [9]), it reinforces the fact that 
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tumors are composed of two states (i.e. proliferating (P) and quiescent (or non-
proliferating) (Q) cells - tumor cells, pendulating from class P to class Q, as some 
parameters vary, possibly when tumor grows, or proliferation/non-proliferation 
fraction α (a.k.a. parameter k1), changes); iii) exhibits travelling wave solutions, 
i.e. a malignant invasion of ECM by tumor released MDE occurs, for some choice 
of parameters. 

Furthermore, if we drastically decrease the values of k4 and k2 (i.e. the 
diffusion from the surface, δ and the number of tumor cells,γ) in equation (1a, c) 
we can see that for a reduced k1 (i.e. proliferation/non-proliferation factor, α) a 
bifurcation occurs in the f(x, t) field (see Fig. 3). 

 
 

Fig. 3. Density plot of the solution of (1a-c) for a) MM concentration f(x,t) b) MDE concentration 
m(x,t) and c) oxygen concentration c(x,t) for low gamma and delta, and decreased value of k1 

(proliferating/non-proliferating factor) shows a bifurcation occurrence in the evolution of f(x,t). 

3. Travelling wave analysis of the cancer evolution model  

The numerical simulations of the previous section indicate that the system 
of equations (1a-c) exhibits travelling wave solutions for some choice of 
parameters. Two of the main approaches for establishing travelling-wave 
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solutions for systems of PDEs are: (a) the geometric treatment of an appropriate 
phase space, where one essentially is interested in intersections between unstable 
and stable manifolds and (b) the Leray–Schauder (degree-theoretic) method, 
which employs homotopy techniques (see e.g. [11,12]). From a numerical analysis 
point of view, the former approach is used either in conjunction with a shooting 
method over a truncated domain or by trying to identify a “trivial” heteroclinic 
connection for some choice of parameters and then follow its deformation as the 
parameters are changing using numerical continuation.  

In all cases the main purpose is to establish the existence of a travelling-
wave solution without any available information concerning its nature. Our 
approach, however, is going to be “computer-assisted” in the sense that we are 
going to make use of the information that the numerics of the previous section can 
provide us. 

Since we are interested in waves travelling from the left part of the domain 
to the right, we specify a traveling coordinate ζ = x − ς t, where ς > 0 and we let: 
( ) ( ) ( ) ),(C   ),,(M   ),,( txctxmtxfF === ζζζ . We note that we assign the same 

wave velocity ς to each variable, as suggested by the numerical simulations. By 
substituting F, M and C into the system of equations 1a-c we get the travelling 
wave system of equations: 
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Our intention is to profit from the phase-space methods and thus we 

formulate the system of equations (2a-c) as a dynamical system in ℜ 5. In 
particular, by defining the new variables 1 1/ ,    /M dM d C dC dζ ζ= = the system 
of equations (2a-c) can be formulated as: 
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Since the wave velocity ς is unknown, system (3) can be regarded as a 
nonlinear eigenvalue problem. Several analytical methods have been developed 
for estimating ς in this framework [13]. However, the numerical solutions of 
equations (1a-c) readily yield a value of ς ≈ 240. In the analysis that follows, we 
therefore use this numerical estimate for ς to fix the wave speed at the constant 
(normalized) value of 240 and hence take ς as a fixed parameter. 

The steady states of system (3) can be found by solving the (nonlinear) 
equation f(x) = 0. For the purposes of the travelling-wave analysis, the numerical 
simulations of the previous section indicate that we should identify a heteroclinic 
connection between x±0 and x1 (the trivial solution), where (substituting the values 
of the constants k1 - k4 from the previous section): 
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We are interested in the existence of an orbit xcon(ζ) of (3) that satisfies: 
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of the vector field f at equilibria x±0 and x1, respectively. It is a straightforward 
task to determine the spectrum of the Jacobian matrices Df(x±0) and Df(x1). 
Indeed, there are three real and two complex conjugate eigenvalues of Df(x0) (we 
kept only the positive of the two x±0 steady states, since we got the same 
eigenvalues for both Df(x±0)), among the real ones, one is positive and two 
negative, with the positive eigenvalue implying the existence of a three-
dimensional unstable manifold Wu(x0). Furthermore, there are five real 
eigenvalues of Df(x1), two positive and three negative, with the negative ones 
implying the existence of a three-dimensional stable manifold Ws(x1). We note 
that  

( )( ) ( )( ) 1dimdimdim 510 +ℜ=+ xx su WW     (7) 
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Equation (7) suggests that Wu(x0) and Ws(x1) probably intersect 
transversally along a one-dimensional curve in the five-dimensional phase-space 
[14,15]. If this is the case then this curve would define a (generic) heteroclinic 
connection. 
 Now, if from (2a) we separate M to get  
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we reduce the system of equations (2a-c) to 
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The numerical results were obtained using computational routines for 
solving non-linear PDEs in Wolfram Mathematica.  

Fig. 4a shows the dependence of the field F (the MM concentration) on the 
travelling coordinate ζ. It can be seen an overall increase of F with the increase of 
ζ and moreover, an increase of the amplitude of F with the decrease of the 
“pseudo-period” of ζ. The amplitude dependence of the “pseudo-period” indicates 
that we deal with a strongly nonlinear system, characteized by by multiple stable 
and/or unstable states, similar with [16]. 

In Fig. 4b we show the dependence of the field C (oxygen concentration) 
on the coordinate ζ. It results an increase of C with the increase of ζ and 
moreover, an interesting increase in Shapiro steps can be detected in the dynamics 
of this field. 

 

     

Figs. 4. Plot of the solution (9a,b) for a) MM concentration F(ζ) and b) oxygen concentration C(ζ). 
Note the Shapiro steps occurring in the oxygen concentration dependence on the travelling 

coordinate ζ. 
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The dependences illustrated in Figs.4 are useful in practical applications 
because they offer important information in controlling the tumor grows dynamics 
or in chaos inhibition [17]. Moreover, the identification of the critical parameter 
for a specific dynamics is an important step in the construction of the 
characteristic time-series for further proccesing and data analysis using new 
methods of investigation, as those in [18,19]. 

4. Conclusions 

We introduce a simplified approach of Ivancevic cancer growth model 
with constant tumor cell density which includes some interesting features.  

From the numerical analysis performed on the newly introduced model the 
followings results can be detailed. First, both fields f(x, t) and m(x, t) present 
similar dependence on coordinates x and t. Second, since the fields f(x, t) and m(x, 
t) “bifurcate”, it may be reinforced the fact that tumors are composed of a 
proliferating (P) and a quiescent (or non-proliferating) (Q) state, pendulating from 
class P to class Q, as some parameters vary. Third, the solutions exhibit travelling 
wave behaviors, for some choice of parameters. Moreover, if we drastically 
decrease the values of k4 and k2 (i.e. the diffusion from the surface, δ and the 
number of tumor cells, γ) in equation (1a,c) we can see that for a reduced k1 (i.e. 
proliferation/non-proliferation factor, α) a bifurcation occurs in the f(x, t) field 
(Fig. 3). A travelling wave analysis of the new cancer growth model established 
the existence of a travelling-wave solution without any available information 
concerning its nature. 

Furthermore, after working out a reduced travelling wave equations 
system (9a,b), from (2a-c), an amplitude dependence of the “pseudo-period” 
indicating a strongly nonlinear system and an interesting increase in Shapiro steps 
(appearing in voltage-current characteristics ac-driven Josephson junctions, 
superconducting nanowires etc.) can be detected in the dynamics. 

In order to develop theoretical models we must admit that the biological 
system that displays chaotic behaviour are recognized to acquire self-similarity 
(space-time structures seem to appear) in association with strong fluctuations at all 
possible space-time scales. Then, for temporal scales that are large with respect to 
the inverse of the highest Lyapunov exponent, the deterministic trajectories are 
replaced by a collection of potential trajectories and the concept of definite 
positions by that of probability density. Therefore a complete analysis could 
implies the non-differentiable formalism of the scale relativity theory [20,21] as in 
[22].  
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