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INFLUENCE OF PREHEATER LOSS IN REGENERATION 
EFFICIENCY ON THE SECONDARY CIRCUIT 

Ilie PRISECARU1, Iulian Pavel NIŢĂ2, Daniel DUPLEAC3 

Lucrarea prezintă rezultatele analizelor funcționarii circuitului secundar al 
unității 2 de la Centrala Nuclearoelectrică Cernavodă în regimuri anormale 
produse prin defectarea preîncălzitoarelor regenerative. Lucrarea a avut ca scop 
optimizarea procedurilor de exploatare în scopul minimizării pierderilor de putere 
electrică care apar ca urmare a funcţionării anormale a centralei produsă de 
defectarea unui/unor preîncălzitoare. S-a realizat o metodă de calcul simplificat 
pentru un preîncălzitor de apă de alimentare în regimuri anormale. S-au simulat 
regimurile nenominale ale centralei produse de evenimentul postulat, folosind 
metoda simplificată. Analiza rezultatelor a demonstrat că este posibilă modificarea 
procedurii de operare actuale cu menţinerea reactorului la putere nominală şi 
minimizarea scăderilor de putere la bornele generatorului electric. Metodă de 
calcul rapid a preîncălzitoarelor poate fi utilizată de asemenea şi pentru 
determinarea disfuncţionalităţilor funcționale ale acestora. 

This paper presents the results of operating analyses in secondary circuit of 
Cernavoda NPP - Unit 2, in abnormal regimes, due to the failure of a feedwater 
preheater from the regenerative chain. Based on these analyses, operating solutions 
are proposed in order to minimize power losses from the normal regime. In this 
paper we developed a simplified method for calculating the operating parameters of 
the heat exchangers in abnormal regimes. Also this method allows quick detection of 
the abnormally operating heat exchanger. 

Keywords: NPP operation, abnormal regimes, minimized losses, heat exchangers, 
plant efficiency 

1. Introduction 

 In this paper one proposes optimizing the operating procedures in event of 
preheater unavailability. Current procedure, in case of isolation of a preheater, 
requires a reactor power step back of 10% of the rated value, what reduces the 
generated electric power by about 70 MWe.  
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 The paper analyzes the operating regimes and thermal-hydraulic and 
economical implications which can occur in case of reactor power maintained at 
its rated value.  

One considers the process and instrumentation diagram a CANDU 6 Unit 
of Cernavoda NPP (Fig. 1). The upstream and downstream limits of the analysis 
are main condenser nozzles and steam generator nozzles, respectively. 
 The simulation used as input data the result from stationary hydraulic 
analyses performed for Main Condensate System and FeedWater System. These 
analyses were based on the computational code PIPENET. 
 In order to model and simulate the thermal hydraulics of regenerative 
chain we used the computational code MMS (Fig. 2 and Fig. 3). 
 There were examined the following possible transient regimes: 
 

• Normal operating regime,  used for model calibration; 
• The regime of preheater by-pass,  with reactor power stepped back to 90% 

of rated power (RP) for the cases: by-pass of a  LP1; by-pass of the  a LP2 
and LP3 bank ; by-pass of a HP 5 

• The regime of by-pass of a preheater with reactor power maintained to 
100% of RP for the cases: by-pass of a  LP1; by-pass o a LP2 and LP3 
bank ; by-pass of a HP 5 

  
The results obtained allowed the determination of electric power value 

produced by the power plant in regimes 2 and 3. In case of operating the reactor at 
100% RP when a LP1 is by-passed, the Unit power is reduced by 2%; when a LP2 
and LP3 bank is by-passed and when a HP5 is by-passed the Unit power is 
reduced by 4%. When the rector is stepped back to 90% RP the Unit power 
reduces by 11-12%. It leads us to idea of a new operating procedure with the 
reactor power maintained to RP, in event of unavailability of any preheater. It will 
result in a gain of the turbo-generator group power of at least 8%, that is about 
50MW. 
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Fig. 1. Process diagram of regenerative system: SG - Steam Generator; HP - High Pressure Heater; 

LP - Low pressure heater; MSR - Moisture Separator reaheater; HPT - High pressure turbine) ; 
LPT - Light Pressure turbine  
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Fig. 2 Computational diagram of the Condensate System 
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Fig. 3 Computational diagram of the Feedwater System 

2. Simulating and modeling of transient regimes of regenerative 
preheating system 

 Regenerative chain of a NPP (nuclear power plant) includes low pressure 
reheaters (LP), high pressure reheaters, (HP) a deaerator (D), feed water pumps 
(PA), and pipes (see Fig. 1).  
 Regenerative preheating modeling was done modular. Each type of 
equipment is modeled separately. One interconnects modules by transferring the 
output values in a way become input into values for the next module. In the whole 
model there were introduced modules for preheaters, valves and automation parts. 
Computational diagram of the simulation of the regenerative chain using MMS is 
shown in Fig. 2 and 3. 
 Mathematical models underlying the complete module simulation are 
described in [3] and were confirmed and applied in simulation work for 
Cernavoda NPP systems [4, 5.7] 
 One pursued the development parameters of the preheating circuit 
regenerative procedures referred to. In the analysis have sought answers to 2 
questions: 
- The system's ability to maintain power reactor at face value?;  
- Development of system parameters (pressure, temperature, etc.) Endanger the 
safe operation of the plant? 
 In the review one considered all existing automation and functional facility 
that is level regulators of each preheater (LP1, LP2, LP3, HP5 and deaerator) and 
flow regulators of steam generators. One considered for the changes of field of the 
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plant, that the most important parameters are flow rate and fluid temperature 
throughout the plant.  
 MMS computational code was used for transient operating in order to 
obtain outcomes of the system and new stationary regimes that occur after system 
stabilization, thereby determining the operating parameters. They were presented 
in detail in ref. [10]. 
 This work aims to present a simplified calculation method of heat 
exchanger. The method is illustrated on a feedwater preheater, i.e. HP5. 

3. Simplified calculation of a regenerative preheater  

 The normal operation of the installation of regenerative preheating water 
supply from thermal power stations and nuclear power at part load turbo-
generators group is a constant concern of the project designers and field operators 
[1,5,7,8]. 
 Feedwater preheater behavior can be determined if one known in detail 
heat transfer process that occurs in these devices, when the load of turbo-generator 
is changing. 
 Complete calculations of heat balance and heat transfer arrangements were 
made for 100%, 80%, 60% and 40% of the flow rate of steam generator - schemes 
presented in HB by GE and recalculated in [11.12].  
 One performed the exact calculation of heat transfer using MATHCAD 
program. The results of this calculation were summarized in two diagrams and 
system of mathematical equations used in computer processing. 
 Using this simplified method of calculating the behavior of regenerative 
preheater abnormal regimes, with a minimum of input data (load power in the 40-
100% RP and temperature of input water preheater) may cause exit temperatures, 
temperature, pressure device in the condensation and heat load. 
 This simplified method has the next advantages: quickness and calculation 
handiness; it can be done during operation, in order to evaluate the state of the 
heater through comparing data from design with exploitation; very good 
evaluation comparing with exact solution. 
 Exact calculation was performed for the four base regimes that define the 
curves from diagrams namely regimes 40%, 60%, 80%, and 100% MCR (main 
continuous rate) for flows and pressures at turbine bleed that HP5 preheaters. 
 Convection heat transfer coefficients were calculated separately for each 
of the working areas of equipment HP5 namely the condensation: the steam 
condensing zone: the water supply; subcooled and condensed area: the condensed 
steam; subcooled area condensed: the water supply. 
 



158                                     Ilie Prisecaru, Iulian Pavel Niţă, Daniel Dupleac 

 For the four areas above were used the following relations for convection 
calculation: 
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 The values of global heat transfer coefficients for the 3 areas indicated 
above on are shown in Table 1: 

Table 1 
The values of global heat transfer coefficients for the three area 

HP5 Regime 
heat transfer coefficient 100% 80% 60% 40% 

condensing area  3113.7 3022.9 2861.1 2581.9 
subcool area 2226 1946.9 1642.6 1308.6 

  
In Fig. 4 one presented the heat flux of a HP 5 versus turbo aggregate load. 

Fig. 4 was obtained using terminal temperature HP 5 (see Fig. 5 and 6), 
determined with simplified procedure. 
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Fig. 4. Heat load of equipment HP5 according to plant load 
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 For user-friendly computer codes in the analytical correlation for heat by 
power load is: 
 

( ) ][688.084,141296,29 2
tMWxxxQ +⋅+⋅=   (5) 

 
where x is the percentage of power. 
 

 ( ) ][6788.04083,00417,40417,62083,5 234 CxxxxxDT °+⋅−⋅+⋅−⋅=          (6) 
 ( ) ][051.04764,086,5 2 CxxxdT °+⋅−⋅=      (7) 

 
where x is the percentage of power. 
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Fig. 5. Terminal temperature difference DT and dT for HP5 equipment according to the power load 
 
 
 Once the details made above were done, one can proceed to establish 
parameters and equipment operators working in particular: 
  - bleeding steam at outlet steam turbine  
  - Feedwater 

 
 
 
 
 

Terminal temperature difference for HP5 

 

Power Level
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Fig. 6. Temperature final differences heat exchanger equipment 

 
Known variables: 

a) Q - heat load of the equipment from Fig. 5 
b) t'2 - feedwater temperature upstream of HP5 
c) gapa = required feedwater 

 Based on known input data, one could determine output temperature 
without appealing to transcendental equations of heat transfer: 

  ][''' 22 Ct
cg

QT
pmapa

°+
⋅

=      (8) 

  
Once determined the size T''2 and known as t'2 resulting: 

  ][''' 21 CDtTT °+=       (9) 
  ][''' 21 Cdttt °+=      (10) 

  
Using diagram from Fig. 5 or analytical relations [6] and [7] for partial load which 
would calculate. 
 Having the value of T'1 that represents the steam condensation temperature 
(saturation temperature) we can determine operating pressure from condensing 
zone. 
 The method indicated above was used for all regenerative preheater 
system. Having appropriate diagrams available, it will provide equipment 
characteristics used to simplify calculations of energy balance throughout the 
regenerative circuit. 
 

T'1                                 T''1 = t'1 

    T'2 = t''2                        t'2 

T''2                                              t''1 

dt 

 ΔT 

S

T 
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 4. The electric energy efficiency of secondary circuit 
 
 The computation of plant efficiency has on the base heat balance relations 
written on complete secondary circuit of the plant. The computation was based on 
solving simultaneous equations of heat balance on all heat regenerative heaters 
from secondary circuit of the power plant. Computational relations used for each 
heat exchanger were presented in previous paragraph.  
 Energy balance equations were written for each of the three 
unavailability's LP1, LP2-LP3 and HP5, for 96-97-98% of nominal load. The 
results were compared with known values and we selected the closest ones. 
 For each form three cases we had three abnormal regimes:  
 

• α) unavailability of a LP1; 
• β) unavailability of a bank of LP2-LP3; 
• γ) unavailability of a LP5. 

  
Combining the computation for flow rates corresponding to 96-97-98% 

from nominal power with the three cases of abnormal operation we obtained 3 x 3 
- 9 computational cases. 
 

Table 2 
Stationary regime calculation 

Initial α β γ
96% 0.9797 0.965 0.957 
97% 0.9811 0.9732 0.955 
98% 0.9816 0.9854 0.955 

 
Comparing the results we obtain 3 pairs of values: 
(α − 98%) → 98.16%; (β − 96%) → 96.50%; (γ − 96%) → 95.70% 

 From these data we can conclude that loss of one LP1 affects not so much 
the global efficiency of secondary circuit. The unavailability of a HP5 of a bank 
of LP2 - LP3 leads to a loss of 4% of electrical power generated with the reactor 
power, the loss been twice as big as in case of unavailability of LP1. 
 

5. Conclusions 
 
 In this paper one presented a simplified method used for fulfillment of a 
thermal calculation if a heat exchanger for abnormal operating regimes. This 
method was applied to the complete regenerative chain form NPP Cernavoda in 
order to obtain the values of energy efficiency for regime of unavailability of a 
preheater. One considered a parametrical analyze function of level of reactor 
power after initiating event: at first one considered he reactor power lowered to 
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90% of PN (conform to actual operating procedure) and a second analyze were 
one considered he reactor power maintained to 100% (proposed operating 
procedure) 
 Following the computation made in case of unavailability of a preheater, 
one observed that if the reactor power is maintain to 100% of nominal power, the 
maximum power surge of the plant its of about 4% (in case of HP5 or LP2/3 
unavailability) comparing to 12% in case of reactor power step back to 90% from 
its nominal power. The difference between the two cases is obvious and it's on the 
side of the case of maintaining the reactor power. 8% recovery from nominal 
power represents a very important loss for a nuclear plant, in our case of about 
50MW. 
 This method permits that starting from nominal regime of the heat transfer 
equipment to determine its fouling rate or its malfunction. Practical, in real time 
an operator can determine the installation operating condition without require a 
stop of the installation.  
 As result of paper one concludes that reducing the power of the reactor 
from 100% to 90% of nominal power in event of unavailability of preheater is not 
justified either form concerns from economical or safety operation point of view.  
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