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WINTGEN INEQUALITIES    ALONG  RIEMANNIA   N SUBMERSIONS

Gülistan  POLAT1, Jae  Won LEE2 and Bayram  �AHIN2

In this paper, a Wintgen inequality is obtained depending on O'Neill's tensor
�eld T along a Riemannian submersion from a real space form to a Riemannian manifold
and the geometric meaning of the equality case is provided. Then, a Wintgen inequality
is derived along a Riemannian submersion from a complex space form to a Riemannian 
manifold, and a geometric result is provided in the case of equality. In addition, a 
Wintgen inequality is obtained using concepts based on O'Neill's tensor �eld A, and it
is shown that the condition for equality is essentially equivalent to the integrability of
the horizontal distribution. This condition is also investigated in the case of a complex 
space form.
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1. Introduction

In geometry, inequalities establish a connection between intrinsic invariants and ex-
trinsic invariants and play an important role in the characterization of the geometric object.
For a surface M in the Euclidean space E3, the Euler inequality

ρ ≤ ||H||2

is ful�lled, where ρ is the (intrinsic) Gauss curvature of M and ||H||2 is the (extrinsic)

squared mean curvature of M. Furthermore, ρ = ||H||2 everywhere on M if and only if M
is totally umbilical.

Wintgen [22] provided a basic relationship among the Gauss curvature ρ, the normal

curvature ρ⊥ and the squared mean curvature ||H||2 of the surface M in E4 as follows:

∥ H ∥2≥ ρ+ ρ⊥. (1)

The equality in the Wintgen inequality holds if and only if the curvature ellipse of M is a
circle. This inequality is called the Wintgen inequality . A surface M in E4 is called an ideal
Wintgen surface if it satis�es the equality case of the Wintgen inequality (1) identically.
Chen [5] classi�ed ideal Wintgen surfaces in the 4-dimensional Euclidean space.

In a real space form, Guadalupe and Rodriguez provided the Wintgen inequality for
a surface [10]. The Wintgen inequality for a submanifold with codimension 2 of a real
space form Nn+m(c) with constant sectional curvature c was obtained by De Smet, Dillen,
Verstraelen, and Vrancken [7]:

∥ H ∥2≥ ρ+ ρ⊥ − c, (2)
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where ρ is the normal scalar curvature, ρ⊥ is the normalized normal scalar curvature and
||H||2 is the squared mean curvature of M. Moreover, the authors claimed as a conjecture
that this inequality is valid for a submanifold with arbitrary codimension. We note that
Chen [6] proved this inequality (2) for normally �at submanifolds earlier in 1996. Xie
[21] classi�ed the equality case for codimension ≥ 3, depending on the constancy of the
mean curvature, the scalar curvature and the normal curvature. This the conjecture was
independently proved by Ge-Tang [12] and Lu [13]. Then, Dillen, Fastenakels, and Veken
[8] and Mihai [14] investigated the Wintgen inequality for submanifolds of a complex space
form. After these studies, this subject has been studied very actively, [1], [2], [8], [14, 15, 16].
This Wintgen inequality is also obtained for submanifolds of statistical manifolds [3] and
[17]. For a list of publications on this topic and more results on submanifolds, refer to the
survey paper [4].

The aim of this paper is to derive the Wintgen inequality for Riemannian submersions
where the domain is a real space form and complex space form and to provide a geometric
interpretation for the equality case.

The paper is organized as follows. In section 2, the basic notions and formulas required
for the paper are reminded. In section 3, a lemma is provided that allows for the de�nition of
the notion of normal curvature for a Riemannian submersion. Then, Wintgen inequality is
provided using O'Neill's tensor �eld T for a Riemannian submersion. In section 4, Wintgen
inequality is obtained by tensor �eld T again for a Riemannian submersion from a complex
space form to a Riemannian manifold. In section 5, the Wintgen inequality is obtained by
O'Neill's tensor �eld A for a Riemannian submersion. Here, it is shown that the condition
for equality is equivalent to the integrability of the horizontal distribution. Finally, the
Wintgen inequality is obtained using notions de�ned by O'Neill's tensor �eld A in the case
where the total manifold of the Riemannian submersion is a complex space form.

2. Preliminaries

Let Ψ be a Riemannian submersion from a real space form (Mm(c), ℏM) to a Rie-
mannian manifold (Nn, ℓ). Let χ⋄(M) = Γ((kerΨ∗)

⊥) and (χ♮(M) = Γ(kerΨ∗) be the spaces
of horizontal and vertical �elds, respectively. Then we have [9]

∇ς1ς2 = Tς1ς2 + ∇̂ς1ς2, (3)

∇ς1ζ1 = h∇ς1ζ1 + Tς1ζ1, (4)

∇ζ1ς1 = Aζ1ς1 + v∇ζ1ς1, (5)

∇ζ1ζ2 = h∇ζ1ζ2 +Aζ1ζ2. (6)

for horizontal vector �elds ζ1 and ζ2 and vertical vector �elds ς1 and ς2, where ∇ is the
Levi-Civita connection of M, T and A are the O'Neill tensor �elds. We note that the

tensor A measures the integrability of the horizontal distribution. Denote by RM and R̂
the Riemannian curvature tensor of M and the vertical distribution, respectively. Then, we
have

g(R
M

(U, ς1)ς2, ς3) = g(R̂(U, ς1)ς2, ς3)) − ℏM(T(U, ς3),T(ς1, ς2)) + ℏM(T(ς1, ς3),T(U, ς2)) (7)

for U, ς1, ς2, ς3 ∈ χ♮(M). For more details, see [20]. Let (M, g) and
(
B, g

′
)
be Riemannian

manifolds, and π : (M, g) → (B, g
′
) a Riemannian submersion. Then the following identities

are satis�ed

g((∇UT)ς1ζ1, ζ2) = g(TUζ1,Tς1ζ2)− g(TUζ2,Tς1ζ1),

g((∇ζ1A)ζ2U, ς1) = g(Aζ1U,Aζ2ς1)− g(Aζ1ς1,Aζ2U).
(8)

for horizontal vector �elds ζ1, ζ2, ζ3 and vertical vector �elds U, ς1, ς2 [20].
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3. Wintgen inequalities along Riemannian submersions on Vertical distri-

butions

Let Mm(c) be a real space form of constant sectional curvature c. Then the Riemann-
ian curvature tensor RM takes the following expression:

ℏM(RM(ζ1, ζ2)ζ3, ς2) = c {ℏM(ζ1, ς2)gM(ζ2, ζ3)− ℏM(ζ1, ζ3)ℏM(ζ2, ς2)} (9)

for vector �elds ζ1, ζ2, ζ3, ς2 tangent to Mm(c).

We also recall the following two important results that we will use in our theorems.

Theorem 3.1. [12] Let B1, ..., Bm be (n× n) real symmetric matrices. Then

m∑
r,s=1

||[Br, Bs]||2 ≤

(
m∑
r=1

||Br||2
)2

,

where the equality holds if and only if under some rotation1 all Br's are zero except two

matrices which can be written as PH1P
t and PH2P

t, where P is an (n × n) orthogonal

matrix, and

H1 = diag(µ,−µ, 0, ...), H2 = diag(
(

0 µ
−µ 0

)
, 0, ...).

Corollary 3.1. [12] Let f : Mn −→ Nn+m(c) be an isometric immersion. Then

ρ+ ρ⊥ ≤ |H|2 + c,

where the equality holds at some point p ∈ M if and only if there exist an orthonormal frame

{υ1, . . . , υr} of TpM and an orthonormal frame {σ1, . . . , σm} of T⊥
p M, such that

Aσ1
= diag(λ1 + µ, λ1 − µ, λ1, ..., λ1), Aσ2

= diag(
(

λ2 µ
µ λ2

)
, λ2, ..., λ2),

and all other shape operators are Aσr
= λrIn, where µ, λ1, ..., λm are real numbers.

We begin by providing the expression for curvature that we will use in the process of
constructing Wintgen inequalities.

Lemma 3.1. Let F be a Riemannian submersion from a real space form (Mm(c), ℏM) to

a Riemannian manifold (Nn, ℓ). RM and R♮⊥ the Riemannian curvature tensor of M and

the vertical distribution, respectively. We have

ℏM(R♮⊥(U, ς1)ζ1, ζ2) = 3ℏM(Tς1ζ1,TUζ2)− 3ℏM(TUζ1,Tς1ζ2) (10)

for U, ς1 ∈ χ♮(M) and ζ1, ζ2 ∈ χ⋄(M).

Proof. Let U, ς1 ∈ χ♮(M) and ζ1, ζ2 ∈ χ⋄(M). Using equations (3) and (4), we obtain

ℏM(R♮⊥(U, ς1)ζ1, ζ2) = ℏM((∇ς1T)Uζ1, ζ2)− ℏM((∇UT)ς1ζ1, ζ2)

+ ℏM(TUζ2,Tς1ζ1)− ℏM(Tς1ζ2,TUζ1).
(11)

From (11) and the �rst equation of (8), we obtain (10). □

For p ∈ M, let {υ1, ..., υr, σr+1, ..., σn} be an orthonormal frame of TpM such that
{υ1, ..., υr} is an orthonormal frame of ♮p = kerF∗p and {σr+1, ..., σn} is an orthonormal
frame for ⋄p = (kerF∗p)

⊥. In this section, unless otherwise stated, the base of the total
manifold will be considered as above. The normalized scalar curvature ρ♮ on ♮p is expressed
as

ρ♮ =
2

r(r − 1)

∑
1≤i<j≤r

ℏM(R̂(υi, υj)υj , υi). (12)
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A new notion of the normal scalar curvature ρ♮
⊥
, is de�ned for every point p ∈ M as

follows,

ρ♮
⊥
=

2

r(r − 1)

 r∑
1≤i<j

∑
r+1≤k<l≤n

ℏM(R♮⊥(υi, υj)σk, σl)
2

1/2

, (13)

where R♮⊥ is the normal curvature tensor �eld of ♮p.
From (10), the normal scalar curvature on the vertical distribution can be expressed as

ρ♮
⊥
=

2

r(r − 1)

√√√√9

2

n∑
k,l=r+1

r∑
i,j=1

ℏM ([Tk,Tl]υi, υj)
2
=

3
√
2

r(r − 1)

√√√√ n∑
k,l=r+1

∥[Tk,Tl]∥2,

where ∥[Tk,Tl]∥2 =
∑n

k,l=r+1

∑r
i,j=1 ℏM

(
[Tk,Tl]υi, υj

)2
.

We put
Tα
ij = ℏM(Tυiυj , σα), i, j = 1, · · · , r, α = r + 1, . . . n,

∥T∥2 =

r∑
i,j=1

ℏM(Tυiυj , Tυiυj), traceT =

r∑
i=1

Tυiυi,

∥traceT∥2 = ℏM(traceT, traceT).

(14)

In the sequel we are going to state and prove the Wintgen inequality for Riemannian
submersions.

Theorem 3.2. Let Ψ be a Riemannian submersion from a real space form (Mm(c), ℏM) to
a Riemannian manifold (Nn, ℓ) with rank♮ = r ≥ 3. Then, we have

1

r(r − 1)
||traceT||2 ≥ ρ♮ +

√
2

6
ρ♮

⊥
− c. (15)

The equality holds at point p ∈ M if and only if there exist an orthonormal frame {υ1, . . . , υr}
on ♮p and an orthonormal frame {σr+1, . . . , σn} on ⋄p, such that

T1 = diag(µ,−µ, 0, ...), T2 = diag(
(

0 µ
−µ 0

)
, 0, ...)

and all other tensor �elds Ti vanish for i = 3, ..., r, where µ is real number.

Proof. Combining (7) with (9), one obtains

τ ♮ = r(r − 1)c+

n∑
α=r+1

∑
1≤i<j≤r

{
ℏM(Tα(υi, υi),T

α(υj , υj))− ℏM(Tα(υi, υj),T
α(υj , υi))

}
.

(16)
From (12) and (16), we get

ρ♮ − c =
2

r(r − 1)

n∑
α=r+1

r∑
i<j

{
Tα
iiT

α
jj − (Tα

ij)
2
}
, (17)

where we put Tα
ij = ℏM(T(υi, υj), σα). By direct calculation, we have

||traceT||2 =

n∑
α=r+1

(
r∑

i=1

Tα
ii

)2

=
1

r − 1

n∑
α=r+1

r∑
1=i<j

(
(Tα

ii − Tα
jj)

2 + 2rTα
iiT

α
jj

)
.

(18)
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Using (18) and (17), we obtain

(r − 1) ||traceT||2 =

n∑
α=r+1

r∑
1=i<j

(
(Tα

ii − Tα
jj)

2 + 2rTα
iiT

α
jj − 2r

(
Tα
ij

)2
+ 2r

(
Tα
ij

)2)

= r2 (r − 1)
(
ρ♮ − c

)
+

n∑
α=r+1

r∑
1=i<j

(
(Tα

ii − Tα
jj)

2 + 2r
(
Tα
ij

)2)

= r2 (r − 1)
(
ρ♮ − c

)
+ r

n∑
α=r+1

||Tα||2 −
n∑

α=r+1

(
r∑

i=1

Tα
ii

)2

.

(19)

Using Theorem 3.1, from (19) and (13), we arrive at

(r − 1) ||traceT||2 ≥ r2 (r − 1)
(
ρ♮ − c

)
+ r

 n∑
k,l=r+1

∣∣∣∣∣∣[Tk,Tl]
∣∣∣∣∣∣2
 1

2

−
n∑

α=r+1

(
r∑

i=1

T
α
ii

)2

= r2 (r − 1)
(
ρ♮ − c

)
+

√
2

6
r2(r − 1)ρ♮

⊥
−

n∑
α=r+1

(
r∑

i=1

T
α
ii

)2

,

which gives the inequality case. The equality case comes from Corollary 3.1. □

An example of the equality condition is given below.

Example 3.1. The standard Riemannian π : S15 → S8( 12 ) with totally geodesic �bers satisfy

the equality cases of inequality in (15).

4. Wintgen Inequalities along Riemannian submersions de�ned on a com-

plex space form

In this section, the Wintgen inequality is provided for Riemannian submersions whose
total manifold is a complex space form. First, we recall the context of a complex space form.
LetM be an almost Hermitian manifold with the almost Hermitian structure (J, ℏM). Then,
M becomes a Kaehler manifold if ∇MJ = 0, where ∇M is the Riemannian connection of the
Riemannian metric ℏM. A Kaehler manifold with constant holomorphic sectional curvature
c is said to be a complex space form and its Riemannian curvature tensor RM is given by
[20]

ℏM(RM(ζ1, ζ2)ζ3, ς2) =
c

4
{ℏM(ζ1, ς2)ℏM(ζ2, ζ3)− ℏM(ζ1, ζ3)ℏM(ζ2, ς2)}

+
c

4
{ℏM(ζ1, Jζ3)ℏM(Jζ2, ς2)− ℏM(ζ2, Jζ3)ℏM(Jζ1, ς2)}

+
2c

4
ℏM(ζ1, Jζ2)ℏM(Jζ3, ς2)

(20)

for all ζ1, ζ2, ζ3, ς2 ∈ Γ(TM).
Let a Riemannian submersionΨ be a submersion from a complex space form (Mm(c), J, ℏM)

of complex dimension m to a Riemannian manifold (Nn, ℓ) of real dimension n. For
ζ1 ∈ Γ(kerΨ∗), we can write

Jζ1 = ϕζ1 + ωζ1, (21)

where ϕζ1 denotes the vertical component of Jζ1 and ωζ1 stands for the horizontal component
of Jζ1. Next, we put

||ϕ||2 =

r∑
i,j=1

ℏ2M(ϕυi, υj). (22)

The following theorem gives the Wintgen inequality in the case where the total manifold of
a Riemannian submersion is a complex space form.
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Theorem 4.1. Let Ψ be a Riemannian submersion from a complex space form (Mm(c), ℏM)
to a Riemannian manifold (Nn, ℓ) with rank♮ = r ≥ 3. Then, we have

1

r(r − 1)
||traceT||2 ≥ ρ♮ +

√
2

6
ρ♮

⊥
− c

4
− 3c

4r(r − 1)
||ϕ||2 , (23)

the equality holds at point p ∈ M if and only if there exist an orthonormal frame {υ1, . . . , υr}
on (♮p) and an orthonormal frame {σr+1, . . . , σn} on (⋄p), such that

T1 = diag(µ,−µ, 0, ...), T2 = diag(
(

0 µ
−µ 0

)
, 0, ...),

and all other tensor �elds Ti vanish for i = 3, ..., r , where µ is real number.

Proof. Let {υ1, . . . , υr} be an orthonormal frame on the ♮p and {σr+1, . . . , σn} be on the
horizontal space ⋄p at p ∈ M. Combining (7) with (20), one obtains

2τ ♮ =
r(r − 1)c

4
+

3c

4

r∑
i,j=1

ℏ2M(ϕυi, υj) + 2

n∑
α=r+1

∑
1≤i<j≤r

ℏM(Thα

(υi, υi),T
hα

(υj , υj))

− ℏM(Thα

(υi, υj),T
hα

(υj , υi)).

(24)

From (12) and (24), we have

ρ♮ − c

4
− 3c

4r(r − 1)
||ϕ||2 =

2

r(r − 1)

n∑
α=r+1

r∑
i<j

{
Thα

ii Thα

jj − (Thα

ij )2
}

(25)

where we put Thα

ij = ℏM(Th(υi, υj), σα). The length of the tensor �eld T is obtained as

||traceT||2 =

n∑
α=r+1

(
r∑

i=1

Tα
ii

)2

=
1

r − 1

n∑
α=r+1

r∑
1=i<j

(
(Tα

ii − Tα
jj)

2 + 2rTα
iiT

α
jj

)
.

(26)

From (25) and (26), we derive

(r − 1) ||traceT||2 =

n∑
α=r+1

r∑
1=i<j

(
(Tα

ii − Tα
jj)

2 + 2rTα
iiT

α
jj − 2r

(
Tα
ij

)2
+ 2r

(
Tα
ij

)2)

= r2 (r − 1)

(
ρ♮ −

c

4
−

3c

4r(r − 1)
||ϕ||2

)
+

n∑
α=r+1

r∑
1=i<j

(
(Tα

ii − Tα
jj)

2 + 2r
(
Tα
ij

)2)

= r2 (r − 1)

(
ρ♮ −

c

4
−

3c

4r(r − 1)
||ϕ||2

)
+ r

n∑
α=r+1

||Tα||2 −
n∑

α=r+1

(
r∑

i=1

Tα
ii

)2

.

From (13) and Theorem 3.1, we get

(r − 1) ||traceT||2 ≥ r2 (r − 1)

(
ρ♮ −

c

4
−

3c

4r(r − 1)
||ϕ||2

)
+ r

 n∑
k,l=r+1

∣∣∣∣∣∣[Tk, Tl]
∣∣∣∣∣∣2
 1

2

−
n∑

α=r+1

(
r∑

i=1

Tα
ii

)2

= r2 (r − 1)

(
ρ♮ −

c

4
−

3c

4r(r − 1)
||ϕ||2

)
+

√
2

6
r2(r − 1)ρ♮

⊥
− ||traceT||2 .

Thus the inequality case is completed. The equality case comes from Corollary 3.1. □
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A Riemannian submersion Ψ from an almost Hermitian manifold (Mm, J, ℏM) to a
Riemannian manifold (Nn, ℓ) is said to be an anti-invariant Riemannian submersion if kerΨ∗
is anti- invariant with respect to the almost complex structure J , i.e., J(kerΨ∗) ⊆ (kerΨ∗)

⊥

in [19]. In this case, clearly (23) implies ||ϕ||2 = 0 and from Theorem 4.1, we conclude the
following result.

Corollary 4.1. Let Ψ be an anti-invariant Riemannian submersion from a complex space

form (Mm(c), ℏM) to a Riemannian manifold (Nn, ℓ) with rank♮ = r ≥ 3. Then, we have

1

r(r − 1)
||traceT||2 ≥ ρ♮ +

√
2

6
ρ♮

⊥
− c

4
, (27)

the equality holds at point p ∈ M if and only if there exist an orthonormal frame {υ1, . . . , υr}
on (♮p) and an orthonormal frame {σr+1, . . . , σn} on ⋄p, such that

T1 = diag(µ,−µ, 0, ...), T2 = diag(
(

0 µ
−µ 0

)
, 0, ...),

and all other tensor �elds Ti vanish for i = 3, ..., r, where µ is real number.

5. Wintgen inequality along Riemannian submersions on a horizontal dis-

tribution

In this section, we will express a Wintgen's inequality in terms of horizontal distribu-
tions. We will see that the condition for equality is equivalent to the integrability of a hori-
zontal distribution. Let Ψ be a Riemannian submersion from a real space form (Mm(c), ℏM)
to a Riemannian manifold (Nn, ℓ). Let χ⋄(M) = Γ((kerΨ∗)

⊥) and χ♮(M) = Γ(kerΨ∗) be the
spaces of horizontal and vertical vector �elds over M, respectively. Denote by RM and R∗

the Riemannian curvature tensor of M and the horizontal distribution, respectively. Then,
we have the Gauss type equation:

RM(ζ1, ζ2, ζ3, ζ4) = R∗(ζ1, ζ2, ζ3, ζ4) + 2ℏM(Aζ1ζ2,Aζ3ζ4)− ℏM(Aζ2ζ3,Aζ1ζ4)

+ ℏM(Aζ1ζ3,Aζ2ζ4)
(28)

for ζ1, ζ2, ζ3, ζ4 ∈ χ⋄(M), see [20] for more details.

Lemma 5.1. Let F be a Riemannian submersion from a real space form (Mm(c), ℏM) to a

Riemannian manifold (Nn, ℓ). Then we have

g(R⋄⊥
(ζ1, ζ2)ς1, ς2) = 3ℏM(Aζ2ς1,Aζ1ς2)− 3ℏM(Aζ1ς1,Aζ2ς2) (29)

for ζ1, ζ2 ∈ χ⋄(M), ς1, ς2 ∈ χ♮(M).

Proof. Let ζ1, ζ2 ∈ χ⋄(M) and ς1, ς2 ∈ χ♮(M). Using equations (5) and (6), we obtain:

g(R⋄⊥
(ζ1, ζ2)ς1, ς2) = ℏM((∇ζ1A)ζ2ς1, ς2)− ℏM((∇ζ2A)ζ1ς1, ς2)

+ ℏM(Aζ1ς2,Aζ2ς1)− ℏM(Aζ2ς2,Aζ1ς1)
(30)

for ζ1, ζ2 ∈ χ⋄(M) and ς1, ς2 ∈ χ♮(M). From (30) and the second equation of (8), we obtain
(29).

□

Let {υ1, υ2, ..., υr} be an orthonormal frame of the horizontal space ⋄p, for p ∈ M
and {σr+1, ..., σn} be an orthonormal frame of the vertical space ♮p. In this section, unless
otherwise stated, the base of the total manifold will be considered as above. We de�ne the
scalar curvature τ⋄ on ⋄p by

τ⋄ =
∑

1≤i<j≤r

ℏM(R∗(υi, υj)υj , υi) (31)
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and the normalized scalar curvature ρ⋄ of ⋄p as

ρ⋄ =
2τ⋄

r(r − 1)
. (32)

A new notion of normal scalar curvature R⋄⊥
, is de�ned for every point p ∈ M as follows,

ρ⋄
⊥
=

2

r(r − 1)

 r∑
1≤i<j

∑
r+1≤k<l≤n

ℏM(R⋄⊥
(υi, υj)σk, σl)

2

1/2

. (33)

We now put

Aα
ij =

r∑
i,j=1

n∑
α=r+1

ℏM(Aυiυj , σα), ∥A∥2 =

r∑
i,j=1

ℏM(Aυiυj ,Aυiυj)

traceA =

r∑
i=1

Aυi
υi, ∥traceA∥2 = ℏM(traceA, traceA).

We have the following theorem.

Theorem 5.1. Let Ψ be a Riemannian submersion from a real space form (Mm(c), ℏM) to
a Riemannian manifold (Nn, ℓ) with rank⋄ = r ≥ 3. Then at every point p, we have

ρ⋄ − c ≥ 0. (34)

Moreover, the equality case holds in the above inequality at a point p ∈ M if and only if the

horizontal distribution is integrable.

Proof. Combining (9) and (28), and using (32) one obtains

ρ⋄ − c =
6

r(r − 1)

n∑
α=r+1

r∑
i<j=1

(Aα
ij)

2, (35)

where we have put Aα
ij = ℏM(A(υi, υj), σα).

From Lemma 5.1, taking {ζ1 = υi, ζ2 = υj} ∈ χ⋄(M) and {ς1 = σk, ς2 = σl} ∈ χ♮(M), i, j =
1, ..., r, k, l = r + 1, ..., n, we obtain

ℏM(R⋄⊥
(υi, υj)σk, σl) = 0. (36)

which implies ρ⋄
⊥
= 0. From (35), we obtain

ρ⋄ − c =
6

r(r − 1)

n∑
α=r+1

r∑
i<j=1

(Aα
ij)

2 ≥ 0. (37)

Hence, the inequality in Theorem 5.1 is satis�ed. We can easily verify that equality holds
in the above inequality if and only if Aα

ij = 0, Moreover, since Aα
ii = 0 and Aα

jj = 0, the
necessary and su�cient condition for equality in the inequality (37) is that the horizontal
distribution is integrable. □

We now de�ne

||ω||2 =

r∑
i<j=1

ℏ2M(ωυi, υj).

We now have the following theorem.

Theorem 5.2. Let Ψ be a Riemannian submersion from a complex space form (Mm(c), J, ℏM)
to a Riemannian manifold (Nn, ℓ) with rank⋄ = r ≥ 3. Then at every point p, we have

ρ⋄ − c

4
− 3c

4r(r − 1)
||ω||2 ≥ 0. (38)
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Moreover, the equality case holds in any of the above inequality at a point p ∈ M if and only

if the horizontal distribution is integrable.

Since the proof of the Theorem 5.2 is similar to the previous Theorem 5.1, we omit
it.

If the Riemannian submersion is an invariant Riemannian submersion, we have the
following result.

Corollary 5.1. Let Ψ be an invariant Riemannian submersion from a complex space form

(Mm(c), J, ℏM) to a Riemannian manifold (Nn, ℓ) with rank⋄ = r ≥ 3. Then at every point

p, we have

ρ⋄ − c

4
≥ 0. (39)

Moreover, the equality case holds in any of the above inequality at a point p ∈ M if and only

if the horizontal distribution is integrable.
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