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TESD: TILING-BASED EXPANSION MODEL IN STABLE 

DIFFUSION 

Zhang WANG1, Tiejun PAN*2, Yaojie FEI3, Junyi CHAI4, Zhengqi PAN5, Leina 

ZHENG6 

Artificial Intelligence Generated Content (AIGC) refers to techniques such as 

Denoising Diffusion Probabilistic Models (DDPM) and large pre-trained models to 

automatically generate content. Stable Diffusion is a typical AIGC system for text-to-

image generation, which has been widely applied in many fields. However, the AIGC 

technology requires a significant amount of GPU memory to generate high-resolution 

images. In addition, the generated images are random and need to be adjusted 

multiple times to meet the needs of the users. To address these problems, a Tiling-

based Expansion model in Stable Diffusion (TESD) is proposed: (1) Tiling diffusion 

is used to generate relatively sharp images on low GPU memory devices, (2) The 

Image Feature Controller (IFC) is used to eliminate the randomness of the image and 

enhance the color level, (3) AIGC functions are implemented on embedded devices by 

deploying Stable Diffusion in the cloud. A straightforward patch based on the 

partitioning framework was integrated into the upscaling of the model, thereby 

achieving reduced GPU memory utilization and accelerated image processing speeds 

in contrast to conventional upscaling models. Through a comparison with seven 

similar enlargement models, our model outperforms all challenging solutions in terms 

of generation speed and effectiveness, with a very significant advantage and prospect. 
 

Keywords: multi diffusion, tiled diffusion, amplification model, zero 

convolution, cloud computing 

1. Introduction 

Text-to-image generation has emerged as a highly dynamic and burgeoning 

field within Artificial Intelligence Generated Content (AIGC) in the modern 

technological landscape, pervading numerous facets of our daily lives. Stable 

Diffusion is a form of AIGC. Based on the diffusion model of deep learning, it 

generates images by gradually adding noise and then reverse denoising. Compared 

with the traditional text-to-image method, Stable Diffusion has a significant 

improvement in picture diversification, control, and economic benefits. Users can 
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customize the development process based on their own needs. For instance, they can 

adjust the model structure and training parameters to better adapt to various 

application scenarios and requirements. The functions of text - to - image can be 

applied to a wide range of industries, including game development, illustration 

design [1], healthcare [2], and e-commerce [3]. 

In Stable Diffusion, UNet and random seeds are two vital components. They 

respectively control the style and image segmentation of the image, both of which 

are significant aspects of the field of image generation. An important role in Stable 

Diffusion is played by UNet, an important neural network architecture known for its 

proficiency in image-to-image translation tasks. UNet acts as a noise predictor, 

progressively removing noise from the image during the back diffusion process. 

Through a series of convolutional layers, upsampling, and downsampling operations, 

the input noisy image is processed to predict and subtract the noise to produce a 

result closer to the original image. Fernando et al. [4] show in their research that 

UNet is characterized by its unique U-shaped structure and is good at capturing both 

low- and high-level features of images. It operates by conditionally processing the 

random latent image representation in an iterative denoising manner, leveraging the 

text embeddings as guiding cues. The Variational Autoencoder (VAE) is a 

generative model mainly used to learn the latent representation of data and generate 

new data samples through these representations. It consists of two parts: the encoder 

and the decoder, which are used to process the images generated afterward. Specific 

functionality is illustrated in Fig 1.  

The random seed in Stable Diffusion critically influences the generated 

image’s style and content: varying the seed produces distinct synthesis results. Xu 

et al. [5] showed that the basic operational framework of text-to-image generation is 

as follows: large-scale models first ingest potential and text prompts as their main 

inputs. The latent seed then acts as a catalyst for the generation of an initial, 

randomly configured latent image representation. Parallel to this, in a study by Luo 

et al. [6], it was shown that text prompts were converted into text embeddings by 

using a Contrast Language Image Pre-training (CLIP) text encoder.  

However, to generate high-resolution images, computer computation needs 

to be greatly increased. Research by Li et al. [7] shows that the main text-to-image 

method, Stable Diffusion, uses the Latent Diffusion Models (LDMS) method and 

usually requires a large dataset to build the model. Although the model performs 

well in most cases, there are still some limitations and challenges. LDMS still cannot 

handle high-resolution images. Pan et al. [8] showed that LDMS may be limited by 

its reconstruction ability in tasks requiring high precision. At the same time, since 

the diffusion model needs a lot of function evaluation and gradient calculation during 

the training process, the algorithm needs to be further optimized in practical 

application to improve efficiency. Additionally, since LDMS is a probability-based 

model, more research is needed to explore how to effectively utilize prior knowledge 
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to improve model performance. The purpose of this paper is to reduce the memory 

required by the block algorithm. 

 

Fig. 1. Stable Diffusion framework diagram. 

 

In general, the following limitations of traditional text-to-image generation 

methods can be identified:  

When Stable Diffusion is used to generate high-precision pictures, the 

phenomenon of stashing or even memory explosion often occurs. Yariv et al. [9] 

found that Stable Diffusion occupied too much GPU memory. For Stable Diffusion, 

due to the use of large models, powerful encoders and decoders are used for data 

transmission, mainly using large models like CLIP. Research by Ting et al. [10] 

shows that it uses a Latent Diffusion Model (LDM). Subban R et al. found that in 

terms of image generation, although VAE can be used to compress images to 

appropriately reduce the GPU memory required for image generation, after 

decompression, the details of the image are rough and the image quality is reduced, 

as shown in Fig. 2. When the effect of the generated image is not obvious, it is often 

necessary to redraw the image. Chu et al. [11] found that AIGC redraws cause image 

distortion. In Hu et al. [12]. The study found that the less scope to redraw, the image 

is closer to the original image, the less the AI play space. Zhang et al. [13] found 

that this will greatly increase the possibility of image distortion.  

Three more areas for innovation have been proposed based on these two 

points of shortcomings. We intend to add a tile block algorithm to the magnification 

model to reduce the memory pressure in the text-to-image process. In order to 

achieve the purpose of generating high-definition pictures with smaller memory.  
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Fig. 2. The difference when using traditional VAE. 

 

In this work, we make the following contributions:  

The tiling algorithm is combined with the magnification algorithm to reduce 

running GPU memory. The regional Block module, Residual Swin Transformer 

Block (RSTB) module and Swin Transformer Layer (STL) module are introduced, 

which emphasize more on the overall coordination and generation speed of the 

image.  

We use ControlNet to limit the randomness of images. The minimal cell 

structure of the ControlNet model has two zero convolution modules whose weights 

and biases are initialized to zero. This allows ControlNet to fine-tune training on the 

capabilities of the original Stable Diffusion base model. The Recolor model in 

Convolutional Neural Network (CNN) and ControlNet combined with the tiling 

algorithm is used to achieve fine recoloring of black and white photos. We 

implement AIGC on an embedded device by deploying Stable Diffusion in the cloud. 

Implementing the magnification model based on AIGC in the cloud can enhance 

image generation speed and reduce the consumption of computer GPU memory. 

2. Related Works 

2.1 Selective Magnification Algorithm  

Xu et al. [14] found that the main purpose of the image amplification 

algorithm is to recover high-resolution details from low-resolution images. These 

magnification algorithms are widely used in fields such as medical imaging, satellite 

remote sensing, video processing, and image processing. Liu et al. [15] found that 

common amplification algorithms can be divided into two categories: one is 

traditional image magnification algorithms, such as Lantent, Lanczos, Nearest, etc.; 

the other is AI-based image magnification algorithms, such as 4x-UltraSharp, 
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BSRGAN, ESGAN, etc. Rombach et al. [16] found that the current tiling work of 

general image amplification is usually achieved through a 4x-UltraSharp algorithm 

combined with a tiling algorithm, which has an obvious enhancement and 

amplification effect on images, but there are still shortcomings in details and 

computing speed. Therefore, this paper intends to compare Lantent, Lanczos, 

Nearest, ESGAN-4x, SCuNET, SCuNET PSNR, SwinIR 4x, 4X-ultrasharp and 

other amplification algorithms with TESD models combined with tiling algorithms.  

 
 

Fig. 3. Flowchart of TESD specific work on the cloud. 

2.2 Zero Convolutional Layer 

The research of Li and Wang et al. [17], indicates zero convolution layer is 

often used to eliminate the influence of random noise on the image generation 

process and prevent harmful noise from interfering with hidden states. Many control 

network models are mainly used to control human posture, facial expression, edge 

redrawing, etc. In the study of Wu et al. [18], this was found to be used in a control 

network model called recolor. The main principle of combining Recolor with 

ControlNet is to enter an additional condition into the neural network block. It then 

makes a copy of the same parameters as the original block for training. This trainable 

copy takes the external condition vector as input and uses the large pre-trained 

recolor model to build a powerful back to handle the various input conditions. In the 

study of Tong et al. [19], zero convolution has been shown to protect and eliminate 

noise, thus significantly improving the quality of the generated image. 
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2.3 Cloud Computing 

In the research of Rao et al. [20], it is shown that the technical architecture 

of cloud computing is usually divided into the following layers: hardware layer 

(physical layer), including servers, storage devices, network hardware, and other 

infrastructure, providing computing and storage resources. In the study of Gui et al. 

[21], through virtualization technology, physical resources are abstracted into virtual 

resource pools, so that multiple users can share the same group of physical hardware 

and improve resource utilization. Resource management refers to the scheduling, 

allocation, and management of resources, including the dynamic adjustment of 

computing resources, storage resources, and network resources. The service layer 

provides IaaS, PaaS, SaaS, and other services to meet the needs of different users. 

Application layer: the application or service that the user uses directly, usually 

through a Web interface or API. The clouds we use in our daily lives include SaaS, 

PaaS, and LaaS. Due to the large number of files required for Stable Diffusion 

deployment and the large project, we choose SaaS for local deployment here. In the 

study of Gao et al. [22], it is shown that the ordinary Text-to-image graph project 

relies on strong computing power support, which has a huge demand for cloud 

computing resources. Especially for the training and inference of large-scale models, 

many GPU resources are required, resulting in computational problems. 

3. Proposed Methods 

The Tile-based extension model in the Stable Diffusion (TESD) network 

architecture proposes an innovative multi-level feature fusion architecture, and its 

core innovation point lies in the three collaborative designed modular components. 

It mainly includes three key elements: shallow feature extraction, deep feature 

extraction and high-quality image reconstruction. Compared with the traditional 

extended model, TESD introduces hierarchical Transformer in the diffusion super-

resolution model for the first time to enhance the ability of cross-block global 

relationship modeling. Flowchart of TESD specific work on the cloud is depicted in 

Fig. 3. The key features are extracted from the prompt words through the CLIP 

model, combined with random seeds, and added to the UNet. The image is processed 

by dividing it into blocks, retaining the required features, and generating the image 

through the TESD amplification model and zero convolution. 

3.1 TESD Amplification Module 

Shallow feature extraction uses only one convolutional layer for feature 

extraction. A 3x3 convolutional high-frequency signal filter (HSF) was used to 

extract shallow features. The next step is deep feature extraction. The deep feature 

extraction module is composed of several residual Swin Transformer Blocks (RSTB) 

and convolutional blocks, and its specific structure is shown in Fig. 4., firstly, the 
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feature map of the shallow feature extraction module is divided into multiple non-

overlapping patches embedded and then processed by several series residual Swin 

Transformer blocks. These blocks recombine multiple non-overlapping patch 

embeddings into one output with the same resolution as the input feature map. 

Secondly, a convolution layer outputs the result, with residual joins introduced 

inside each RSTB. In the residual RSTB, STL refers to the Swin Transformer layer, 

the structure of which is also shown in Fig. 4., it starts with a layer normalization 

layer, followed by a multi-head self-attention module. A residual connection is 

introduced at the end of the multi-head self-attention, followed by another layer of 

normalization. Finally, it passes through a Multilayer Perceptron (MLP), again 

introducing a residual connection at the end. 

 

Fig. 4. TESD amplification module architecture diagram. 

3.2 Zero Convolution Layer Combination 

Combining the tiling magnification algorithm and zero convolution to restore 

black and white photos using AI. For this, we will need a ControlNet model called 

recolor, which works by first using a preprocessor to extract the grayscale image, 

then dividing the image into various regions through the tiling algorithm and 

recognizing each region to apply color. This model is the main one used in AIGC 

for coloring, and incorporating zero convolution and the tiling magnification 

algorithm can effectively reduce the interference of noise on image generation. The 

tiling magnification algorithm model can make the generated image clearer. We can 

also use the same quantitative evaluation method as mentioned above, first fixing 

the random seed and prompt words, then varying the zero convolution and tiling 

magnification algorithm, comparing the fineness of the images generated under 
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different conditions to find the best combination for restoring images. The specific 

structure is shown in Fig. 5. 

 

Fig. 5. Zero convolution structure diagram. 

3.3 Cloud Deployment 

In the context of the experimental design framework, the initial phase of 

establishing the environment emphasizes the selection of a Stable Diffusion 

environment configuration option, as offered by the Alibaba Cloud controller. This 

selection forms the foundation for constructing the fundamental scaffold of Stable 

Diffusion. However, it is important to recognize that the simplicity of this framework 

restricts its operational scope to the execution of basic text-to-image transformation 

tasks. Should the requirement emerge to expand functionality and meet more 

complex experimental demands, the file management component of the cloud 

project is activated. By uploading the necessary code files related to the desired 

features into their respective directories, the capabilities of the cloud Web UI are 

bolstered. This advancement enables the experimental setup to manage a broader 

spectrum of tasks and inquiries that are crucial to the overarching research objectives, 

ensuring a smooth and comprehensive experimental process. 

4. Experiments 

4.1 Experimental Settings 

Dataset: In the present study, we utilized super-resolution reconstruction 

datasets, namely DIV2K and Flickr2K. By adhering to a unified and consistent 

training configuration protocol, we incorporated 1,485 samples derived from the 

DIV2K dataset in conjunction with 700 samples from the Flickr2K dataset to form 

our comprehensive training set. This strategic combination of datasets was selected 

to ensure a diverse and representative sample pool, thereby enhancing the robustness 

and generalizability of our experimental results. We can also use more diversified 
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data sets to train this model. It is recommended to use BSD100, Urban100, and other 

multi-style and larger data sets for training. The resulting model will be improved in 

accuracy and style. 

Evaluation Metrics: For comprehensively and precisely evaluating the 

performance of image phase consistency and feature extraction, a battery of eleven 

well-recognized and established metrics was adopted, namely BRISQUE, DISTS, 

DSS, CLIP-IQA, FSIM, GMSD, HaarPSI, IW-SSIM, LPIPS, MDSI, and PSNR. 

The higher the values of FSIM, HaarPSI, IW-SSIM, PSNR and other metrics, the 

clearer the image. The lower the values of BRISQUE, DISTS, DSS, CLIP-IQA, 

GMSD, LPIPS, MDSI and other metrics, the clearer the generated image. 

Comparison Models: The trained tiled upscaling model was systematically 

benchmarked against five traditional and commonly used upscaling models, namely 

Latent, Lanczos, Nearest, SCuNET, and SwinIR. The training and testing procedures 

of these models were carried out in strict accordance with the default settings as 

meticulously described in their corresponding original research publications. In 

situations where the source code was not publicly accessible, we resorted to the 

published experimental outcomes and results for the sake of comparative analysis. 

This approach ensures a fair and objective comparison, allowing for a more accurate 

assessment of the relative strengths and weaknesses of the tiled upscaling model in 

relation to its counterparts.  

Configuration: The experimental environment is configured with a 

Windows 11 x64 operating system. The Java development kit JDK 1.8 is installed. 

PyCharm is used as the development tool. The system is powered by an Intel(R) 

Core (TM) i7-9750H CPU @ 2.60GHz, and an NVIDIA GeForce GTX 1650 Ti 

graphics card. It has 8GB of memory available for the experiment.  

Experimental Parameters: The experimental setup is configured with 

specific parameters. The GPU_IDS is set as [0, 1] to utilize multiple GPUs for 

enhanced computational performance. A scale of 2 is applied, which likely affects 

the size or resolution transformation of the data. The number of channels is 3, 

typically corresponding to the RGB color model. Keywords such as "Boy white 

shirt" and "friendly smile" are defined to guide or evaluate certain aspects of the 

experiment related to image generation or analysis. The random seed number 35467 

is used to ensure the reproducibility of results. The sampling method DPM+2M 

Karras is selected, with a resampling amplitude of 0.7 to control the sampling 

process. The scaling factor of the amplification algorithm is 2, and the image width 

and height are both set to 512 to define the dimensions of the images involved in the 

experiment.  

4.2 Experimental Results 

4.2.1 Select magnification algorithm:  

In Experiment One, the SwinIR framework was selected for code 

refinement due to its functional comprehensiveness. A tiling algorithm was 
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integrated into the original code to optimize model processing and training. For 

image segmentation, key parameters such as width, height, and aspect ratio were 

precisely calibrated. Rectangles represented as tuples were generated and sorted by 

width in descending order. Through an iterative loop, they were positioned to 

prevent image distortion. A verification function was developed to assess space 

availability at (x, y) for rectangles of specific dimensions. If any point exceeded the 

boundary or was occupied, a negative result was returned. An auxiliary function 

marked and validated occupancy status to calculate the unoccupied area. Given the 

low-memory computer, training parameters were minimized. The incorporation of 

the tiling algorithm enhanced image restoration efficiency and reduced memory 

demands for resolution improvement. Experimental results are shown in Fig. 6. 

 

Fig. 6. Training model comparison chart. 
 

The model with the best training effect is put into Stable Diffusion, and the 

fixed keywords and seeds are input. The result is a comparison like the one shown 

in Fig. 7. 

 

Fig. 7. Magnified model comparison diagram. 
 

From the overall processing of the image, it can be observed that after 

incorporating tiled diffusion, the resolution of individual images becomes higher and 

clearer, meeting the basic requirements for generating detailed images on a small 
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computer with 4GB of memory. Regarding the overall style of the image, we notice 

that except for Latent [23], the pictures from the overall processing of the image, it 

can be observed that after incorporating tiled diffusion, the resolution of individual 

images becomes higher and clearer, meeting the basic requirements for generating 

detailed images on a small computer with 4GB of memory. Regarding the overall 

style of the image, we notice that except for Latent, the pictures processed by other 

upscaling algorithms appear more refined in style. Observing the clothing details of 

the characters, we find that the images upscaled by the 4x-UltraSharp algorithm lack 

detail and shading compared to those processed by Nearest [24], ScuNet [25], and 

ESRGAN [26] algorithms, which highlight details in clothing and shadow aspects. 

In terms of facial details, Lanczos [27] and ScuNETPSNR [28] show greater clarity. 

Examining the depiction of muscle lines in the hands, it is evident that ESRGAN 

suffers from significant blurring of the hand area, whereas the 4x-UltraSharp 

algorithm provides very realistic hand muscle lines.  

We will evaluate the effects of different scale-up models from the following 

several indicators. LPIPS [29] is a perceptual similarity measurement method based 

on deep learning. It extracts deep representations in the image feature space through 

a pre-trained CNN to quantify the perceptual differences between two images. The 

core idea is to simulate the sensitivity of the human visual system (HVS) to image 

structure and high-order semantic features.  

DSTS [30] is a no-reference (NR) image quality assessment index based on 

the statistics of the local structure direction of the image. This method quantifies the 

degree of structural confusion caused by distortion by calculating the Directional 

Statistics of the image gradient field. FSIM [30] is a full-reference image quality 

index based on phase consistency and gradient amplitude. Phase consistency 

characterizes the stability of structural features in an image that are not affected by 

illumination changes, and gradient amplitude describes the significance of local 

structures.  

MS-SSIM [30] is a multi-scale extension of the Structural Similarity Index 

(SSIM), which improves the evaluation performance by simulating the multi-scale 

perception characteristics of the human visual system. HaarPSI [30] is a full-

reference image quality index based on Haar wavelet coefficients, which assesses 

distortion by simulating the sensitivity of the visual system to edge information. 

GMSD [30] is a full reference image quality index based on the statistics of gradient 

amplitude similarity, quantifying distortion by calculating the spatial fluctuation of 

local gradient similarity. MDSI [30] is a full-reference index that integrates gradient, 

color and contrast information and comprehensively assesses distortion through 

multi-feature similarity bias. Evaluations of the images generated by the upscaling 

models are sequentially carried out, with specific evaluation data shown in Table 1 

below. 
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Table 1  
Model Data Comparison Table (The SWINIR that we use with the best results is already in bold) 

Scale Algorithms Latent Lanczos Nearest Swinir ScuNETPSNR 

LPIPS 0.2912 0.2779 0.1769 0.3609 0.412 

ContentLoss 1456.2516 840.1451 729.5243 1131.7114 1063.179 

PSNR index 19.8546 23.414 23.4746 22.3049 22.6149 

DISTS 0.1632 0.1386 0.0984 0.1532 0.1703 

DSS 
index 0.1665 0.2554 0.4141 0.2104 0.217 

loss 0.8335 0.7446 0.5859 0.7896 0.783 

FSIM 
index 0.8128 0.8886 0.9031 0.8656 0.8648 

loss 0.1872 0.1114 0.0969 0.1344 0.1352 

GMSD 
index 0.2299 0.1702 0.1565 0.1865 0.1874 

loss 0.2299 0.1702 0.1565 0.1865 0.1874 

HaarPSI 
index 0.3885 0.5575 0.5695 0.5261 0.5224 

loss 0.6115 0.4425 0.4305 0.4739 0.4776 

IW-SSIM 
index 0.6259 0.7853 0.8198 0.7449 0.7391 

loss 0.3741 0.2147 0.1802 0.2551 0.2609 

MDSI 
index 0.4316 0.3762 0.3663 0.3989 0.3949 

loss 0.4316 0.3762 0.3663 0.3989 0.3949 

MS-SSIM 
index 0.7718 0.8645 0.8947 0.8337 0.8304 

loss 0.2282 0.1355 0.1053 0.1662 0.1696 

MS-GMSDc 
index 0.2304 0.1684 0.1547 0.186 0.187 

loss 0.2304 0.1684 0.1547 0.186 0.187 

4.2.2 Zero convolution layer combination 

In the experimental paradigm of ControlNet, a sequence of meticulously 

designed configurations was executed. Specifically, the control weight parameter 

was systematically adjusted to a value of 1, while the start step and end step were 

deliberately set to 0 and 1, respectively. Concurrently, the Gamma Correction factor 

was precisely tuned to 1. Subsequently, the TESD model was incorporated into the 

experimental framework. The resultant restoration efficacy on black and white 

photographic images is visually demonstrated in Fig. 8. 

 
Fig. 8. Black and white photo restoration comparison. 
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Through a comparative analysis of the figure, it becomes apparent that 

discernible coloring artifacts are present. When contrasted with the coloring 

manifestations in other figures, the coloring impact of the current model is more 

prominent in the context of landscape elements. In the case of small-scale images, a 

more precise and accurate coloration is attained. Following the incorporation of the 

TESD model, a substantial improvement in the image resolution was recorded, 

thereby leading to a more distinct and clearer visual rendition of the aged 

photographic materials.  

4.2.3 Cloud computing 

The TESD model was deployed in the Alibaba Cloud environment. The 

rationale behind this deployment lies in the model's unique approach of subdividing 

the target image into blocks, which effectively curtails the computational load on 

the cloud server. The integration of the Tiled module with the RSTB and STL 

modules within this cloud-based framework enables the generation of images with 

enhanced clarity. Moreover, this combination also leads to a notable improvement 

in the generation speed. The generation effect of the TESD model on the cloud 

computing interface is shown in Fig. 9. In the figure, it can be found that the 

efficiency and quality of generating pictures have been improved after adding the 

TESD model to the cloud framework.  

 
Fig. 9. Cloud computing generated effect comparison diagram. 

5. Conclusion 

In the current technological landscape, AIGC technology has emerged as a 

significant area of research and application. It holds great promise and potential for 

continuous growth and refinement. The versatility of AIGC technology, which 

encompasses a wide range of techniques and algorithms, allows it to permeate and 

make an impact in multiple industries and aspects of our lives. For instance, in the 
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field of content creation, it can assist in generating text, images, and even videos, 

streamlining the creative process and potentially opening up new avenues for artistic 

expression and communication. 

When considering the specific application of image processing, the 

incorporation of tiling algorithms into the magnification model represents a crucial 

advancement. This innovation has led to a substantial elevation in the accuracy and 

visual fidelity of image repair. By subdividing the image into smaller, more 

manageable tiles, the model can more effectively allocate computational resources 

and handle complex image structures. As a result, not only is the quality of the 

restored images enhanced but also the memory requirements are significantly 

reduced. This achievement is of particular importance as it addresses one of the key 

challenges in modern computing, especially when dealing with large-scale image 

datasets or resource-constrained environments. TESD can be combined with other 

advanced technologies in the future. Such as processing high-definition video 

generation, improving video accuracy, or real-time AI image generation. These can 

be applied to future design work, generate a design drawing with high precision, and 

regenerate the corresponding video according to the design drawing.  

This development in AIGC technology not only offers immediate benefits in 

terms of image processing but also paves the way for future exploration and 

innovation in the broader realm of artificial intelligence within the visual domain. It 

also encourages interdisciplinary collaborations between computer science, 

mathematics, and the visual arts, as the boundaries between these fields continue to 

blur in the pursuit of more advanced and intelligent image-processing techniques.   
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