

CHARACTERIZATION OF O₂ TRANSFER CAPABILITY IN THE AEROBIC BIOREACTOR FOR CAROTENOID PIGMENTS FORMATION

Camelia UNGUREANU¹, Mariana FERDEŞ², Alina MIHALCEA³, Ana Aurelia CHIRVASE⁴

Partea experimentală a fost realizată în scopul de a obține un amestec de pigmenti carotenoidici printre care și torularhodina (considerat ca fiind un antioxidant util) într-un bioprocес aerob utilizând drojdia Rhodotorula rubra ICCF 209. S-a demonstrat necesitatea unui exces ridicat de oxigen dizolvat în fază de creștere (~50% din valoarea de saturație) în bioreactorul aerob.

Pentru a cuantifica capacitatea de transfer interfazic al oxigenului în condițiile de parametri de agitare-aerație studiați în bioreactor este importantă cunoașterea coeficientului volumetric de transfer de masă, k_{La}.

Experimentele au fost efectuate într-un bioreactor (Bioengineering, AG), 100 L (42 L volum util) cu parametrii controlați și înregistrați de computer.

Pentru determinarea k_{La} s-a aplicat metoda dinamică (apă, fără reacție), cu variația parametrilor: turăția și debitul de aer disipat în mediu (viteza superficială a gazului).

The experimental work done to prepare carotenoid pigments mixture with torularhodin content (considered as a useful antioxidant) in aerobic bioprocess with Rhodotorula rubra ICCF 209 yeast demonstrated the need of high excess of dissolved O₂ during the phase growth (~50% of the saturation value) in the aerobic bioreactor.

In accordance to this finding it was needed to characterize the O₂ transfer capability of the bioreactor by k_{La} coefficient determination.

The experiments were carried out in 100 L (42 L working volume) bioreactor (Bioengineering AG), with computer-controlled and recorded parameters.

The k_{La} value was dynamically determined under model condition (water, no reaction) with variation of the parameters-stirrer speed and gas flow rate.

Keywords: *Rhodotorula rubra, k_{La}, carotenoid pigment, bioprocess*

¹PhD eng., University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca and University POLITEHNICA of Bucharest, Romania, e-mail: ungureanucamelia@gmail.com

² Lecturer, PhD eng., Dept. of Chemical Engineering, University POLITEHNICA of Bucharest, Romania, e-mail: marianaferdes@yahoo.com

³ PhD student, National Institute of Research and Development for Microbiology and Immunology “Cantacuzino”, Romania, e-mail: alinamihalcea2003@yahoo.com

⁴ PhD eng., Dept. of Chemical Engineering, University POLITEHNICA of Bucharest, Romania, e-mail: achirvase@gmail.com

1. Introduction

Carotenoids are important natural pigments, displaying yellow, orange and red colours, widely found in micro organisms and plants. Industrial carotenoid pigments such as β -carotene and torularhodin are used as natural food colorants or food additives. Several studies have shown that carotenoids combat various types of cancer and other diseases due to their antioxidant and/or provitamin A properties [1].

Facing the growing economic significance of carotenoids, due to their use as food colorants, nutritional supplements, in cosmetics or in human therapy as antioxidants, much interest has been dedicated to new supplies of this class of pigments. In particular, the development of carotenoid-producing bioprocesses is regarded as a competitive solution, as it can provide important quantities of pigments such as torularhodin and β -carotene produced by *Rhodotorula rubra* or astaxanthin from *Phaffia rhodozyma* without facing the typical problems generated by the weather dependency of the agriculture production.

Filamentous fungi, yeasts and some species of bacteria, algae and lichens can produce carotenoids. Among microbial sources of carotenoids, yeasts such as *Sporobolomyces* and *Rhodotorula* are of commercial interest [2-4].

The experimental work done to prepare carotenoid pigments mixture with torularhodin content (considered as a useful antioxidant) in aerobic bioprocess with *Rhodotorula rubra* ICCF 209 demonstrated the need of high excess of dissolved O₂ during the growth phase (~30 - 50% of the saturation value) in the aerobic bioreactor, in agreement with other researchers' findings [5-6].

In accordance to this idea, it was necessary to characterize the O₂ transfer capability of the bioreactor by k_{La} (the volumetric coefficient of O₂ transfer) coefficient determination.

The oxygen transfer represents the most important characteristic to be considered for the design and operation of the bioreactor mixing-sparging devices. It can be described and analyzed by using k_{La} . The k_{La} values are influenced by a lot of factors, such as: (a) geometrical and operational characteristics of the vessels; (b) media composition: (c) type, concentration and morphology of cultivated micro organism [7].

2. Experimental set-up

The experiments were carried out in 100 L (42 L working volume) bioreactor (Bioengineering AG), with computer-controlled and recorded parameters.

The bioreactor has mechanical stirring (Rushton impeller) and the main parameters (temperature, pH, mixing speed, air flow rate) are controlled, but foam level and dissolved oxygen are only monitored.

The k_{LA} value was dynamically determined under model condition (water, no reaction) with the variation of the parameters-stirrer speed and gas flow rate. The saturation curves obtained with the pO₂ electrode continuous determination system are used to determine the k_{LA} value.

The k_{LA} coefficient was measured based on the balance equation of the O₂ in the liquid phase by the application of the dynamic pressure method (as a measuring method which is a priori less sensitive to the above limitations).

3. Results and discussions

3.1. Determination of the k_{LA}

The rate of oxygen transfer across the gass-liquid interface may be expressed using a mass transfer coefficient which characterizez the liquid resistance to transfer.

The rate of oxygen transfer from air bubbles to liquid in a batch stirred bioreactor is given by the following relationship:

- for oxygenation:

$$\frac{d(V_L \cdot C_o)}{dt} = k_L a(C_{oi} - C_o) \cdot V \quad (1)$$

- for de-aeration (deoxygenation):

$$\frac{d(V_L \cdot C_o)}{dt} = k_L a(C_o - C_{oi}) \quad (2)$$

or, after integration

- for oxygenation:

$$\ln \frac{C_{oi} - C_o}{C_{oi} - C_{o,o}} = - \frac{k_L \cdot a}{1 - \varepsilon_G} \cdot t \quad (3)$$

- for de-aeration (deoxygenation):

$$\ln \frac{C_o}{C_{o,o}} = - \frac{k_L \cdot a}{1 - \varepsilon_G} \cdot t \quad (4)$$

where a is the bubble surface area per unit volume of the gas-liquid mixture (m²/m³) and ε_G is the gas holdup (i.e., the volume fraction of the gas-liquid mixture occupied by yhe gas) [8]. Thus, (1- ε_G) is the volume fraction of the gas-liquid mixture occupied by the liquid.

V – volume of dispersion, L ; $V_L = V(1-\varepsilon_G)$, L

C_{oi} – the saturation concentration of the oxygen in the liquid, g/L, mol/L;

$C_{o,o}$ - initial concentration of oxygen in water before starting the aeration (oxygenation) or the de-aeration (deoxygenation) experiment.

k_L – the volumetric coefficient of O₂ transfer, m/s .

The change in dissolved oxygen concentration, C_o in the liquid phase was detected using a pO_2 electrode.

The saturation concentration of the oxygen in the liquid, C_{oi} was obtained from the Henry's Law [9].

Also, the oxygen composition in the liquid immediately adjacent to the gas-bubble interface can be considered constant, at C_{oi} (the value for air-saturated water) in the oxygenation case and equal to zero for the deoxygenation case.

Table 1

The studied domain of stirrer speed and air flow

n, min^{-1}	$D_{VG},$		Temperature,	
	L/min	P, atm	$^{\circ}\text{C}$	ε_G
300	40	1,5	37	0,076
250	30	1,5	37	0,0467
200	20	1,5	37	0,025

A first objective is to evaluate the group of parameters, $\frac{k_L \cdot a}{1 - \varepsilon_G}$ from the slope of $\ln(C_{oi} - C_o)$ versus time of the $\ln C$ versus time plots.

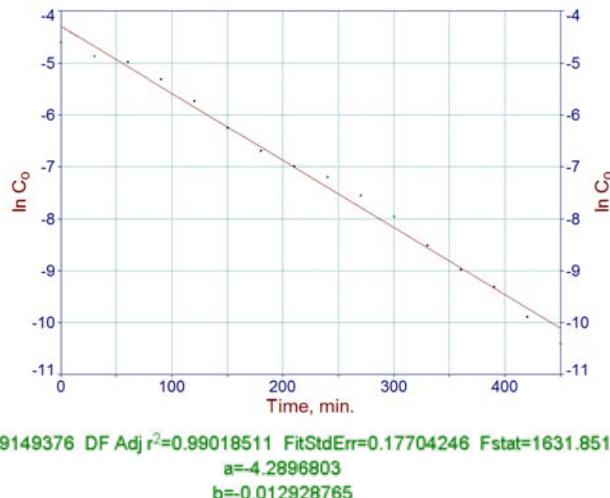


Fig. 1. $\ln C$ versus t plot for deoxygenation at 40 L/min nitrogen flow rate

Fig. 1 is a plot of $\ln C$ versus t for deoxygenation runs at the corresponding nitrogen flow rate of 40 L/min. These plots are also linear conforming to Eq. 4.

and indicate an increase in $\frac{k_L \cdot a}{1 - \varepsilon_G}$ with an increase in the gas flow rate.

Fig. 2 is a plot of $\ln(C_{oi}-C_o)$ versus t (Eq. 3) for the oxygenation of water. The plot is linear and, conform to Eq. 3, has a negative slope. The slope for the large gas flow rate is more negative than it was expected because $\frac{k_L \cdot a}{1 - \varepsilon_G}$ increases with an increase in the Reynolds number.

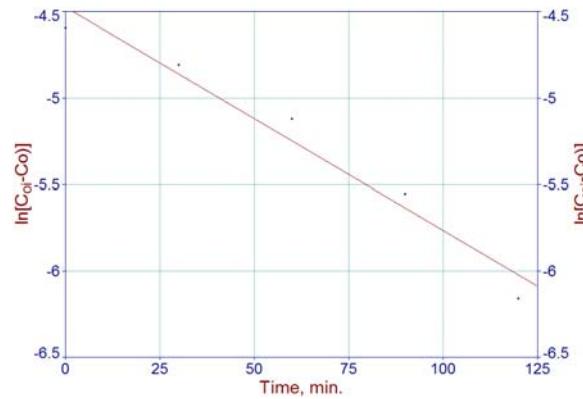


Fig. 2. $\ln(C_{oi}-C_o)$ versus t plot for oxygenation at 40 L/min air flow rate

Fig. 3 is a plot of $\ln C$ versus t for deoxygenation runs at the corresponding nitrogen flow rate of 30 L/min. These plots are also linear, conforming to Eq. 4. and indicate an increase in $\frac{k_L \cdot a}{1 - \varepsilon_G}$ with an increase in the gas flow rate.

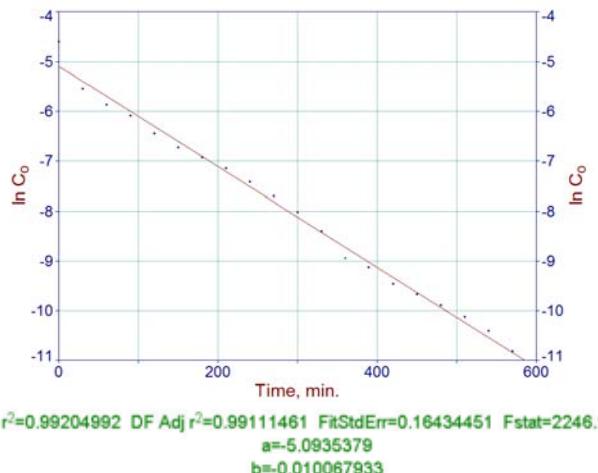


Fig. 3. $\ln C$ versus t plot for deoxygenation at 30 L/min nitrogen flow rate

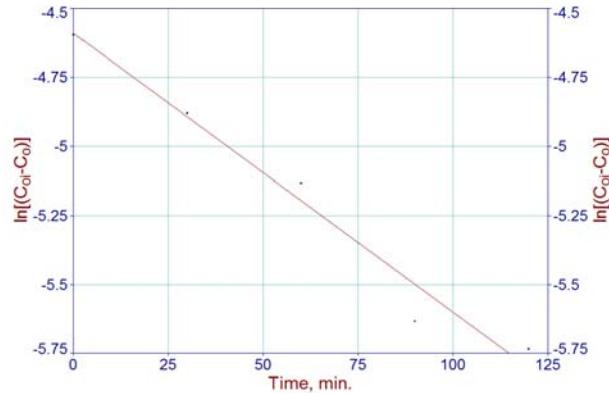


Fig. 4. $\ln(C_{oi}-C_o)$ versus t plot for oxygenation at 30 L/min air flow rate

Fig. 4 is a plot of $\ln(C_{oi}-C_o)$ versus t (Eq. 3) for the oxygenation of water. The plot is linear and conform to Eq. 3, having a negative slope.

Fig. 5 is a plot of $\ln C$ versus t for deoxygenation runs at the corresponding nitrogen flow rate of 20 L/min. These plots are also linear conforming to Eq. 4.

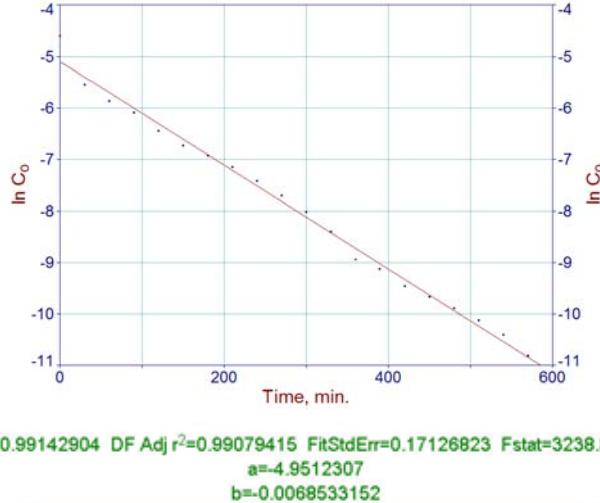


Fig. 5. $\ln C$ versus t plot for deoxygenation at 20 L/min nitrogen flow rate

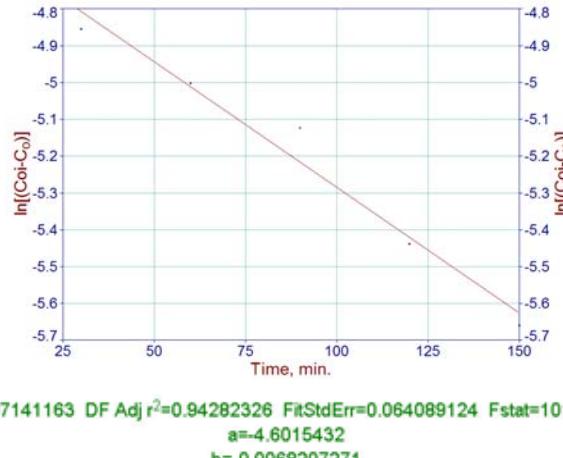

Fig. 6. $\ln(C_{oi}-C_o)$ versus t plot for oxygenation at 20 L/min air flow rate

Fig. 6 is a plot of $\ln(C_{oi}-C_o)$ versus t (Eq. 3) for the oxygenation of water. The plot is linear and conform to Eq. 3, having a negative slope.

Table 2
Values of k_{La} determined for the studied domain of stirrer speed and air flow

n, s^{-1}	$D_{VG}, L/min$	k_{La}, s^{-1}
5	40	0.0129
4.17	30	0.0097
3.33	20	0.0067

3.2 Power consumption

The specific power consumption (P/V_1) is the parameter which indicates the turbulence degree and media circulation in bioreactor and quantifies the contributions of the rotation speed and the power input. Moreover, as it was mentioned in the literature, the energy dissipated by mechanical agitation is not dependent on the stirrer geometry. The Reynolds number defines the turbulence degree of the agitated liquid and is done by the relationship:

$$Re = \frac{\rho_L n d_a^2}{\eta_L} \quad (5)$$

where:

- diameter of the circle described by the stirrer, $d_a = 0.2 \text{ m}$;
- stirrer speed, n, s^{-1}

- the liquid density, ρ_L and the liquid viscosity, η_L for water at 37 °C
- air flow, D_{VG} , L/min

For $Re > 10000$ [10]

$$P = 6\rho_L n^3 d_a^5 \quad (6)$$

and one can calculate P_g - the power consumption for the aerated medium as follows:

$$\lg \frac{P_g}{P} = -192 \left(\frac{d_a}{D} \right)^{4.38} (\text{Re})^{0.115} \left(\frac{d_a n^2}{g} \right)^{1.96 d_a / D} \frac{D_{VG}}{d_a^3 n} \quad (7)$$

where: $V_l = 42$ L, liquid volume; $D = 0.4$ m, tank diameter; $g = 9.81$ m/s²;

The characteristic relationship obtained in accordance with the experimental data is:

$$k_{La} = 0.0035 (P_g / V_l)^{0.42} (v_G)^{0.4} \quad (8)$$

where: $v_G = \frac{4D_{VG}}{\pi D^2}$, gas velocity, m/s in agreement with other researchers' findings [11-13].

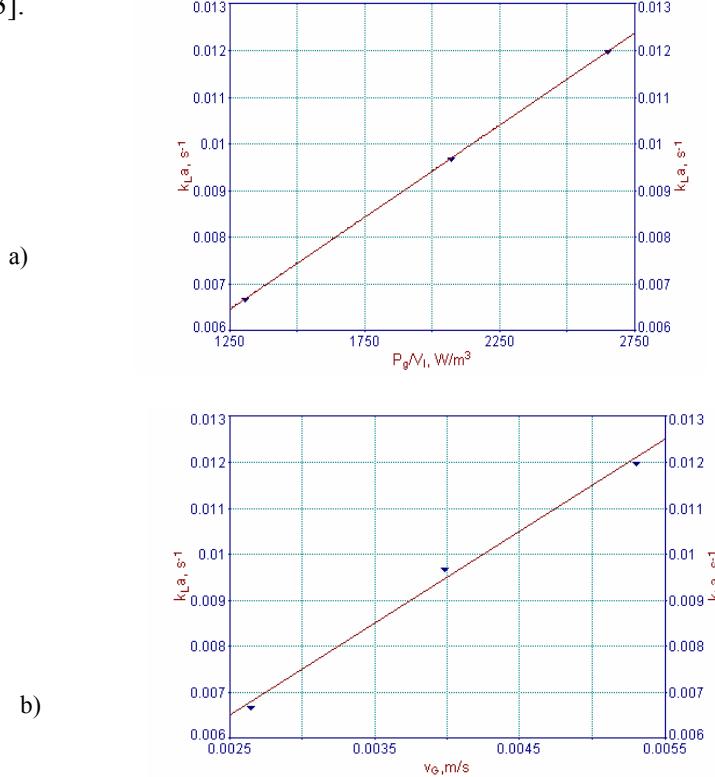


Fig.7. Influence of (a) specific power input and (b) superficial air velocity on volumetric coefficient of oxygen transfer

The k_{La} variation is presented in the Fig. 7 function of the specific power input and the superficial air velocity for 1,5 atm pressure and 37 °C.

For a better characterization of bioreactor performance from the point of view of oxygen transfer, the term of oxygen transfer efficiency, E_{O_2} , [14] was introduced and defined as:

$$E_{O_2} = \frac{k_{La}}{P_g/V} \quad (9)$$

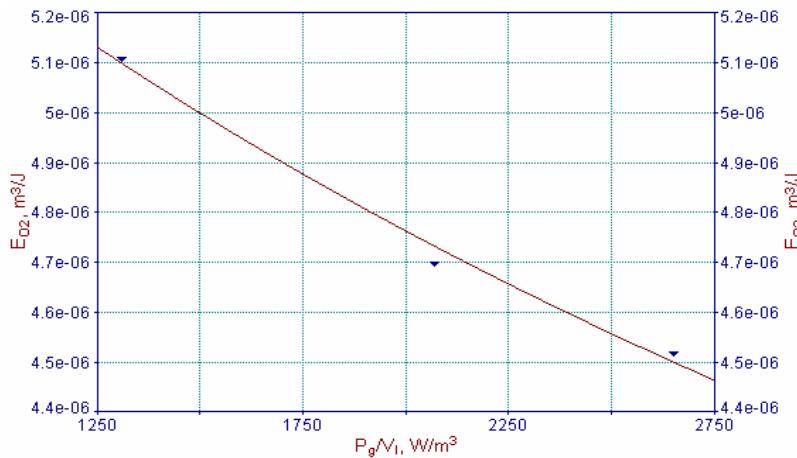


Fig. 8. Influence of specific power input on oxygen transfer efficiency

At specific power consumption over 1000 W/m³, the oxygen transfer efficiency is drastically reduced.

4. Conclusions

A characterization of O₂ transfer capability in a mechanically stirred aerobic bioreactor for carotenoid pigments formation was experimentally performed.

The dependence of k_{La} on the specific power input and superficial air velocity for different agitation speeds and gas flow rates demonstrated a limited efficiency of the aerobic bioreactor from the point of view of oxygen transfer capability. This finding is demonstrated by the low values of the exponents correlating k_{La} with the mentioned parameters in the relationship (6). Consequently, it is recommended to apply higher aeration parameters ($n = 300$ min⁻¹; $D_{VG} = 40$ L/min) for the studied bioprocess.

At the same time, at the specific power consumption over 1000 W/m³, the oxygen transfer efficiency is drastically reduced.

Acknowledgments:

The work was financially supported by the project POSDRU/89/1.5/S/52432 from 1.04.2010 - Institutional organization of a postdoctoral school of national interest "Applied biotechnology with impact in the Romanian economy"; the project was cofunded by the EU Social Fund in the framework of the Sectoral Operational Programme 2007-2013 for Human Resources Development.

R E F E R E N C E S

- [1] *D. and W. Libkind, J.M. van Broock*, *Microbiol. Biochem.*, 22, 2006, 687-692,
- [2] *E. Simova, G. Frengova, D. Beshkova*, *Z. Naturforsch.*, 58 C, 2003, 225-228
- [3] *Frengova, G., Beshkova, D.*, *Journal of Industrial Microbiology & Biotechnology*, 36, no 2, 2009, 163-169
- [4] *H. Razavi, I. Marc*, *Iran J of Chem. Eng.*, 25, no 3, 2006, 59-83
- [5] *P.B. Bhosale*, 2001, PhD in Microbiology Thesis, India, 20-84
- [6] *C. Malisorn, W. Suntornsuk*, 2009, Improved β -carotene production of *Rhodotorula glutinis* in fermented radish brine by continuous cultivation, *Biochemical Engineering Journal*, 43, Issue 1, 27-32
- [7] *H. Sakaki, H. Nochide, S. Komemushi, W. Miki*, 2002, Effect of active oxygen species on the productivity of torularhodin by *Rhodotorula glutinis*, *Journal of bioscience and bioengineering*, 93, n.3, 338-340
- [8] *M.N.H.Z. Alam, F. Razali*, 2005, Scale-up of stirred and aerated Bioengineering Bioreactor based on constant mass transfer coefficient, *Jurnal Teknologi*, 43 (F), 95-110
- [9] *M.C. Flickinger, S.W. Drew*, 1999, *Encyclopedia of Bioprocess Technology*, John Wiley & Sons, Inc, New York
- [10] *W.M. Lu, C.L. Yao*, 1992, Power consumption and gas dispersion in a multi/stage rushton turbine impeller stirred tank, *J. Chi. I. Chem. E.* 23, 173-179
- [11] *V. Linek, P. Benes*, 1987, Critical Review and Experimental Verification of the Correct Use of the Dynamic Method for the Determination of Oxygen Transfer in Aerated Agitated Vessels to Water, Electrolyte Solutions and Viscous Liquids, *Chemical Engineering J.*, 34, 11-34
- [12] *V. Linek, J. Sinkule, P. Benes*, 1991, Critical Assessment of Gassing-In Methods for measuring k_{La} in Fermentors, *Biotechnology and Bioengineering*, 38, 323-330
- [13] *Vant't Riet, Tramper K.*, 1991, *Basic Bioreactor Design*, Marcel Dekker, New York, 236
- [14] *A.I. Galaction, D. Caşcaval, C. Oniscu, M. Turnea*, 2004, Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broth, *Biochemical Engineering Journal*, 20, 85-95.