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HW-SW CO-DESIGN OF MPSOC USING FGPA IP CORES 

Iulian NIŢĂ1, Gabriel ZDRU2 

Noile tehnologii de proiectare a sistemelor cu chip multiprocesor bazate pe 
FPGA-uri şi blocuri IP fac posibilă dezvoltarea unor dispozitive optimizate din 
punct de vedere al performanţelor, consumului de energie şi al costului. Marea 
flexibilitate oferită de aceste noi instrumente de proiectare permite explorarea 
spaţiului de proiectare pentru a căuta cele mai eficiente implementări. Astfel, în 
această lucrare, am realizat o cercetare în domeniul acestor tehnologii şi am propus 
un model de proiectare concurentă hardware/software (hw/sw co-design) pentru 
dezvoltarea aplicaţiilor pe sisteme cu chip multiprocesor bazate pe FPGA IP cores. 
Rezultatele experimentale au fost validate pe o aplicaţie de filtrare a imaginilor, 
implementată pe un sistem multiprocesor, folosind kitul de dezvoltare Xilinx XUP 
Virtex 5 şi pachetul software Xilinx EDK. 

 
The new design technologies of multiprocessor systems on chip based on 

FPGAs and IP blocks, make possible the development of optimized devices in terms 
of performance, power consumption and cost. Flexibility offered by these new 
design tools allow design space exploration to search for the most effective 
implementations. Thus, in this paper, we performed a research on these technologies 
and we have proposed a hardware / software co-design model for developing 
applications on multiprocessor systems on chip based on FPGA IP cores. The 
experimental results were validated with an application for filtering images, 
implemented on a multiprocessor system using the development kit Xilinx XUP 
Virtex 5 and Xilinx EDK application software 

 
Keywords: Multiprocessor System on Chip, FPGA, MicroBlaze, image filtering 

1. Introduction 

In terms of hardware, designing systems on chip using FPGAs, offers a 
greater flexibility, due to the large number of IP cores available on the market and 
endless possibilities of configuration, customization and interconnection between 
them [1]. 
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Fig 1. Design example for dual Microblaze core using FPGA IP cores 
 
Among the main advantages of designing using FPGAs, we can mention: 

 Flexibility: the number of IP cores which can be integrated is limited only 
by the FPGA's capacity. For example, the Virtex-5 FPGA from Xilinx has 
330,000 logic cells[2], which allow implementing from 80 to 100 MicroBlaze 
processors. 
 Configurability: each IP block is configurable depending on application 
requirements. For example, for the MicroBlaze processor there are over 300 
possible configurations, in which you can add or remove optional modules such 
as: FPU (Floating Point Unit), BS (barrel shifter), MUL (Multiplier hardware), 
DIV (divider hardware) [3]. Likewise you can select the operation frequencies and 
set the pipeline's depth. Also, depending on the needs of the application, the cache 
memory can be set at various capacities [4]. 
 Reduced time to market: in the design process it is no longer required to 
manufacture the integrated circuit, this being implemented on FPGA just in a 
couple of minutes. By using the existing IP blocks and being able to reprogram 
the FPGA whenever needed, the design and testing times are considerably 
reduced. 
 Reduced cost: it is cheaper to buy an FPGA which can be reused in 
multiple projects rather than buying special chips that can be used only in specific 
projects (ASIC). Thus, in the FPGA's case, detecting an error in the designed 
architecture does not involve buying a new module, but only reconfiguring and 
reprogramming the design [4][5]. 
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Xilinx and Altera are the leading solution providers for designing 
embedded systems using FPGAs, IP cores and specific software packages. With 
these software applications, users can modify the systems on chip by integrating 
and interconnecting IP cores, and finally a review of the system can be made by 
generating reports that give details about power consumption, the size of the 
circuit and technical performances. These programs enable architectural analysis 
to optimize chip design and this way, users can reduce the chip size, the power 
consumption and the cost without sacrificing the performance. [5] 

Xilinx Embedded Development Kit (EDK) represents a set of tools used 
for designing systems on chip with one or more processors. The main components 
of EDK are[6]:  

Xilinx Platform Studio (XPS) – is a developing environment used for 
designing system hardware and contains a library of IP blocks which can be 
configured and interconnected to fulfill the designing requirements of the 
application [6][7]. 

Software Development Kit (SDK) – is a developing software tool used for 
the designing of projects made with XPS, used for making and verifying 
dedicated software applications written in C/C++. SDK is build on the Eclipse 
open source platform, which is familiar to many software developers [6][7]. 

The MicroBlaze processor is the main component in the multiprocessor 
dedicated systems made with XPS.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig 2. – Architecture of Xilinx MicroBlaze processor [3] 
 
The MicroBlaze processor – is a processor based on RISC type 

architecture and it’s presented in a hardware description language(VHDL). It has 
a series of basic specifications such as: 32 general purpose registers on 32 bits, 32 
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bits instructions with 3 operators and 2 addressing ways, a 32 bits address bus, a 
pipeline architecture based on 3 or 5 levels [3]. 

To obtain a more powerful processor, the optional modules must be 
activated and functional frequency must be set to maximum. Of course, these 
settings will lead to higher power consumption and higher cost expressed in the 
number of logic cells. Therefore, in order to obtain more efficient 
implementations, we must experiment every configuration option and choose the 
optimum solution. 

2. Hardware-Software co-design method for MPSoC 

Exploring the design space offered by the FPGA logic, software tools and 
existing IP blocks offer the required flexibility for the designing of multiprocessor 
systems on chip. In most of the cases, system architecture can be implemented by 
meeting the imposed performance constraints. In some cases, there can be more 
implementing solutions, each with its advantages and disadvantages[8]. For 
example, an implementation with low power consumption can have high 
execution times, or an implementation with low execution times can use a high 
number of logic cells [9]. 

Architecture is created by following a series of steps, as shown in figure 3. 
The designers examine the applications requirements, apply the constraints and 
make first hardware architecture as well as software architecture. Hardware wise, 
the architecture is designed by interconnecting and configuring the various IP 
blocks. The communication and synchronizing mechanisms are then established. 
Software wise, the application is divided in tasks and the dependencies between 
tasks and data are then analyzed. The communication procedures and the tasks 
execution order are then defined. The space and temporal mapping of the tasks on 
the available processing elements is then accomplished, by having in mind the 
obtainment of the lowest execution time. An operating system is then choose, and 
the memory locations for the storage of instructions and data are selected. A 
prototype is created and executed on the FPGA board by making many iterations 
to observe the possible problems which can appear or other ways of improvement. 
If the results are not satisfactory, the hardware architecture can be adjusted and 
the software application and mapping mode can be optimized or redesigned. This 
process repeats itself until, after a series of tests and verifications, the initial 
designing requirements are matched. Then the final implementation can begin 
[10][11]. 
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Fig.3. Hw/Sw co-design for MPSoC using FPGA IP cores 

 
2.1. Hardware design  
 
The architecture of multiprocessor systems on chip based on FPGA using 

IP blocks, can be implemented using a common bus to all processors, or can be 
made from a hierarchy of buses corresponding to each processor, interconnected 
by linking elements[12]. 

Although the shared bus architecture has the advantage of lowering the 
power consumption and the cost of the chip by using a single bus, it has a major 
disadvantage: the arbitration protocols that allow the access of the processors to 
the bus are slowing down the execution of the application. Due to the fact that at a 
certain point the access to the bus is allowed to a single processor, the arbitration 
protocols such as Round Robin and Priority Based, force the other processors to 
wait until the bus is ready [13]. 
 
 

 
 
 
 
 

 
Fig.4. Shared memory multiprocessor system arhitecture 
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Although the chip cost and the power consumption is higher because new 
components have been added (buses) to the system, the architecture with multiple 
buses allows a faster execution of the applications because the usage of protocols 
is no longer needed. The intercommunication between subsystems based on 
processor bus groups is made using dedicated components such as: internal or 
external shared memory, Mailbox, Mutex, FSL or Bus Bridge [8][13].  

 

 
Common components can have 2 or more interconnection ports. By their 

nature, these multiport connection components allow the interconnecting of 
multiple buses independent one to another. By isolating each subsystem, a 
subsystem’s bus will be ready when the other subsystems use its own bus to send 
data. These subsystems can have a set of peripherals corresponding to each 
subsystem but also a set of common peripherals.  

In this paper we have used a multiprocessor system on chip implemented 
by 2 subsystems interconnected through the IP cores XPS_Mutex, Shared 
XPS_Bram and XPS_PLB_Bus_Bridge, having as common shared resource the 
IP core peripheral XPS_RS232. Every subsystem contains one MicroBlaze 
processor, a PLB bus, an XPS_timer and a private memory called XPS_Bram.  
Moreover, the first subsystem contains the external SRAM memory controller and 
the RS232 and XPS_Sysace peripherals. The role of each functional block of this 
architecture is described as follows[8][13]:  

Fig.5. System architecture with two processors that can communicate with each other 
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XPS_RS232 is the controller used for serial communication to the 
computer through HyperTerminal, required for the display of messages during the 
execution.  

XPS_Mutex is used to ensure the exclusive access to the shared peripheral 
RS232. 

Shared XPS_Bram is the memory zone shared by the two processors of the 
system, that is required for synchronization and exchange of data.    

XPS_PLB_Bus_Bridge is used to unite the two buses so that the second 
processor can access the RS232 controller which is connected to the first 
processor bus.   

PLB is the local processor dedicated bus, through which all the functional 
blocks of every subsystems are interconnected.  

Private XPS_BRAM is the processor’s private cache memory for data and 
instruction.  

TheXPS_Timer is used to obtain the execution time of every stage of the 
program. 

The SRAM memory is used to store the image processed by the 
application, because the image is too big and it doesn’t fit in the internal memory. 

XPS_Sysace is a controller used for accessing the external memory card, 
where the images that need to be processed are read[8][10][13][14]. 

 
2.2 Software Design 
In order to test the performance of the architectures with one or two 

processors we’ve implemented an image filtering algorithm. The incoming data 
for this algorithm consists in an image with a salt and pepper type noise, and we 
try to remove it by applying 3 filters: a medium filter, a smoothing effect filter and 
a sharpening effect filter. 

A black and white image, measuring 210x280 pixels has been used during 
the tests. The format of the image is bmp and the information of a pixel is stored 
on 8 bits, therefore a pixel can have a decimal value ranging from 0 for black to 
255 for white[15]. 

After the image is extracted from the memory card and converted in the 
pixel values matrix, the following steps must be followed for each filtering 
process: a 3x3 size window containing the current pixel and his 8 neighbors are 
extracted from the image a convolution is performed between the window and the 
filter matrix, the value of the output pixel is stored and the window sweeps over 
the entire image resulting the filtered image [16].Each filter has its own method of 
calculating the output pixel, thus the median filter performs an ascending sorting 
and chooses the average value, the smoothing filter performs a convolution of 
those matrices and then the result is divided by 9 and the sharpen filter makes 
only their convolution[17]. These steps are illustrated in figure 6. 
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Fig. 6. Image filtering for reducing the noise 

 
 Given the fact that three filters have been applied (in a cascading way) for 
the removal of image noise, one processor can apply a new filter to another 
previously filtered image (by another processor).In this way we obtain a pipeline 
type image filtering which is useful when we have a large number of images that 
need to be filtered or when the processed image is divided into several blocks. 
Using this type of parallelization we have proposed two algorithms:  

1. An algorithm where the first processor applies a median filter then the 
second processor waits for the completion of the previous filtering and then 
applies a smoothing filter, and after that, both processors apply(one line/ each 
processor) a sharpen filter. 

2. An algorithm where the second processor applies a median filter, then the 
1st processor waits the completion of the previous filtering and applies a 
smoothing filter and after that both processors apply (one line/ each processor) a 
sharpen filter. 

Another way to parallelize this algorithm is to use the data parallelism, 
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image. Thus we have proposed two other algorithms: 
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3. An algorithm in which each processor applies all three filters sequentially 
(one processor applies filters to even lines, and the other processor applies filters 
to odd lines) on different lines. In this algorithm the two processors work on the 
image in a symmetrical way. 

4. An algorithm where the processors act similar to the previous algorithm 
except this time the data is divided in a lop sided manner, thus the 1st processor 
applies the filters on every 3rd line, and the 2nd processor applies the filters on the 
2 lines skipped by the1st processor . 

In these algorithms that use data parallelism, the task mapping was 
initially made by dividing the tasks equally on each processor (this happens in the 
symmetric algorithm), thus the 1stprocessorworks on the even lines and the 2nd 
processor works on the odd lines. Analyzing the performance of the two 
processors obtained using the symmetrical algorithm, we adopted an unequal 
division of the tasks on each processor. In this way, in the lop-sided algorithm the 
1stprocessorreceives one task while the 2nd processor has two tasks assigned to 
it[14][18]. 

Given the fact that the maximum size of internal data memory is 256 KB 
and that the program used for reading an image, line by line, requires more than 
500KB memory, we choose to add an external SRAM memory to the 
1stsubsystem (1st processor)  which contains the xps_sysace peripheral used to 
access the memory card. In this way, the 1stprocessorreads the entire image and 
stores it in the shared memory and therefore, the 2nd processor does not require an 
external memory due to the fact that the image filtering program code is small 
enough to fit within the internal memory of 128 KB. 

Choosing the memories that will be used in the system is very important 
because using an external memory affects the whole system performance. 
Therefore the 1stprocessorwill achieve a smaller performance because of the 
delays on the PLB bus, unlike the 2nd processor which has both data and 
instruction zones mapped in the local memory. The mapping of such areas in the 
external memory leads to a decrease of system bus frequency (this is because 
connecting both the data and the instruction interface to the system bus, they 
behave as two master components related to the access bus arbitration)[13][19]. In 
other terms, the 1st processor bus runs at a frequency of 303MHz while the 
2ndprocessorbus runs at a frequency of 324MHz. These influence the frequency of 
shared memory controllers, thusthe1stprocessor shared memory controller runs at 
a frequency of 280MHz while the 2ndprocessorshared memory controller runs at a 
frequency of 430MHz. Therefore, dividing the filtration tasks in an asymmetrical 
mode, the 2nd processor (which is faster) is being used more efficiently. 
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Fig.7. Block diagram of parallelized algorithms 
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3.  Synthesis Results 

In order to perform the experiments, we used the Xilinx XUP 
V5development kit [1] and Xilinx Embedded Development Kit software package 
[6][7]. With these tools we have designed a system on chip with one Microblaze 
processor and a multiprocessor system on chip with two Microblaze processors. 
We also analyzed the performance criteria in a comparative way (regarding 
execution time, power consumption and cost expressed in logic cells) for running 
an image filtering algorithm described in subparagraph 2.2. Having as reference 
the results obtained on the architecture with one processor, the goal is to achieve 
an efficient implementation on the two processors architecture, with lower 
execution times and also a reduced power consumption and cost. 

In order to achieve this, a performance analysis is made on various 
configurations of the MicroBlaze processor (by enabling or disabling optional 
modules). Thus, the optional modules used are: Barrel Shifter (wrote B) 32-bit 
multiplier (wrote M), hardware divider (wrote D) pipeline depth (wrote O, 5 
levels for O deactivated and three levels for O activated). In terms of software, the 
compiler allows three optimization levels: l = low level software optimization, m 
= medium level software optimization, h = high level software optimization. 

For the image filtering application, as we see in chart 1, the only 
significant improvement on both the execution time (represented graphically as a 
value inversely related to performance) and the logic resources used (lower score 
is better) is obtained at the activation of 32-bit multiplier and other configurations 
that use this option. Therefore, the best performance is achieved using the 
configuration B + M + D with a score of 1.48 for performance, 1.09 for logic 
resources and 1.29 for dynamic power, while the optimal configuration regarding 
the consumption of logic resources is B + M + D + O with a performance score of 
1.45 (corresponding to a total filtering time of 3251.67 ms) 0.89 for logic 
resources and 1.68 for dynamic power. 

A series of software optimizations can be added to these configurations. 
The Xilinx Platform Studio application (XPS) provides the ability to make 
improvements in the compiler, so the designer can use four optimization levels: 0, 
low, medium and high: 

- low level - is done by tweaking the jump and pop instructions 
- medium level - performs almost all the optimizations available that do 

not involve a significant increase in the size of the memory consumption. The 
compiler does not perform optimizations to the waiting loops or to the data 
accessing memory. 
            - high level - in addition to the medium optimization level, improvements 

that will increase the size of the executable file are added [6][7]. 
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In order to obtain the best performance without affecting the logic 
resources used, with software optimization we can reach a maximum score of 2.83 
corresponding to a filter time of 1668.215 ms for the BMDh configuration. 

If the software optimizations are applied to the BMDO configuration, 
similar greatly improved performance will be obtained  but also, the performance 
difference between BMD and BMDO of 0.035 which corresponds to a total 
filtration time increased by 77ms (for BMDO) will be kept. 

 
B=Barelshifter  M=Multiplicator D=Divizor  O=Optimizare l=low  m=medium  h=high 

Although we have found an optimum ratio between performance and logic 
resources used, we also intend to optimize the dynamic power consumption. As 
expected, there is no perfect configuration, because of the high power 
consumption of the B+M+D+O configuration (the best one). In this case we have 
noticed that this configuration led to a significant increase of the dynamic power 
consumption reaching the value of 0.764W (score 1.68) compared to the 
minimum consumption of 0.419W (score 0.99) obtained in the configuration 
where the only enabled option was the optimization. Thus in terms of system 
power consumption the configurations B+M+D and M+D are compared, yet 
having a moderate power consumption. These two patterns have increased power 
consumption up to 9.3% (0.18 W) however they bring a better performance of up 
to 50% (1.58 seconds). 

The optimal configuration in terms of dynamic power consumption is 
B+M+D+h. The aim of this paper is to find the Speed Up of the multiprocessor 
system, and that is why we choose the configuration with the highest performance 
at the expense of power consumption. 

Along with the transition to the 2 processor architecture, a filtering 
algorithm transformation has to be made in order for the 2 processors to work in 
parallel (as can be seen in figure 7 above). Thus, the filtering algorithm was 
parallelized resulting two types of algorithms: one based on data parallelism 
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(Symmetric and Lop-sided) and one based on a pipeline structure. (Syncro and 
Syncro2). All these algorithms were summarized in section 2.2 

The following graph presents the speedup of each algorithm and as a result 
of the performance obtained by running these algorithms. The Speed Up actually 
represents the performance improvements brought by the architecture with two 
processors comparing to the performance obtained on single processor 
architecture. By analyzing this graph we can easily see that enabling the 32-bit 
multiplier has a positive impact on Speed Up's filtering algorithms. Also, from 
this graph we can see that the best performance is obtained in the asymmetrical 
algorithm since the new added processor, which uses only internal memory is 
more efficiently exploited. Similar to the architecture with one processor, in this 
case the most capable configuration is B+M+D+h with a maximum Speed Up of 
1.69. 

 
In terms of dynamic power consumption it can be seen that the enabling of 

an option which brings significant performance benefits, will not necessarily lead 
to increased power consumption. This is observed for the activation of the 32-bit 
multiplier where the architecture with two processors has obtained a consumption 
with 0.007 W less than the consumption obtained on the same architecture but 
with the basic configuration. On the other hand, the architecture with two 
processors has a slightly higher consumption than the one obtained on single 
processor architecture because the dynamic power depends on the interconnection 
node capacitance, circuit voltage and switching frequency [20].Therefore, if you 
add new components to architecture, they require additional interconnection nodes 
that will lead to an increase of the dynamic power consumption for example: the 
architecture with 2 processors consumes with 0.189W more than single processor 
architecture for a configuration in which the 32 bits multiplier is activated. The 
dynamic power consumption difference between the two architectures varies 
depending on the processors configuration, so that the maximum difference is 
reached in the configuration with the barrel shifter activated (it consumes with 
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0.43W more than the single processor architecture in the same configuration), and 
respectively the minimum of this difference (0.134W) is achieved in the BMDO 
configuration. Thus, this configuration consumes with 17.6% more power and 
with 58.9% more logic resources than the single processor architecture, however 
it gains a performance boost of up to 35.4%.The BMDh configuration that was 
considered optimal, presents a 26.5% power consumption increase, a 57.7% 
increase in logic resources used and also the best performance increase (by 
69.3%) comparing to the single processor architecture. 

Therefore we obtained two optimal configurations, an optimal 
configuration in terms of power consumption (BMDO) and an optimal 
configuration in terms of performance (BMDh). Depending on the designer or 
application purpose, one of these two configurations is chosen. In our case the 
configuration considered optimal is the one with the best performance (BMDh) 
because our goal was to obtain better performance using two processors 
architecture. 
 

 
Ideally, the efficiency (efficiency = Speed Up / number of processors) of a 

system with two processors should be 1, which means that by adding a processor 
to the system should double the system performance, but  unfortunately this is not 
achieved in this case. As expected, each parallelization method lends itself better 
or worse to a particular type of filter, however the lop-sided algorithm provides a 
balanced efficiency for all three algorithms, resulting a maximum efficiency of 
0.85 for the B+M+D+h configuration. After a brief analysis of the effectiveness of 
each algorithms graph (shown in graph 4) we can easily see that the efficiency 
increases significantly with the enabling of the software optimizations, so we can 
conclude that these filtering algorithms were not fully parallelized. 
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4. Conclusions 

The best performance for the single processor architecture has been 
obtained for the configuration in which the hardware multiplier, the barrel shifter, 
the hardware divider and the high level software optimization have been activated. 
Therefore we have obtained a minimum filtering time of 1.66 s.  

In order to achieve a smaller filtering time, we have chosen the 
architecture with two processors. Once created the multiprocessor architecture, we 
started the parallelization of the filtering algorithm resulting four versions, each 
with its advantages and disadvantages. After examining the data obtained for each 
version, we have concluded that the best parallelized filtering algorithm was the 
one called lop-sided (asymmetrical), which has reached a minimum filtration time 
of 0.98 s, thus achieving a speed-up rate of 1.69 and an efficiency rate of 0.84. We 
then analyzed how the power consumption and the number of logic cells were 
affected. Comment: for a 40.95% decrease in the execution time, the power 
consumption increased by 26.5% and the number of logic cells increased by 
57.75% (sum of Register Slice and Slice LUT).Considering that the HW-SW 
design of multiprocessor systems based on FPGA IP Cores is new, it is necessary 
to examine very closely the available possibilities. By exploiting the advantages 
of this technology, we can implement new MPSoC architectures that offer an 
optimal performance/power consumption ratio. 

Given the fact that a standard for these multiprocessor systems on chip 
does not yet exist, in addition to the solutions used in this paper, there are other 
improvements that could be added to this system. These improvements can be 
hardware related, consisting in the processors interconnection using FSL [8], the 
transmission of the processed data from one processor to another using 
xps_mailbox [8], or adding an external DDR memory which will allow the 
processing of larger color images. Other improvements can be software related, so 
these algorithms could be optimized by editing the part of the code that allows the 
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image to be read from the memory card in a way that the program code will fit 
entirely in the internal memory. Another improvement could be the usage of 
different methods of parallelizing the filtering algorithm. 
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