U.P.B. Sci. Bull,, Series C, Vol. 87, Iss. 4, 2025 ISSN 2286 — 3540

TESD: TILING-BASED EXPANSION MODEL IN STABLE
DIFFUSION

Zhang WANG!, Tiejun PAN*?, Yaojie FEI®, Junyi CHAI*, Zhengqi PANS, Leina
ZHENG®

Artificial Intelligence Generated Content (AIGC) refers to techniques such as
Denoising Diffusion Probabilistic Models (DDPM) and large pre-trained models to
automatically generate content. Stable Diffusion is a typical AIGC system for text-to-
image generation, which has been widely applied in many fields. However, the AIGC
technology requires a significant amount of GPU memory to generate high-resolution
images. In addition, the generated images are random and need to be adjusted
multiple times to meet the needs of the users. To address these problems, a Tiling-
based Expansion model in Stable Diffusion (TESD) is proposed: (1) Tiling diffusion
is used to generate relatively sharp images on low GPU memory devices, (2) The
Image Feature Controller (IFC) is used to eliminate the randomness of the image and
enhance the color level, (3) AIGC functions are implemented on embedded devices by
deploying Stable Diffusion in the cloud. A straightforward patch based on the
partitioning framework was integrated into the upscaling of the model, thereby
achieving reduced GPU memory utilization and accelerated image processing speeds
in contrast to conventional upscaling models. Through a comparison with seven
similar enlargement models, our model outperforms all challenging solutions in terms
of generation speed and effectiveness, with a very significant advantage and prospect.

Keywords: multi diffusion, tiled diffusion, amplification model, zero
convolution, cloud computing

1. Introduction

Text-to-image generation has emerged as a highly dynamic and burgeoning
field within Artificial Intelligence Generated Content (AIGC) in the modern
technological landscape, pervading numerous facets of our daily lives. Stable
Diffusion is a form of AIGC. Based on the diffusion model of deep learning, it
generates images by gradually adding noise and then reverse denoising. Compared
with the traditional text-to-image method, Stable Diffusion has a significant
improvement in picture diversification, control, and economic benefits. Users can
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customize the development process based on their own needs. For instance, they can
adjust the model structure and training parameters to better adapt to various
application scenarios and requirements. The functions of text - to - image can be
applied to a wide range of industries, including game development, illustration
design [1], healthcare [2], and e-commerce [3].

In Stable Diffusion, UNet and random seeds are two vital components. They
respectively control the style and image segmentation of the image, both of which
are significant aspects of the field of image generation. An important role in Stable
Diffusion is played by UNet, an important neural network architecture known for its
proficiency in image-to-image translation tasks. UNet acts as a noise predictor,
progressively removing noise from the image during the back diffusion process.
Through a series of convolutional layers, upsampling, and downsampling operations,
the input noisy image is processed to predict and subtract the noise to produce a
result closer to the original image. Fernando et al. [4] show in their research that
UNet is characterized by its unique U-shaped structure and is good at capturing both
low- and high-level features of images. It operates by conditionally processing the
random latent image representation in an iterative denoising manner, leveraging the
text embeddings as guiding cues. The Variational Autoencoder (VAE) is a
generative model mainly used to learn the latent representation of data and generate
new data samples through these representations. It consists of two parts: the encoder
and the decoder, which are used to process the images generated afterward. Specific
functionality is illustrated in Fig 1.

The random seed in Stable Diffusion critically influences the generated
image’s style and content: varying the seed produces distinct synthesis results. Xu
et al. [5] showed that the basic operational framework of text-to-image generation is
as follows: large-scale models first ingest potential and text prompts as their main
inputs. The latent seed then acts as a catalyst for the generation of an initial,
randomly configured latent image representation. Parallel to this, in a study by Luo
et al. [6], it was shown that text prompts were converted into text embeddings by
using a Contrast Language Image Pre-training (CLIP) text encoder.

However, to generate high-resolution images, computer computation needs
to be greatly increased. Research by Li et al. [7] shows that the main text-to-image
method, Stable Diffusion, uses the Latent Diffusion Models (LDMS) method and
usually requires a large dataset to build the model. Although the model performs
well in most cases, there are still some limitations and challenges. LDMS still cannot
handle high-resolution images. Pan et al. [8] showed that LDMS may be limited by
its reconstruction ability in tasks requiring high precision. At the same time, since
the diffusion model needs a lot of function evaluation and gradient calculation during
the training process, the algorithm needs to be further optimized in practical
application to improve efficiency. Additionally, since LDMS is a probability-based
model, more research is needed to explore how to effectively utilize prior knowledge
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to improve model performance. The purpose of this paper is to reduce the memory
required by the block algorithm.
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Fig. 1. Stable Diffusion framework diagram.

In general, the following limitations of traditional text-to-image generation
methods can be identified:

When Stable Diffusion is used to generate high-precision pictures, the
phenomenon of stashing or even memory explosion often occurs. Yariv et al. [9]
found that Stable Diffusion occupied too much GPU memory. For Stable Diffusion,
due to the use of large models, powerful encoders and decoders are used for data
transmission, mainly using large models like CLIP. Research by Ting et al. [10]
shows that it uses a Latent Diffusion Model (LDM). Subban R et al. found that in
terms of image generation, although VAE can be used to compress images to
appropriately reduce the GPU memory required for image generation, after
decompression, the details of the image are rough and the image quality is reduced,
as shown in Fig. 2. When the effect of the generated image is not obvious, it is often
necessary to redraw the image. Chu et al. [11] found that AIGC redraws cause image
distortion. In Hu et al. [12]. The study found that the less scope to redraw, the image
is closer to the original image, the less the Al play space. Zhang et al. [13] found
that this will greatly increase the possibility of image distortion.

Three more areas for innovation have been proposed based on these two
points of shortcomings. We intend to add a tile block algorithm to the magnification
model to reduce the memory pressure in the text-to-image process. In order to
achieve the purpose of generating high-definition pictures with smaller memory.
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Not using VAE Using VAE

Fig. 2. The difference when using traditional VAE.

In this work, we make the following contributions:

The tiling algorithm is combined with the magnification algorithm to reduce
running GPU memory. The regional Block module, Residual Swin Transformer
Block (RSTB) module and Swin Transformer Layer (STL) module are introduced,
which emphasize more on the overall coordination and generation speed of the
image.

We use ControlNet to limit the randomness of images. The minimal cell
structure of the ControlNet model has two zero convolution modules whose weights
and biases are initialized to zero. This allows ControlNet to fine-tune training on the
capabilities of the original Stable Diffusion base model. The Recolor model in
Convolutional Neural Network (CNN) and ControlNet combined with the tiling
algorithm is used to achieve fine recoloring of black and white photos. We
implement AIGC on an embedded device by deploying Stable Diffusion in the cloud.
Implementing the magnification model based on AIGC in the cloud can enhance
image generation speed and reduce the consumption of computer GPU memory.

2. Related Works
2.1 Selective Magnification Algorithm

Xu et al. [14] found that the main purpose of the image amplification
algorithm is to recover high-resolution details from low-resolution images. These
magnification algorithms are widely used in fields such as medical imaging, satellite
remote sensing, video processing, and image processing. Liu et al. [15] found that
common amplification algorithms can be divided into two categories: one is
traditional image magnification algorithms, such as Lantent, Lanczos, Nearest, etc.;
the other is Al-based image magnification algorithms, such as 4x-UltraSharp,
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BSRGAN, ESGAN, etc. Rombach et al. [16] found that the current tiling work of
general image amplification is usually achieved through a 4x-UltraSharp algorithm
combined with a tiling algorithm, which has an obvious enhancement and
amplification effect on images, but there are still shortcomings in details and
computing speed. Therefore, this paper intends to compare Lantent, Lanczos,
Nearest, ESGAN-4x, SCuNET, SCuNET PSNR, SwinIR 4x, 4X-ultrasharp and
other amplification algorithms with TESD models combined with tiling algorithms.
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Fig. 3. Flowchart of TESD specific work on the cloud.
2.2 Zero Convolutional Layer

The research of Li and Wang et al. [17], indicates zero convolution layer is
often used to eliminate the influence of random noise on the image generation
process and prevent harmful noise from interfering with hidden states. Many control
network models are mainly used to control human posture, facial expression, edge
redrawing, etc. In the study of Wu et al. [18], this was found to be used in a control
network model called recolor. The main principle of combining Recolor with
ControlNet is to enter an additional condition into the neural network block. It then
makes a copy of the same parameters as the original block for training. This trainable
copy takes the external condition vector as input and uses the large pre-trained
recolor model to build a powerful back to handle the various input conditions. In the
study of Tong et al. [19], zero convolution has been shown to protect and eliminate
noise, thus significantly improving the quality of the generated image.

- = -
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2.3 Cloud Computing

In the research of Rao et al. [20], it is shown that the technical architecture
of cloud computing is usually divided into the following layers: hardware layer
(physical layer), including servers, storage devices, network hardware, and other
infrastructure, providing computing and storage resources. In the study of Gui et al.
[21], through virtualization technology, physical resources are abstracted into virtual
resource pools, so that multiple users can share the same group of physical hardware
and improve resource utilization. Resource management refers to the scheduling,
allocation, and management of resources, including the dynamic adjustment of
computing resources, storage resources, and network resources. The service layer
provides laaS, PaaS, SaaS, and other services to meet the needs of different users.
Application layer: the application or service that the user uses directly, usually
through a Web interface or API. The clouds we use in our daily lives include SaaS,
PaaS, and LaaS. Due to the large number of files required for Stable Diffusion
deployment and the large project, we choose SaaS for local deployment here. In the
study of Gao et al. [22], it is shown that the ordinary Text-to-image graph project
relies on strong computing power support, which has a huge demand for cloud
computing resources. Especially for the training and inference of large-scale models,
many GPU resources are required, resulting in computational problems.

3. Proposed Methods

The Tile-based extension model in the Stable Diffusion (TESD) network
architecture proposes an innovative multi-level feature fusion architecture, and its
core innovation point lies in the three collaborative designed modular components.
It mainly includes three key elements: shallow feature extraction, deep feature
extraction and high-quality image reconstruction. Compared with the traditional
extended model, TESD introduces hierarchical Transformer in the diffusion super-
resolution model for the first time to enhance the ability of cross-block global
relationship modeling. Flowchart of TESD specific work on the cloud is depicted in
Fig. 3. The key features are extracted from the prompt words through the CLIP
model, combined with random seeds, and added to the UNet. The image is processed
by dividing it into blocks, retaining the required features, and generating the image
through the TESD amplification model and zero convolution.

3.1 TESD Amplification Module

Shallow feature extraction uses only one convolutional layer for feature
extraction. A 3x3 convolutional high-frequency signal filter (HSF) was used to
extract shallow features. The next step is deep feature extraction. The deep feature
extraction module is composed of several residual Swin Transformer Blocks (RSTB)
and convolutional blocks, and its specific structure is shown in Fig. 4., firstly, the
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feature map of the shallow feature extraction module is divided into multiple non-
overlapping patches embedded and then processed by several series residual Swin
Transformer blocks. These blocks recombine multiple non-overlapping patch
embeddings into one output with the same resolution as the input feature map.
Secondly, a convolution layer outputs the result, with residual joins introduced
inside each RSTB. In the residual RSTB, STL refers to the Swin Transformer layer,
the structure of which is also shown in Fig. 4., it starts with a layer normalization
layer, followed by a multi-head self-attention module. A residual connection is
introduced at the end of the multi-head self-attention, followed by another layer of
normalization. Finally, it passes through a Multilayer Perceptron (MLP), again
introducing a residual connection at the end.
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Fig. 4. TESD amplification module architecture diagram.
3.2 Zero Convolution Layer Combination

Combining the tiling magnification algorithm and zero convolution to restore
black and white photos using Al. For this, we will need a ControlNet model called
recolor, which works by first using a preprocessor to extract the grayscale image,
then dividing the image into various regions through the tiling algorithm and
recognizing each region to apply color. This model is the main one used in AIGC
for coloring, and incorporating zero convolution and the tiling magnification
algorithm can effectively reduce the interference of noise on image generation. The
tiling magnification algorithm model can make the generated image clearer. We can
also use the same quantitative evaluation method as mentioned above, first fixing
the random seed and prompt words, then varying the zero convolution and tiling
magnification algorithm, comparing the fineness of the images generated under
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different conditions to find the best combination for restoring images. The specific
structure is shown in Fig. 5.
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Fig. 5. Zero convolution structure diagram.
3.3 Cloud Deployment

In the context of the experimental design framework, the initial phase of
establishing the environment emphasizes the selection of a Stable Diffusion
environment configuration option, as offered by the Alibaba Cloud controller. This
selection forms the foundation for constructing the fundamental scaffold of Stable
Diffusion. However, it is important to recognize that the simplicity of this framework
restricts its operational scope to the execution of basic text-to-image transformation
tasks. Should the requirement emerge to expand functionality and meet more
complex experimental demands, the file management component of the cloud
project is activated. By uploading the necessary code files related to the desired
features into their respective directories, the capabilities of the cloud Web UI are
bolstered. This advancement enables the experimental setup to manage a broader
spectrum of tasks and inquiries that are crucial to the overarching research objectives,
ensuring a smooth and comprehensive experimental process.

4. Experiments
4.1 Experimental Settings

Dataset: In the present study, we utilized super-resolution reconstruction
datasets, namely DIV2K and Flickr2K. By adhering to a unified and consistent
training configuration protocol, we incorporated 1,485 samples derived from the
DIV2K dataset in conjunction with 700 samples from the Flickr2K dataset to form
our comprehensive training set. This strategic combination of datasets was selected
to ensure a diverse and representative sample pool, thereby enhancing the robustness
and generalizability of our experimental results. We can also use more diversified
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data sets to train this model. It is recommended to use BSD100, Urban100, and other
multi-style and larger data sets for training. The resulting model will be improved in
accuracy and style.

Evaluation Metrics: For comprehensively and precisely evaluating the
performance of image phase consistency and feature extraction, a battery of eleven
well-recognized and established metrics was adopted, namely BRISQUE, DISTS,
DSS, CLIP-IQA, FSIM, GMSD, HaarPSI, IW-SSIM, LPIPS, MDSI, and PSNR.
The higher the values of FSIM, HaarPSI, IW-SSIM, PSNR and other metrics, the
clearer the image. The lower the values of BRISQUE, DISTS, DSS, CLIP-IQA,
GMSD, LPIPS, MDSI and other metrics, the clearer the generated image.

Comparison Models: The trained tiled upscaling model was systematically
benchmarked against five traditional and commonly used upscaling models, namely
Latent, Lanczos, Nearest, SCUNET, and SwinIR. The training and testing procedures
of these models were carried out in strict accordance with the default settings as
meticulously described in their corresponding original research publications. In
situations where the source code was not publicly accessible, we resorted to the
published experimental outcomes and results for the sake of comparative analysis.
This approach ensures a fair and objective comparison, allowing for a more accurate
assessment of the relative strengths and weaknesses of the tiled upscaling model in
relation to its counterparts.

Configuration: The experimental environment is configured with a
Windows 11 x64 operating system. The Java development kit JDK 1.8 is installed.
PyCharm is used as the development tool. The system is powered by an Intel(R)
Core (TM) 17-9750H CPU @ 2.60GHz, and an NVIDIA GeForce GTX 1650 Ti
graphics card. It has 8 GB of memory available for the experiment.

Experimental Parameters: The experimental setup is configured with
specific parameters. The GPU_IDS is set as [0, 1] to utilize multiple GPUs for
enhanced computational performance. A scale of 2 is applied, which likely affects
the size or resolution transformation of the data. The number of channels is 3,
typically corresponding to the RGB color model. Keywords such as "Boy white
shirt" and "friendly smile" are defined to guide or evaluate certain aspects of the
experiment related to image generation or analysis. The random seed number 35467
is used to ensure the reproducibility of results. The sampling method DPM+2M
Karras is selected, with a resampling amplitude of 0.7 to control the sampling
process. The scaling factor of the amplification algorithm is 2, and the image width
and height are both set to 512 to define the dimensions of the images involved in the
experiment.

4.2 Experimental Results

4.2.1 Select magnification algorithm:

In Experiment One, the SwinIR framework was selected for code
refinement due to its functional comprehensiveness. A tiling algorithm was
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integrated into the original code to optimize model processing and training. For
image segmentation, key parameters such as width, height, and aspect ratio were
precisely calibrated. Rectangles represented as tuples were generated and sorted by
width in descending order. Through an iterative loop, they were positioned to
prevent image distortion. A verification function was developed to assess space
availability at (x, y) for rectangles of specific dimensions. If any point exceeded the
boundary or was occupied, a negative result was returned. An auxiliary function
marked and validated occupancy status to calculate the unoccupied area. Given the
low-memory computer, training parameters were minimized. The incorporation of
the tiling algorithm enhanced image restoration efficiency and reduced memory
demands for resolution improvement. Experimental results are shown in Fig. 6.

Input babyx2_10000 babyx2_15000 babyx2_20000 babyx2_25000

2 2

babyx2_30000 babyx2_35000 babyx2_40000 babyx2_45000 babyx2_50000

Fig. 6. Training model comparison chart.

The model with the best training effect is put into Stable Diffusion, and the
fixed keywords and seeds are input. The result is a comparison like the one shown
in Fig. 7.
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Fig. 7. Magnified model comparison diagram.

From the overall processing of the image, it can be observed that after
incorporating tiled diffusion, the resolution of individual images becomes higher and
clearer, meeting the basic requirements for generating detailed images on a small
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computer with 4GB of memory. Regarding the overall style of the image, we notice
that except for Latent [23], the pictures from the overall processing of the image, it
can be observed that after incorporating tiled diffusion, the resolution of individual
images becomes higher and clearer, meeting the basic requirements for generating
detailed images on a small computer with 4GB of memory. Regarding the overall
style of the image, we notice that except for Latent, the pictures processed by other
upscaling algorithms appear more refined in style. Observing the clothing details of
the characters, we find that the images upscaled by the 4x-UltraSharp algorithm lack
detail and shading compared to those processed by Nearest [24], ScuNet [25], and
ESRGAN [26] algorithms, which highlight details in clothing and shadow aspects.
In terms of facial details, Lanczos [27] and ScCuNETPSNR [28] show greater clarity.
Examining the depiction of muscle lines in the hands, it is evident that ESRGAN
suffers from significant blurring of the hand area, whereas the 4x-UltraSharp
algorithm provides very realistic hand muscle lines.

We will evaluate the effects of different scale-up models from the following
several indicators. LPIPS [29] is a perceptual similarity measurement method based
on deep learning. It extracts deep representations in the image feature space through
a pre-trained CNN to quantify the perceptual differences between two images. The
core idea is to simulate the sensitivity of the human visual system (HVS) to image
structure and high-order semantic features.

DSTS [30] is a no-reference (NR) image quality assessment index based on
the statistics of the local structure direction of the image. This method quantifies the
degree of structural confusion caused by distortion by calculating the Directional
Statistics of the image gradient field. FSIM [30] is a full-reference image quality
index based on phase consistency and gradient amplitude. Phase consistency
characterizes the stability of structural features in an image that are not affected by
illumination changes, and gradient amplitude describes the significance of local
structures.

MS-SSIM [30] is a multi-scale extension of the Structural Similarity Index
(SSIM), which improves the evaluation performance by simulating the multi-scale
perception characteristics of the human visual system. HaarPSI [30] is a full-
reference image quality index based on Haar wavelet coefficients, which assesses
distortion by simulating the sensitivity of the visual system to edge information.
GMSD [30] is a full reference image quality index based on the statistics of gradient
amplitude similarity, quantifying distortion by calculating the spatial fluctuation of
local gradient similarity. MDSI [30] is a full-reference index that integrates gradient,
color and contrast information and comprehensively assesses distortion through
multi-feature similarity bias. Evaluations of the images generated by the upscaling
models are sequentially carried out, with specific evaluation data shown in Table 1
below.
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Table 1
Model Data Comparison Table (The SWINIR that we use with the best results is already in bold)
Scale Algorithms Latent Lanczos | Nearest Swinir ScuNETPSNR
LPIPS 0.2912 0.2779 0.1769 0.3609 0.412
ContentLoss 1456.2516 | 840.1451 | 729.5243 | 1131.7114 1063.179
PSNR index 19.8546 23.414 23.4746 22.3049 22.6149

DISTS 0.1632 0.1386 0.0984 0.1532 0.1703

DSS index 0.1665 0.2554 0.4141 0.2104 0.217
loss 0.8335 0.7446 0.5859 0.7896 0.783

FSIM index 0.8128 0.8886 0.9031 0.8656 0.8648
loss 0.1872 0.1114 0.0969 0.1344 0.1352
GMSD index 0.2299 0.1702 0.1565 0.1865 0.1874
loss 0.2299 0.1702 0.1565 0.1865 0.1874
HaarPSI index 0.3885 0.5575 0.5695 0.5261 0.5224
loss 0.6115 0.4425 0.4305 0.4739 0.4776

index 0.6259 0.7853 0.8198 0.7449 0.7391

TW-SSIM loss 0.3741 0.2147 0.1802 0.2551 0.2609
MDSI index 0.4316 0.3762 0.3663 0.3989 0.3949
loss 0.4316 0.3762 0.3663 0.3989 0.3949
index 0.7718 0.8645 0.8947 0.8337 0.8304

MS-SSIM loss 0.2282 0.1355 0.1053 0.1662 0.1696
index 0.2304 0.1684 0.1547 0.186 0.187

MS-GMSDe loss 0.2304 0.1684 0.1547 0.186 0.187

4.2.2 Zero convolution layer combination

In the experimental paradigm of ControlNet, a sequence of meticulously
designed configurations was executed. Specifically, the control weight parameter
was systematically adjusted to a value of 1, while the start step and end step were
deliberately set to 0 and 1, respectively. Concurrently, the Gamma Correction factor
was precisely tuned to 1. Subsequently, the TESD model was incorporated into the
experimental framework. The resultant restoration efficacy on black and white
photographic images is visually demonstrated in Fig. 8.

Old black and white Photo Processed Photo
Fig. 8. Black and white photo restoration comparison.
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Through a comparative analysis of the figure, it becomes apparent that
discernible coloring artifacts are present. When contrasted with the coloring
manifestations in other figures, the coloring impact of the current model is more
prominent in the context of landscape elements. In the case of small-scale images, a
more precise and accurate coloration is attained. Following the incorporation of the
TESD model, a substantial improvement in the image resolution was recorded,
thereby leading to a more distinct and clearer visual rendition of the aged
photographic materials.

4.2.3 Cloud computing

The TESD model was deployed in the Alibaba Cloud environment. The
rationale behind this deployment lies in the model's unique approach of subdividing
the target image into blocks, which effectively curtails the computational load on
the cloud server. The integration of the Tiled module with the RSTB and STL
modules within this cloud-based framework enables the generation of images with
enhanced clarity. Moreover, this combination also leads to a notable improvement
in the generation speed. The generation effect of the TESD model on the cloud
computing interface is shown in Fig. 9. In the figure, it can be found that the
efficiency and quality of generating pictures have been improved after adding the
TESD model to the cloud framework.

Not using TESD Using TESD
Fig. 9. Cloud computing generated effect comparison diagram.

5. Conclusion

In the current technological landscape, AIGC technology has emerged as a
significant area of research and application. It holds great promise and potential for
continuous growth and refinement. The versatility of AIGC technology, which
encompasses a wide range of techniques and algorithms, allows it to permeate and
make an impact in multiple industries and aspects of our lives. For instance, in the
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field of content creation, it can assist in generating text, images, and even videos,
streamlining the creative process and potentially opening up new avenues for artistic
expression and communication.

When considering the specific application of image processing, the
incorporation of tiling algorithms into the magnification model represents a crucial
advancement. This innovation has led to a substantial elevation in the accuracy and
visual fidelity of image repair. By subdividing the image into smaller, more
manageable tiles, the model can more effectively allocate computational resources
and handle complex image structures. As a result, not only is the quality of the
restored images enhanced but also the memory requirements are significantly
reduced. This achievement is of particular importance as it addresses one of the key
challenges in modern computing, especially when dealing with large-scale image
datasets or resource-constrained environments. TESD can be combined with other
advanced technologies in the future. Such as processing high-definition video
generation, improving video accuracy, or real-time Al image generation. These can
be applied to future design work, generate a design drawing with high precision, and
regenerate the corresponding video according to the design drawing.

This development in AIGC technology not only offers immediate benefits in
terms of image processing but also paves the way for future exploration and
innovation in the broader realm of artificial intelligence within the visual domain. It
also encourages interdisciplinary collaborations between computer science,
mathematics, and the visual arts, as the boundaries between these fields continue to
blur in the pursuit of more advanced and intelligent image-processing techniques.
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