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WINTGEN INEQUALITIES ALONG RIEMANNIAN SUBMERSIONS

Giilistan POLAT?, Jac Won LEE? and Bayram SAHIN?

In this paper, a Wintgen inequality is obtained depending on O’Neill’s tensor
field T along a Riemannian submersion from a real space form to a Riemannian manifold
and the geometric meaning of the equality case is provided. Then, a Wintgen inequality
is derived along a Riemannian submersion from a complezx space form to a Riemannian
manifold, and a geomelric result is provided in the case of equality. In addition, o
Wintgen inequality is obtained using concepts based on O’Neill’s tensor field A, and it
is shown that the condition for equality is essentially equivalent to the integrability of
the horizontal distribution. This condition is also investigated in the case of a complex
space form.
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1. Introduction

In geometry, inequalities establish a connection between intrinsic invariants and ex-
trinsic invariants and play an important role in the characterization of the geometric object.
For a surface 9 in the Euclidean space E?, the Euler inequality

2
p <||H|

is fulfilled, where p is the (intrinsic) Gauss curvature of 9 and ||H||® is the (extrinsic)
squared mean curvature of 9. Furthermore, p = ||H||* everywhere on 90 if and only if 9
is totally umbilical.

Wintgen [22] provided a basic relationship among the Gauss curvature p, the normal
curvature pt and the squared mean curvature ||H||* of the surface 90 in E* as follows:

I H = p+p. (1)

The equality in the Wintgen inequality holds if and only if the curvature ellipse of 91 is a

circle. This inequality is called the Wintgen inequality. A surface 9 in E# is called an ideal

Wintgen surface if it satisfies the equality case of the Wintgen inequality (1) identically.
Chen [5] classified ideal Wintgen surfaces in the 4-dimensional Euclidean space.

In a real space form, Guadalupe and Rodriguez provided the Wintgen inequality for

a surface [10]. The Wintgen inequality for a submanifold with codimension 2 of a real

space form N (c) with constant sectional curvature ¢ was obtained by De Smet, Dillen,

Verstraelen, and Vrancken [7]:
| H P2 p+ ot —c, (2)
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where p is the normal scalar curvature, p* is the normalized normal scalar curvature and
||H|]? is the squared mean curvature of 9. Moreover, the authors claimed as a conjecture
that this inequality is valid for a submanifold with arbitrary codimension. We note that
Chen [6] proved this inequality (2) for normally flat submanifolds earlier in 1996. Xie
[21] classified the equality case for codimension > 3, depending on the constancy of the
mean curvature, the scalar curvature and the normal curvature. This the conjecture was
independently proved by Ge-Tang [12] and Lu [13]. Then, Dillen, Fastenakels, and Veken
[8] and Mihai [14] investigated the Wintgen inequality for submanifolds of a complex space
form. After these studies, this subject has been studied very actively, [1], [2], [8], [14, 15, 16].
This Wintgen inequality is also obtained for submanifolds of statistical manifolds [3] and
[17]. For a list of publications on this topic and more results on submanifolds, refer to the
survey paper [4].

The aim of this paper is to derive the Wintgen inequality for Riemannian submersions
where the domain is a real space form and complex space form and to provide a geometric
interpretation for the equality case.

The paper is organized as follows. In section 2, the basic notions and formulas required
for the paper are reminded. In section 3, a lemma is provided that allows for the definition of
the notion of normal curvature for a Riemannian submersion. Then, Wintgen inequality is
provided using O’Neill’s tensor field T for a Riemannian submersion. In section 4, Wintgen
inequality is obtained by tensor field T again for a Riemannian submersion from a complex
space form to a Riemannian manifold. In section 5, the Wintgen inequality is obtained by
O’Neill’s tensor field A for a Riemannian submersion. Here, it is shown that the condition
for equality is equivalent to the integrability of the horizontal distribution. Finally, the
Wintgen inequality is obtained using notions defined by O’Neill’s tensor field A in the case
where the total manifold of the Riemannian submersion is a complex space form.

2. Preliminaries

Let ¥ be a Riemannian submersion from a real space form (9™ (c ),
mannian manifold (N™, ¢). Let x°(9M) = T'((ker®,)*) and (x*(9M) = I'(ker¥
of horizontal and vertical fields, respectively. Then we have [9]

hon) to a Rie-
)b

«) be the spaces

3

4
5}

Ve =Tqe + Ve,

VoG =hVa G+ TG,
Vg1 = Ag 61 +vVe s,
Ve G =hVe, G+ Ag, o
for horizontal vector fields (; and (o and vertical vector fields ¢; and ¢3, where V is the
Levi-Civita connection of 9, T and A are the O’Neill tensor fields. We note that the
tensor A measures the integrability of the horizontal distribution. Denote by R™ and R

the Riemannian curvature tensor of 9t and the vertical distribution, respectively. Then, we
have

(3)
(4)
(5)
(6)

g(R7 (U, 51)s2,53) = 9(R(U, 51)52,53)) = hom (T(U, 53), T(s1, 52)) + ham (T(s1, 53), T(U, 52)) (7)
for U, 1,562,653 € X4(M). For more details, see [20]. Let (M, g) and (B,g/) be Riemannian

manifolds, and 7 : (M, g) — (B, ¢') a Riemannian submersion. Then the following identities
are satisfied

9(VuT)e, (1, ¢2) = 9(Tu€r, T, C2) — 9(Tu e, T, C1),
9(Ve A)eUsqr) = 9(Aq U, Agya1) — (A 1, AgU).
for horizontal vector fields (1, (2, (3 and vertical vector fields U, 1, s [20].

(8)
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3. Wintgen inequalities along Riemannian submersions on Vertical distri-
butions

Let 9™ (c) be a real space form of constant sectional curvature ¢. Then the Riemann-
ian curvature tensor R™ takes the following expression:

o (R™(C1, G2) G, 52) = ¢ {han (C1, 52)gam (Ca, C3) — Tiom (Ca, G3) Fim (G2, 52) } (9)
for vector fields (1, (2, (3, < tangent to 9™ (c).

We also recall the following two important results that we will use in our theorems.
Theorem 3.1. [12] Let By, ..., By, be (n X n) real symmetric matrices. Then
m m 2
2 2
3 i< (1m0
r,s=1 r=1

where the equality holds if and only if under some rotation' all B,’s are zero except two
matrices which can be written as PHy P! and PHyP?, where P is an (n x n) orthogonal
matriz, and

H, = diag(p, —p,0,...), Ho = diag(( _OM s ) ,0,..).
Corollary 3.1. [12] Let f : ™ — N"T™(c) be an isometric immersion. Then
p+pt <|HP +e,

where the equality holds at some point p € M if and only if there exist an orthonormal frame
{vi,..., 0.} of T, and an orthonormal frame {o1,...,0,} of T;-im, such that

Aoy = diagO + i, M = 1M1, M), Ay =diag(( £ ) Aases Aa),
and all other shape operators are A, = A1y, where p, A1, ..., \m are real numbers.

We begin by providing the expression for curvature that we will use in the process of
constructing Wintgen inequalities.

Lemma 3.1. Let F be a Riemannian submersion from a real space form (9™ (c), hon) to

a Riemannian manifold (N",¢). R™ and R’ the Riemannian curvature tensor of M and
the vertical distribution, respectively. We have

han (R (U, 1)1, G2) = 3han (T, G1, TuGa) — 3han (T Gr, T Co) (10)
for U,s1 € X*(M) and (1, ¢ € X (M).
Proof. Let U,¢; € x*(9M) and (1, € x°(M). Using equations (3) and (4), we obtain
(R (U, 1)1, G2) = han (Vs Do, &2) = ham (Vo T), 61, )
+ hon (Tu G2, T, 1) — ham (T, G2, Tu ).
From (11) and the first equation of (8), we obtain (10). O

(11)

For p € M, let {v1,...,vp, 041, ...,0,} be an orthonormal frame of 7,9 such that
{v1,...,v,} is an orthonormal frame of f§j, = kerFy, and {o,41,...,0,} is an orthonormal
frame for o, = (kerF,,)*. In this section, unless otherwise stated, the base of the total
manifold will be considered as above. The normalized scalar curvature p? on f,, is expressed
as

p = m Z hgﬁ(R(’U“ Uj)’Uj, Ui). (].2)

1<i<j<r
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A new notion of the normal scalar curvature pr, is defined for every point p € 91 as

follows,
1/2

= DONED DT CRMEREN S I (13)

1<i<jr+1<k<l<n

where R!" is the normal curvature tensor field of bip-
From (10), the normal scalar curvature on the vertical distribution can be expressed as

N 3v/2 -
Pl = Z Zﬁzm ([TF, T Uszj)eri Z ([T%, T2,

r(r— 1 (r—1)
kl r4+1i,5=1 kl=r+1

2
Where ||[‘Ik TI]HQ Zkl =r+1 Zzg lhm ([‘Ik ‘I]U“Uj) .

We put
(‘T?j = hm(‘j'vil}j,aa), Z,J = 1’ )7, a:r-’-]_’”.n
TN = > B (To,vg, To,v;),  traceT = Tyv;, 14)
i,j=1 i=1

|[traceT||? = hgn (traceT, traceT).

In the sequel we are going to state and prove the Wintgen inequality for Riemannian
submersions.

Theorem 3.2. Let ¥ be a Riemannian submersion from a real space form (9™ (c), hon) to
a Riemannian manifold (N™,¢) with rankt = r > 3. Then, we have

1

——||traceT||* > pf + <= \[ i (15)
r(r—1)

The equality holds at point p € M if and only if there exist an orthonormal frame {v1, ..., v, }

on i, and an orthonormal frame {o,41,...,0,} on ©,, such that

Ty = diag(p.—1,0,..),  Tp =diag(( ", & ).0,..)
and all other tensor fields T; vanish for i = 3,...,r, where p is real number.
Proof. Combining (7) with (9), one obtains
(r—1)c+ Z > { (v, v7), T (v}, v;)) hgy(‘]’o‘(vi,vj),‘fo‘(vj,vi))}.
a=r+11<i<j<r

(16)
From (12) and (16), we get

A=y Z Z{‘-TZ‘-T;E (78)2}, (17)

a=r+11i<j

where we put T¢ = hon(T(vi, v;), 04). By direct calculation, we have

|\tmceir||2=£:+1 (Z )
Z Z( +2r7;';7;;>

a=r+11=i<j
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Using (18) and (17), we obtain

n T
(r=1)[jtraceT|* = > > ((irg. —T)2 4 2rTRTS — 2r (T)2 + 2r (73)2)
a=r+11=i<j

—re-n (- 3 3 (T (19)

a=r+11=i<j
n n r 2
e (o0 e 3 - 3 (Som)
a=r+1 a=r+1 \i=1

Using Theorem 3.1, from (19) and (13), we arrive at

(r—l)|trace?'|2>r2(r—1)(ph—c)+r( z": H[‘J’k,ﬂ'l]‘r) - z": <XT:‘T§°§>

[ ——— a=r+1 \i=1

:rz(r—l) (ph—c)—&—gﬁ(r—l)pbl— i (igﬁ) ;

a=r+1 i=1

which gives the inequality case. The equality case comes from Corollary 3.1. |
An example of the equality condition is given below.

Example 3.1. The standard Riemannian 7 : S5 — Ss(%) with totally geodesic fibers satisfy
the equality cases of inequality in (15).

4. Wintgen Inequalities along Riemannian submersions defined on a com-
plex space form

In this section, the Wintgen inequality is provided for Riemannian submersions whose
total manifold is a complex space form. First, we recall the context of a complex space form.
Let 2t be an almost Hermitian manifold with the almost Hermitian structure (J, fign). Then,
9 becomes a Kaehler manifold if V™.J = 0, where V™ is the Riemannian connection of the
Riemannian metric Agy. A Kaehler manifold with constant holomorphic sectional curvature
c is said to be a complex space form and its Riemannian curvature tensor R™ is given by
120]

hon (R™ (G1, C2)Ga,2) = 7 {han (Gu<2)han (G, Ga) — hian(G1, Ca) i (G, <2}
+ Z {Ron (C15 JC3)hom (T 25 62) — ham (C2, JC3) o (JC1,62) } (20)

n %hm(gl, TCo)han (JCs,52)

for all (1, (2, (3,2 € T(TON).

Let a Riemannian submersion ¥ be a submersion from a complex space form (9™ (c), J, fioy)
of complex dimension m to a Riemannian manifold (N™,¢) of real dimension n. For
¢ € T(ker¥,), we can write

JG = oG +w(, (21)
where ¢(; denotes the vertical component of J(; and w(; stands for the horizontal component
of J(1. Next, we put

16117 = > han(vs, v;). (22)
i,j=1

The following theorem gives the Wintgen inequality in the case where the total manifold of
a Riemannian submersion is a complex space form.
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Theorem 4.1. Let ¥ be a Riemannian submersion from a complex space form (IM™(c), hon)
to a Riemannian manifold (N™, ¢) with rankly = r > 3. Then, we have

V2 1 3c
ltraced|f* = p* + =" = 3 = =5 el (23)

1
r(r—1) 4 4r(r—1)

the equality holds at point p € M if and only if there exist an orthonormal frame {vy,... v}
on (k) and an orthonormal frame {o,41,...,0,} on (op), such that

Ty = diag(p, —p,0,...), To = diag(( _OH s ) ,0,..),

and all other tensor fields T; vanish for i =3, ...,r , where u is real number.

Proof. Let {v1,...,v,} be an orthonormal frame on the b, and {o;41,...,0,} be on the
horizontal space ¢, at p € M. Combining (7) with (20), one obtains
27t = (ri 1e Z Fiy (dvi, ;) + 2 Z Z hon (T vl,vl) ‘J’ha(vj,v]-))
i,j=1 a=r+11<i<j<r (24)

- hgm(irha (Uz‘, ’Uj), ‘.Tha (Uj, Ul))

From (12) and (24), we have

ey e e X S e e

a=r+11i<j

where we put T = han (7" (v, v5),04). The length of the tensor field T is obtained as
n T 2
Htrace‘TH2 = Z (Z ‘J’f;)
a=r+1 \i=
Y3 (- ey,

a=r+11=i<j

From (25) and (26), we derive

= Dlracerif = 3> > (- +2r¢37;‘]—2r(%>2+2r(7%)2)

a=r+11=i<j

:r2(7~_1)(ph_g—%n¢n2)+ > oy ( “7"(“”))

a=r+11=i<j

n T 2
—_ 2 _ h_E_ 2 |2 a
R CEEE e )+v«a§r+:1||<r I a§r+:1<1§_1:7“> .

From (13) and Theorem 3.1, we get

1

- (oS3 3 ?
(= 1) llraced® = 2 (= 1) (o - § 4r(r_1)“‘f"2)“<k,l§+1’”’“"”H)
n ™ 2
> (2m)
a=r+1 \i=1

:TQ(T_I)(ph_Z_&"(T—l)

||<z>|\2) + Y2020 1) racer .

Thus the inequality case is completed. The equality case comes from Corollary 3.1. O
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A Riemannian submersion ¥ from an almost Hermitian manifold (9™, J, hor) to a
Riemannian manifold (N", ¢) is said to be an anti-invariant Riemannian submersion if ker ¥,
is anti- invariant with respect to the almost complex structure .J, i.e., J(ker®,) C (ker¥,)*
in [19]. In this case, clearly (23) implies ||¢||> = 0 and from Theorem 4.1, we conclude the
following result.

Corollary 4.1. Let U be an anti-invariant Riemannian submersion from a complex space
form (9™ (c), hon) to a Riemannian manifold (N™, () with rankt =r > 3. Then, we have

1 2 \/i € Cc
— ltraceT||* > pt + L= — = 27
T a2 0 - G (27)
the equality holds at point p € M if and only if there exist an orthonormal frame {v1,...,v,}
on (1p) and an orthonormal frame {o,41,...,0,} on o, such that

Ty = diag(p, —p,0,...), To = diag(( _OH s ) ,0,..),

and all other tensor fields T; vanish for i =3, ...,r, where u is real number.

5. Wintgen inequality along Riemannian submersions on a horizontal dis-
tribution

In this section, we will express a Wintgen’s inequality in terms of horizontal distribu-
tions. We will see that the condition for equality is equivalent to the integrability of a hori-
zontal distribution. Let ¥ be a Riemannian submersion from a real space form (91" (c), hon)
to a Riemannian manifold (N, ¢). Let x°(9) = I'((ker¥,)*) and x¥(9M) = I'(ker®,) be the
spaces of horizontal and vertical vector fields over 9, respectively. Denote by R™ and R*
the Riemannian curvature tensor of 9t and the horizontal distribution, respectively. Then,
we have the Gauss type equation:

R™(¢1,€2,¢3,Ca) = R*(C1, €2, (3, Ca) + 2han (A, C25 Acy Ca) — ham(A¢y (3, Agy Ca)
+ hon (A¢, €35 A¢yCa)
for (1, (2, (5, ¢ € x°(9M), see [20] for more details.

(28)

Lemma 5.1. Let F' be a Riemannian submersion from a real space form (9™ (c), hisn) to a
Riemannian manifold (N™,¢). Then we have

9B (C1, G)s1,52) = Bhan (A, 1, Ac,52) — Bhan (Acy 51, Ay 0) (29)
for C1, ¢ € X°(M), 1,52 € XH(M).
Proof. Let (1,(a € x°(M) and <1, € x4 (IM). Using equations (5) and (6), we obtain:
IR (G, Ga)sr,52) = Mo (Ve Ay, 52) — i (VepA) 1, 62)
+ hon (A¢, $2, Ao s1) — hon (Acy 52, Ag, 1)

for (1,2 € x°(M) and <1, 52 € XF(IM). From (30) and the second equation of (8), we obtain
(29).

(30)

]

Let {v1,vs,...,0,} be an orthonormal frame of the horizontal space ©¢,, for p € M
and {o,41,...,0,} be an orthonormal frame of the vertical space f,. In this section, unless
otherwise stated, the base of the total manifold will be considered as above. We define the
scalar curvature 7° on ¢, by

7'<> = Z ﬁgm(R*(Ui,Uj)Uj,Ui) (31)

1<i<j<r
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and the normalized scalar curvature p® of ¢, as
2r°

o= r(r—1) (32)

A new notion of normal scalar curvature ROL, is defined for every point p € 90t as follows,
1/2
= I D SIS (33)
r(r—1) —~ I '
1<i<j r4+1<k<i<n

We now put

A= Y haw( A vj,00), [P = Y B (Av,vj, A vs)

i,j=1 a=r+1 i,j=1

traceA = Z.Avivi, |traceA|? = higp (traceA, traceA).
i=1
We have the following theorem.

Theorem 5.1. Let ¥ be a Riemannian submersion from a real space form (M (c), hon) to
a Riemannian manifold (N™,¢) with ranko = r > 3. Then at every point p, we have
p°—c>0. (34)

Moreover, the equality case holds in the above inequality at a point p € I if and only if the
horizontal distribution is integrable.

Proof. Combining (9) and (28), and using (32) one obtains

6 n I
& _ a2
a=r+1li<j=1
where we have put Af; = hon (A(vi, v)), 00).
From Lemma 5.1, taking {¢1 = v;, (2 = v;} € X°(M) and {51 = oy, 52 = oy} € X* (M), 4,j =
1,..,r, k,l=r+1,..,n, we obtain

hon (R (v3,v;)0%, 07) = 0. (36)

which implies p°~ = 0. From (35), we obtain

6 n I
Foe=— 5 Y a0 (37)

r(r—1) =

a=r+li<j=1

Hence, the inequality in Theorem 5.1 is satisfied. We can easily verify that equality holds
in the above inequality if and only if Af; = 0, Moreover, since A, = 0 and A$; = 0, the
necessary and sufficient condition for equality in the inequality (37) is that the horizontal
distribution is integrable. |

We now define

2
ol =D A (wvi,vy)-
i<j=1
We now have the following theorem.

Theorem 5.2. Let ¥ be a Riemannian submersion from a complex space form (IN™ (c), J, hion)
to a Riemannian manifold (N™,£) with ranko = r > 3. Then at every point p, we have

c 3

p°— = =

C 2
JE— > 0.
iy LR (38)
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Moreover, the equality case holds in any of the above inequality at a point p € M if and only
if the horizontal distribution is integrable.

Since the proof of the Theorem 5.2 is similar to the previous Theorem 5.1, we omit
it.

If the Riemannian submersion is an invariant Riemannian submersion, we have the
following result.

Corollary 5.1. Let ¥ be an invariant Riemannian submersion from a complex space form
(M™(c), J, hon) to a Riemannian manifold (N™,£) with ranko =r > 3. Then at every point
p, we have

p° — 2 > 0. (39)

Moreover, the equality case holds in any of the above inequality at a point p € M if and only
if the horizontal distribution is integrable.
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