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CLUSTERING LARGE DATASETS - BOUNDS AND
APPLICATIONS WITH K-SVD

by Cristian Rusu

This article presents a clustering method called T-mindot that
is used to reduce the dimension of datasets in order to diminish the running
time of the training algorithms. The T-mindot method is applied before the
K-SVD algorithm in the context of sparse representations for the design of
overcomplete dictionaries. Simulations that run on image data show the
efficiency of the proposed method that leads to the substantial reduction of
the execution time of K-SVD, while keeping the representation performance
of the dictionaries designed using the original dataset.
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1. Introduction

The problem of designing overcomplete dictionaries for sparse represen-
tations [1] has received a lot of attention during the recent years. Fueled by
the goal to create dictionaries for very efficient representations, this framework
was applied with success in many application areas [2] [3].

The problem is formulated in the following manner: given a dataset Y ∈
Rn×N and a target sparsity level denoted k0 solve the non-convex optimization
problem

minimize
D,X

||Y −DX||2F

subject to ||xi||0 ≤ k0, 1 ≤ i ≤ N
(1)

where the matrix D ∈ Rn×m is called dictionary and its columns are called
atoms, the sparse matrix X ∈ Rn×N is called the representation matrix with
target sparsity k0 on each column and ||E||2F =

∑n
i=1

∑N
j=1 E

2
ij is the Frobenius

norm of the error matrix E = Y −DX.
A popular approach to find a good solution for problem (1) is the K-

SVD [4] algorithm heuristic. This iterative algorithm employs a two step
optimization procedure in the following manner:

(1) Keep the dictionary D fixed and compute the sparse representations
using the orthogonal matching pursuit (OMP) algorithm [5].
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(2) Keep the representation matrix X fixed and update each column of the
dictionary using the singular value decomposition (SVD) applied on the
data samples that use the respective atom.

The algorithm stops after a fixed number of iterations or after a certain error
limit is reached.

One of the most important issues with this approach is the fact that
it runs quite slowly when the training set is large. This drawback makes
it difficult to use in settings where a large number of samples are used in
the training phase. Attempts have been made to speed up the procedure by
implementing a bulk OMP solver and replacing the SVD with steps of the
power method [6].

This article describes a reduction procedure called T-mindot [7] that
takes place before the K-SVD algorithm is applied. The role of this reduction
procedure is to diminish the dimension of the training set such that: the K-
SVD steps run much faster and the result obtained on the new reduced set is
relevant also on the original dataset. Additionaly, new theoretical results are
presented that introduce bounds on the effect that the grouping procedure has
on the input dataset and the way the K-SVD algorithm works on this new,
clustered, dataset. The bounds describe the limits of performance and the
trade-off between the achieved speed-up and the accuracy of the results.

New simulations on image data are presented and theoretical bounds
are supplied to quantify the difference between the original dataset and the
clustered one. All results validate the proposed method and show its efficiency.

Outline. The remainder of this article is structured as follows. Section 2 de-
scribes the T-mindot grouping procedure and Section 3 presents theoretical
bounds that characterize the changes to the dataset made by the grouping
procedure. In Section 4 the results obtained on image data show the impact
that T-mindot has on the application of K-SVD. Conclusions end the article
in Section 5.

Notation. The set of real numbers is described by R. Bold characters denote
multivariate entities (vectors, matrices).

2. The clustering procedure: T-mindot

This section describes the details of the proposed grouping procedure
called T-mindot [7].

The main idea of the T-mindot is to split the dataset into groups and
then replace each group with a single data item (called the centroid). In some
sense, the grouping method reassembles the k-means clustering algorithm but
the main difference is that the number of centroids is not apriori set. T-mindot
groups the dataset with the target of discovering a variable number of centroids
such that every data item from the dataset is within a maximum distance from
at least one of the centroids.
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Given the dataset A ∈ Rn×N with columns ai, i = 1, . . . , N and the
threshold parameter T , the grouping procedure is described by the following
optimization problem:

minimize
cj

M

subject to |aTi cj | ≥ T,∀i, for at least one j

||cj||2 = 1.

(2)

and the output is the matrix C ∈ Rn×M containing the centroids cj , j =
1, . . . ,M columnwise concatenated. Additionally, the extra output matrix
B ∈ Rn×N represents the dataset where each data item is replaced with its
associated centroid. This non-convex problem is solved by applying the T-
mindot heuristic.

The general structure of T-mindot is:

(1) Parameters

(a) S = max{b0.01×Nc, 500} - current working dimensions.
(b) Smax = max{b0.02×Nc, 2000} - maximum working dimensions.
(c) Dfast = 1.1 - control of fast dynamic.
(d) Dslow = 0.9 - control of slow dynamic.

(2) Initialization: set the centroid set to be the first data item from the
dataset A.

(3) Iterative procedure

(a) Extract in the set W a block of dimension S (maximum Smax) from
the dataset A.

(b) Compute the dot products of the centroids with the data items
from the set W and group the data items that are at the minimum
distance (absolute value of the dot product greater than T )

(c) Only with the data items that were not grouped in the previous
step, begin a procedure that finds the best centroids among this
remaining set of items and allocates the data items around these
centroids.

(d) If more than 5% of vectors are not clustered in the previous step
then S = dS ×Dslowe, else S = dS ×Dfaste

(e) Repeat until all data items are clustered.

(4) Finalization: Replace each centroid with the normalized average of its
clustered data items.

Since the procedure is applied on highly correlated data we expect that
M � N . This reduction is will lead to the speed up of the subsequent training
procedure that is applied. The values of the parameters were chosen after
conducting several numerical experiments.

The presented grouping procedure runs on the input training dataset
before the application of the K-SVD algorithm.
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3. Bounds

This section establishes bounds on the error terms that quantify the
difference between the problem before and after T-mindot.

Like in the previous section, consider the normalized training vectors
columnwise concatenated in the matrix A ∈ Rn×N , the result of the cluster-
ing procedure in the matrix B ∈ Rn×N and in the matrix C ∈ Rn×M , the
concatenation of the weighted centroids found

A = [a1 a2 . . . ak . . . . . . aN ]
B = [a1 a2 . . . c1 . . . . . . cM ]

= [a1 a2 . . . ak + vk . . . . . . aN + vN ]
C = [a1 a2 . . .

√
s1c1 . . .

√
sMcM ],

(3)

where ||ai||2 = 1 and ||cj ||2 = 1 chosen such that |cTj ai| ≥ T for every i with
at least one j, sj represents the number of items clustered around centroid

cj ,∀j = 1, . . . ,M , c =
∑M

j=1 sj and vi with i = 1, . . . , N represents the offset
from each training vector to the centroid such that

AAT ≈ BBT = CCT . (4)

We are interested in these products since the goal is to compute the singular
values and vectors of the training matrix.

3.1. Bound for the error matrix. We discuss, without loss of generality,
the case in which N training vectors group around the same centroid c1. It
is obvious that we are interested to quantify the difference that is added in
the clustering procedure, denoted here by AAT ≈ BBT . Consider the error
matrix ∆ ∈ Rn×n

∆ = BBT −AAT

=
∑N

i=1(ai + vi)(ai + vi)
T −

∑N
i=1 aia

T
i

=
∑N

i=1(aiv
T
i + via

T
i + viv

T
i )

=
∑N

i=1(c1v
T
i + via

T
i ) =

∑N
i=1 ∆i.

(5)

Our first attempt is to bound the Frobenius norm of the error matrix, ||∆||2F =∑n
i=1

∑n
j=1 δ

2
ij. Following (5) we get

||∆||2F = ||
∑N

i=1 ∆i||2F ≤
∑N

i=1 ||∆i||2F
=

∑N
i=1 tr((aiv

T
i + vic

T
1 )(via

T
i + c1v

T
i ))

=
∑N

i=1 2vTi vi + 2vTi c1v
T
i ai

=
∑N

i=1 2(1− (cT1ai)
2)

≤ 2N(1− T 2),

(6)

where we used the fact that vTi vi = 2(1−cT1ai) and vTi c1v
T
i ai = −(1−cT1ai)

2.
Notice that the last inequality in (6) is the worst case bound.
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Secondly, notice that because

tr(∆i) = tr(aiv
T
i + via

T
i + viv

T
i )

= vTi ai + vTi ai + vTi vi
= (ai − c1)T (ai + c1)
= aTi ai − cT1c1 = 0,

(7)

and all ∆i, ∀i = 1, . . . , N , are either 0 or rank 2 symmetric matrices (sum of
two zero matrices if ai = c1 or the sum of two rank-1 matrices otherwise) we
conclude that the two eigenvalues of ∆i are equal in magnitude and therefore

||∆i||22 =
||∆i||2F

2
. (8)

Thus we obtain a bound on the 2-norm of the error matrix

||∆||22 ≤ N
∑N

i=1(1− (cT1ai)
2)

≤ N(1− T 2).
(9)

The bounds on the two considered norms are in practice too pessimistic
since most of the clustered items are very close to the centroid and only a few
actually reach the maximum allowed distance. Because of this, we construct an
average case error bound replacing the dot product cT1ai with the real-valued
random variable Z and conclude that

E [||∆||22] ≤ NE [1− Z2]
= N(1− E [Z]2 − Var [Z])
≈ N(1− E [Z]2).

(10)

The resulting bounds are much stronger than the ones in (6) and (9) because
usually E [Z]2 � T 2 and Var [Z] ≈ 0 because in general the items are grouped
closely around the centroid and the maximum allowed error is close to 1,
0� T < 1.

Concerning the full description of the random variable introduced Z,
taking into account that all data items grouped with threshold T are con-

tained in the n-sphere of volume Vn(R) = πn/2

Γ(n/2+1)
Rn and of radius Rmax =

max{
√
vTi vi} =

√
2(1− T ), for R = 0, . . . , Rmax its cumulative distribution

function is

F (R) =
Rn√

[2(1− T )]n
. (11)

In the case of a single centroid grouping, a potentially useful observation
is that since tr(∆i) = 0, ∀i = 1, . . . , N and the trace operator is linear, this
means that tr(∆) = 0 and furthermore because rank(∆) ≈ 2 (the matrix has
two dominant singular values because it is the sum of outer products between
two sets of highly correlated vectors) it follows that

||∆||22 ≈
||∆||2F

2
. (12)
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The results obtained in this subsection are strong because they bound the
expectation operator E and they target the two most widely used matrix norms
(Frobenius and the 2-norm). The results are intuitive because the absolute
errors increase with the number of items clustered by the each centroid, since
each new item clustered adds extra variation to the group (if it is different from
the centroid), and the threshold T appears squared since we are interested in
the product AAT .

3.2. Bound on the singular vectors. Of course, we are mostly interested in
the difference of direction that might appear in the singular vectors associated
with the largest singular value of the training matrix, before and after T-
mindot is applied.

In order to analyze this effect, considering the two systems

BBTx1 = λ1x1

AATy1 = σ1y1.
(13)

where λ1 is the largest singular value ofB and x1 its corresponding eigenvector
and σ1 is the largest singular value of A and y1 its corresponding eigenvector.
We are interested in the dot product |xT1y1| to be as large as possible (ideally
1). For the sake of simplicity, consider that all vectors in the training matrix
A where clustered around the same centroid c1 leading to a rank-1 matrix B.

Consider that
y1 = x1 + δx1

σ1 = λ1 + δλ1

AAT = BBT −∆.
(14)

plug into the second equation of (13), expand the terms and take into account
that BBT = λ1x1 to get

(BBT −∆)(x1 + δx1) = (λ1 + δλ1)(x1 + δx1)
BBTδx1 −∆x1 −∆δx1 = λ1δx1 + δλ1x1 + δλ1δx1.

(15)

Let δx1 to be a linear combination of the orthonormal basis formed by
the eigenvectors of BBT

δx1 =
n∑
j=1

ε1jxj , (16)

with coefficients |ε1j| � 1 and plug into (15) to get

ε11λ1x1 −∆x1 −∆
n∑
j=1

ε1jxj = λ1

n∑
j=1

ε1jxj + δλ1x1 + δλ1

n∑
j=1

ε1jxj . (17)

Multiplications on the right of (17) with xT1 and xTk respectivly yield

δλ1 = −xT
1 ∆x1−xT

1 ∆
∑n

j=1 ε1jxj

1+ε11

ε1k = −xk∆x1+xT
k∆

∑n
j=1 ε1jxj

λ1
,∀k ≥ 2.

(18)
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The expression for the desired dot product is derived from

y1 = x1 + δx1

y1 = x1 +
∑n

k=1 ε1kxk

(xT1y1)2 = (1 + ε11)2.
(19)

and it is clear that the main focus is to compute ε11. To reach an expression
for ε11, start the development from

yT1 y1 = 1
(x1 + δx1)T (x1 + δx1) = 1
1 + 2xT1 δx1 + δxT1 δx1 = 1
2xT1 δx1 + δxT1 δx1 = 0
2ε11 +

∑n
k=1 ε

2
1k = 0

ε211 + 2ε11 +
∑n

k=2 ε
2
1k = 0.

(20)

Substitute and expand, taking into account that λ1 = N , λk = 0,∀k ≥ 2 (since
rank(BBT ) = 1), x1 = c1, xTkc1 = 0, ∀k ≥ 2 and denote aTi c1 = Z (where
Z is a real-valued random variable) following the same idea as in the previous
section to get

ε1k = −xT
k (

∑N
j=2 c1v

T
j +vja

T
j )x1

λ1

= −xT
k

∑N
j=2 vja

T
j x1

λ1

(21)

and then use it to compute the free term in the last equation of (20)

E [S] = E [
∑n

k=2 ε
2
1k]

=
∑n

k=2 E [ Z
2

N2 (xTk
∑N

j=1 vj)
2]

=
∑n

k=2 E [ Z
2

N2 (xTk
∑N

j=1 vj)
2]

= E [ Z
2

N2 (||
∑N

j=1 vj ||22 − (xT1
∑N

j=1 vj)
2)]

≤ E [ Z
2

N2 (N22(1− Z)−N2(1− Z)2)]
= E [Z2(1− Z)(1 + Z)]
= E [Z2(1− Z2)],

(22)

where we used the facts:

E [(xT1
∑N

j=1 vj)
2] = E [(cT1

∑N
j=1(c1 − aj))

2]

= E [(
∑N

j=1(1− cT1aj))
2]

= E [N2(1− Z)2],

(23)

E [||
∑N

j=1 vj||2] ≤ E [
∑N

j=1 ||vj ||2]

= E [
∑N

j=1

√
2(1− cT1ai)]

= E [
∑N

j=1

√
2(1− Z)]

= E [N
√

2(1− Z)].

(24)

Return to (20) to reach the final expression

ε11 = −1±
√

1− S. (25)
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Therefore
(xT1y1)2 = 1− S

≥ 1− Z2(1− Z2)
≥ 1− T 2(1− T 2).

(26)

where the last inequality is the worst case bound. The expected value of the
dot product has the final form

E [(xT1y1)2] = E [1− S]
≥ E [1− Z2(1− Z2)]
= 1− E [Z2] + E [Z4]
= 1− E [Z]2 + E [Z2]2 − Var (Z) + Var [Z2]
≥ E [Z]2,

(27)

since E [1−Z2 +Z4] = E [Z2 + (Z2− 1)2] ≥ E [Z2] following that the variance
terms are approximately zero, because in general the items are grouped closely
around the centroid and the maximum allowed error is close to 1, 0� T < 1.

The result described in this subsection bounds the actual difference in the
singular vectors before and after the clustering procedure T-mindot is applied
to the dataset. The result works only in the case when all the data items are
grouped around the same centroid but since it is a good result it offers some
intuition that in the general case things work similarly.

4. Experimental results

The demonstrate the potential of T-mindot we describe in this section
numerical experiments and results obtained on a popular image dataset [8].

We extract from the images all the 8×8 non-overlapping patches and scale
everything in the range [−1, 1] with the DC component removed. Everything
is columnwise concatenated in the matrix A ∈ Rn×N(n = 64, N = 105) and
normed to 1. This acts as the test dataset that is used in all the simulations.

The tests run in the following manner: a fixed number Ñ of test vectors
are extract from the whole dataset A and the T-mindot clustering procedure
is applied to reduce the dataset to B ∈ Rn×M before the K-SVD algorithm is
applied to train a sparse linear model of the data. We are interested in two
important performance indicators: the reduction achieved by T-mindot (which
leads to the actual speed-up) and the quality of the representation achieved
by the dictionary computed on the reduced dataset when used on the original
dataset.

All simulations are executed on the original dataset and on the reduced
dataset. In order to measure the speed-up, the tables show separately the run-
ning times of T-mindot and the K-SVD training algorithm applied on the full
original extracted dataset of size Ñ and the reduced dataset of size M denoted
by TA and TB respectively. In the analogous way, we define the representation
errors reached on the original dataset by both trained dictionaries EA and EB.



Clustering large datasets - bounds and applications with K-SVD 39

Table 1
Simulation results for T=0.9.

Ñ M M/N TT-mindot TA TB (TT-mindot + TB)/TA EA EB

5000 1577 31.54% 2.0 256 190 75.00% 11.55 12.21
10000 3046 30.46% 3.5 339 214 64.15% 17.73 18.28
30000 7649 25.49% 5.3 687 119 18.09% 31.79 32.85
50000 11835 23.67% 9.6 1052 148 14.98% 41.70 43.42
70000 15693 22.41% 21.3 1358 353 27.56% 49.04 50.81
100000 21122 21.12% 29.7 1978 551 29.35% 59.11 60.32

Table 2
Simulation results for T=0.95.

Ñ M M/N TT-mindot TA TB (TT-mindot + TB)/TA EA EB

5000 2140 42.80% 1.8 256 170 67.10% 11.55 11.88
10000 3982 39.82% 3.6 339 199 59.76% 17.73 17.67
30000 10766 35.88% 5.8 687 187 28.06% 31.79 32.24
50000 17246 34.49% 11.3 1052 342 33.58% 41.70 42.45
70000 23037 32.91% 24.0 1358 377 29.52% 49.04 49.42
100000 31441 31.44% 44.2 1978 501 27.56% 59.11 59.25

Table 3
Simulation results for T=0.99.

Ñ M M/N TT-mindot TA TB (TT-mindot + TB)/TA EA EB

5000 2683 53.66% 2.5 256 190 75.19% 11.55 11.76
10000 5369 53.69% 4.0 339 250 74.92% 17.73 17.77
30000 15588 51.96% 8.3 687 424 62.92% 31.79 31.91
50000 25153 50.30% 18.2 1052 615 60.19% 41.70 41.74
70000 34502 49.28% 35.5 1358 694 53.71% 49.04 49.08
100000 47828 47.82% 75.8 1978 1022 55.50% 59.11 58.75

In all situations, the K-SVD algorithm starts with a random initialization
to design dictionaries of 256 atoms with target sparsity k0 = 6. It runs for a
maximum of 80 iterations and it stops earlier if the relative error between two
consecutive iterations drops below 10−5, since no significant progress can be
achieved any longer.

The numerical simulations are depicted in the following tables for various
runs of T-mindot with different reduction thresholds: 0.9, 0.95 and 0.99. The
running time and the representation errors obtained on the original dataset
are copied in all tables for an easy comparison.

From the three presented tables it is very clear that the threshold pa-
rameter of T-mindot has a crucial impact on the speed of the overall training
procedure (the running times are 2-3 time smaller for most of the cases) and
only a minor effect on the representation errors (there is only a small decrease
in the errors as the threshold is increased). Also, the actual application of
T-mindot with a high threshold does not seem to impact negatively the repre-
sentation errors since the computed values are very close to the ones computed
by training the dictionaries on the full dataset. Simulations show that smaller
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values of the threshold (eg. 0.7 or 0.8) lead to a rapid degradation of the
representation errors.

5. Conclusions

This papers describes a grouping procedure that reduces the dimension of
a training set before it is use in the context of overcomplete dictionary design.
The proposed method is tested by applications on image data and the results
show conclusively the speed up achieved. Additionally, the paper presents
theoretical bounds that characterize the error introduced by the reduction
method.
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