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S-ACTS WITH FINITE LENGTH ON CONGRUENCES

by Davood Gholipour!, Hasan Barzegar?, Hamid Rasouli® and Abolfazl Tehranian®

An S-act A over a semigroup S is called strongly noetherian if it satisfies
the ascending chain condition on its congruences. This is equivalent to being finitely
generated of each congruence on A. We provide some fundamental facts about strongly
noetherian acts. Another notion concerning chain conditions studied here is the property
of being A of finite length on congruences. It is proved that every strongly noetherian
as well as strongly artinian S-acts has finite length.
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1. Introduction and preliminaries

A finiteness condition for a class of algebraic systems is any property possessed by all
finite members of that class. Such conditions are in fact a classical approach in the study of
algebraic systems of different types and often formulated in terms of some notions concerning
ordered sets, most importantly the maximal and the minimal conditions which are equivalent
to the ascending and the descending chain conditions, respectively. A noetherian (artinian)
algebraic system is the one which satisfies the ascending (descending) chain condition on its
“substructures”. Noetherian and artinian rings and modules have been widely studied in
the literature. Unlike to the case of rings and modules, there are two different approaches
for chain conditions on S-acts over a semigroup S: one is via their subacts, and the other via
their congruences, and the notions of noetherian (artinian) and strongly noetherian (strongly
artinian) are used for S-acts with ascending (descending) chain conditions on their subacts
and congruences, respectively. The study of right noetherian semigroups and noetherian
S-acts were initiated by Hotzel [5] and Normak [14], respectively. Further studies on these
notions or their connections with other algebraic properties can be found in a number of
papers, for example, see [3, 4, 6, 8, 9, 11, 12, 15, 16, 17]. It is well-known that a module M
has finite length if and only if it is both noetherian and artinian, where the length of M is
defined to be the length of the longest chain of submodules of M. Here we aim to introduce
and study the length of acts over semigroups and those ones with finite lengths. Using the
notion of a saturated chain of congruences of S-acts, we define the length of an S-act as the
shortest length of its saturated chains. It is shown that, in contrast to the case of modules,
two saturated chains of congruences for an S-act A do not generally have the same length
and also being A of finite length is not necessarily equivalent to being it strongly noetherian
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as well as strongly artinian. Let us first recall some definitions and ingredients concerning
S-acts needed in the sequel. For more information and the notions not mentioned here, see
[7, 9]

Throughout the paper S stands for a semigroup with or without identity unless oth-
erwise stated. Also, we set S' = S U {1} where 1 is an identity adjoined to S provided
that S has no identity element, and otherwise, S' = S. A non-empty set A is said to be a
(right) S-act if there is a, so called, action pn: A x S — A such that, denoting p(a, s) := as,
a(st) = (as)t and if S is a monoid with 1, al = a, for all « € A and s,t € S. Each semi-
group S can be considered as an S-act with the action given by its operation. An element
0 € A is said to be a fized (zero) element if s = 6 for all s € S. The S-act AU {6} with
a fixed element 6 adjoined to A is denoted by AY. A non-empty subset B of A is called
a subact of A if bs € B, for every s € S and b € B. A non-empty subset X of A is a
generating set for A if A = XS, where XS = {as | z € X,s € S} for the case where
S is a monoid, and if S is not a monoid, A = XS U {z}. By a cyclic act we mean an
S-act with a singleton generating set. Any non-empty set A can be made into an S-act
by setting as = a for all a € A, s € S, namely trivial action. A simple S-act is an S-act
with no proper subacts. Let A and B be two S-acts. A mapping f : A — B is called a
homomorphism if f(as) = f(a)s for all a € A,;s € S. The product of a non-empty family
{A; | i € I'} of S-acts is their Cartesian product [ [;.; A; with the componentwise action, and
the coproduct [];.; A; of this family is their disjoint union with the action (a,i)s = (as, )
for every s € S and a € A;,i € I. An (act) congruence on an S-act A is an equivalence
relation p on A for which apa’ implies that (as)p(a’s) for any a,a’ € A and s € S. For
H C A x A, the congruence generated by H, that is, the smallest congruence on A contain-
ing H, is denoted by p(H). For a,b € A, one has ap(H)b if and only if either a = b or
there exist p1,D2,. .., Pnsq1,q2,---qn € A, 81,82,...,58, € S* where (p;,q;) € HU H™!
for i = 1,...,n, such that a = p1S1,q181 = P2S2,@282 = P3S3,...,qnSy = b, where
H=' = {(y,x) | (x,y) € H}. The above sequence is called an H-sequence of length n.
We also denote the set of all congruences on A by Con(A). For a subact B of an s-act A,
the Rees congruence pp is defined as follow, apgb if and ounly if a = b or {a,b} C B. The
factor act A/pp may be denoted by A/B.

2. Strongly noetherian S-act

In this section we provide some fundamental facts about strongly noetherian S-acts.
We investigate the behaviour of the property of being strongly noetherian under some act-
theoretic constructions.

For an S-act A, the congruences Ay = {(a,a) | a € A} and V4 = A x A are called
diagonal congruence and universal congruence, respectively. We say that a congruence is
trivial if it is diagonal or universal. Otherwise, it is called non-trivial. By a non-diagonal
(non-universal) congruence, we mean a congruence 6 on A which 6 # Ay (0 # Va4).

Definition 2.1. A congruence py on an S-act A is called a cover of a congruence p; and
denoted by p1 T p2 if p1 C p2 and there is no congruence strictly between p1 and p2. Also
p2 is called a principal extension of p1 provided that there exists (a,b) € A x A such that

p2 = p(p1U{(a,b)}).

Note. It is clear that each cover is a principal extension, but the converse is not
generally true. For instance, consider a semilattice S = (L, A) as an act over itself with top
and bottom elements T and L, respectively. Then Vg is a principal extension of Ag of the
form Vg = p(As U{(L, T)}) whereas S may have non-trivial congruences.
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Recall that an S-act A is said to be noetherian (artinian) if every ascending (descend-
ing) chain of subacts of A is eventually stationary. Considering chain of congruences instead
of chain of subacts in these definitions, we have the following:

Definition 2.2 ([15]). An S-act A is said to be strongly noetherian (strongly artinian) if
every ascending (descending) chain of congruences of A is eventually stationary.

Remark 2.1. (i) If A is a strongly noetherian (strongly artinian) S-act, then it is noether-
ian (artinian). These follow from the fact that for any subacts A;, Aj of A, if A; C A;, then
Pa, C Pa,- But the converse is not valid in general. For this, consider a group S as an
S-act not finitely generated as a group. Clearly, S is simple (i.e. it has no proper nontrivial
normal subgroups) and so noetherian and artinian. Since S is not finitely generated, it is
not strongly noetherian (see Lemma 3.3). In Example 2.1(i), we present an S-act that is
artinian but not strongly artinian.

(ii) Fach subact of a strongly noetherian A is finitely generated. In particular, A is
finitely generated. But finitely generated acts are not necessarily strongly noetherian (see
Ezample 2.1(ii)).

Lemma 2.1. Let A be an S-act. The following are equivalent:
(i) A is strongly noetherian.
(ii) Fvery 6 € Con(A) is finitely generated.
(iii) For each non-diagonal @ € Con(A), there is a finite chain Ay =6y C 0, C--- C
0, = 0 of congruences on A in which 6; is a principal extension of 6;_1, for each 1 <i <mn.
(iv) Every set of congruences on A has a maximal element.

Proof. The equivalences (i) < (ii) and (i) < (iv) are clear.

(i) = (iii) Let 6 € Con(A). Using (ii), = p({(a1,b1),..., (an,b,)}) for some a;,b; €
Aji=1,...,n. Taking 6y = A and 0; = p({(a1,b1), ..., (a;,b;)}) for every 1 < i < n, each
0; is a principal extension of 6;_1.

(iii) = (ii) Let 6 € Con(A). It follows from the assumption that there is a finite
chain A =60y C 0, C --- C 60, = 0 of congruences on A in which 6; is a principal extension
of 0;_1, for each 1 < ¢ < n. Then for each 1 < i < n, 6; = p(6;—1 U {(a;,b;)}), for some
a;,b; € A. This clearly gives that 8 = p({(a1,b1),...,(an,bn)}), which means that 6 is
finitely generated. O

Using Rees congruences on A, it is not difficult to check that if every 6 € Con(A) is
finitely generated, then every subact of A is finitely generated. So we have the following:

Corollary 2.1. If A is a strongly noetherian S-act, then every subact of A is finitely gen-
erated.

Corollary 2.2. If A is a strongly noetherian S-act with zero, then there exists a finite set
T C Ax A of the form {0} x X such that for any a,b € A, there is a T-sequence from a to
b of length at most 2.

Proof. By Remark 2.1(ii), A is generated by a finite set X. Consider T' = {0} x X. So for
any a,b € A there exist 1,29 € X and s,t € S such that a = z1s and b = xot. Now we
have the T-sequence a = x1,0s = 0t,zot = b from a to b of length at most 2. O

Here we give some examples used in the sequel.

Example 2.1. (i) Consider the semigroup S = (N,min). The following strict chain shows
that S is not a strongly noetherian S-act:

Ag C P12y c Pi1,2,3 c Pi1,2,3,43 (GRS
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Also it is clear that for each n € N, 0,, = Ag U {(a,b) | a,b > n+ 1} is a congruence in

which Vg D 01 D0y D --- is a strict chain. So S is not strongly artinian as an S-act. Note
that this is an example of an artinian S-act which is not strongly artinian.
(ii) Similarly to (i), the semigroup S = (N,max) is not strongly noetherian nor

strongly artinian as an S-act.
(iii) Let S = (N,+). The strict chain

shows that S is not strongly artinian as an S-act. But S is a strongly noetherian S-act.
For this, take a congruence p on S. Using Lemma 2.1, it must be shown that p is finitely
generated. Let ng be the smallest natural number for which there exists m € N with ng < m
and nopm. Assume also that mg is the smallest natural number such that ng < mgy and
nopmo. Then mg = ng + to for some ty € N. Since (ng + t)p(mo +t) = (ng +t) + to for
each t € N, np(n + to) for each n > ng so that np(n + ktg) for all k € N. Let x,y > ng
and x = y (mod ty). So y — x = kotg and hence xpy. Now suppose that x,y > ng
and x # y (mod ty). Then there exist r1,72 € N such that xp(ng + r1) and yp(no + r2).
Without loss of generality, assume that 0 < r; < ro < to. If (ng + r1)p(no + r2), then
(no + 11 + to — r2)p(ng + 12 + to — r2) and hence (ng + r1 + to — r2)pmopno in which
r1+to — 12 < to which is impossible. Thus (x,y) ¢ p which gives that all equivalence classes
of p are [nol,, [no+1],, [no+2],, ..., [no+ (to — 1)],. Hence, p is generated by the finite set
{(no,mo), (no+1,mg+1),...,(ng+to —1,mg+to — 1)}, as required.

As usual, a non-universal (non-diagonal) congruence ¢ on an S-act A is said to be
maximal (minimal), if there is no congruence p on A lying strictly between 6 and Vg (Ag).
We say that an S-act A satisfies the maximal (minimal) condition for congruences if each
non-universal (non-diagonal) congruence is contained into (contains) a maximal (a minimal)
congruence.

Remark 2.2. FEvery strongly noetherian (strongly artinian) S-act satisfies the maximal
(minimal) condition for congruences. The converses of these facts are not generally true.
For this, take any infinite set A = {a;}2, with trivial action of a monoid S on A. Note that
in this case every equivalence relation is a congruence. Clearly, each equivalence relation
with two equivalence classes is a mazimal congruence and each Rees relation Plosiayy 180
minimal congruence on A. It is easily seen that any non-universal congruence p on A is
contained into an equivalence relation 0 with two equivalence classes which is maximal. Now
let p be a non-diagonal congruence and (a;,a;) € p. Then p contains Plasa;y which s
minimal. However, A is neither strongly noetherian nor strongly artinian. Indeed, there are
the following infinite strict chains of congruences:

A CPlayay) CPlayiagagy C 0 A VD Puy D Pa g gy 2

Lemma 2.2. If A is a strongly noetherian S-act, then every subact and every homomorphic
image of A are also strongly noetherian.

Proof. Consider a subact B of A and 6 € Con(B). Using [9, Theorem 2.1(i)], § = § U A4
is a congruence on A which is finitely generated by Lemma 2.1. So 6 is finitely generated
and hence B is strongly noetherian. Let p € Con(A). Since there is a lattice isomorphism
between the interval [p, V] = {6 € Con(A) | p C 0} of the lattice Con(A) and Con(A/p) (see
[9, Theorem 2.1(ii)] and [2, Theorem II.6.20]), every ascending chain of congruences of the S-
act A/p has a correspondence ascending chain of congruences in the interval [p, V 4], which is
eventually stationary. More precisely, here the lattice isomorphism « : [p, V4] — Con(A/p)
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is given by a(f) = 0/p for any 6 € [p, V 4], where 0/p = {([a],, [b],) € (A/p)? | (a,b) € O}.
Thus, using the fact that each lattice isomorphism is also an order-embedding, i.e. «(6;) C
a(6;11) implies 0; C 6;11, the second assertion also holds. O

Corollary 2.3. Let {A; | i € I} be a non-empty family of S-acts. If ||
noetherian, then so is each A;.

ser Ai is strongly

We need the following theorem in the sequel proved in [8, Lemma 4.1].

Theorem 2.1. Let A be a subact of an S-act B. Then A and B/A are strongly noetherian
if and only if B is strongly noetherian.

Now we are going to study the behaviour of being strongly noetherian with respect
to coproducts.

Proposition 2.1. Let B be a subact of an S-act A for which A\ B is a finite set. Then A
1s strongly noetherian if and only if so is B.

Proof. This follows immediately from Theorem 2.1, since A/B is finite and hence obviously
strongly noetherian. O

Corollary 2.4. An S-act A is strongly noetherian if and only if so is AY.

AUB
Using Theorem 2.1, Corollary 2.4 and the fact that

and B, we have the following:

~ BY for any S-acts A

Corollary 2.5. (i) Let A and B be two S-acts. Then AU B is strongly noetherian if and
only if A and B are strongly noetherian.

(ii) Let {A; | i € I} be a non-empty family of S-acts. If]]
then so is each A;,i € 1.

se1 Ai 1s strongly noetherian,

Let A be a T-act and « : S — T be a semigroup epimorphism. Then A can be made
into an S-act by setting as = aa(s) for each a € A and s € S. Also, if § € Con(Ar), then
0 € Con(Ag) so that if A is strongly noetherian as the S-act, then it is strongly noetherian
as the T-act.

Proposition 2.2. Let S be strongly noetherian as an act over itself. Then an S-act A is
strongly noetherian if and only if it is finitely generated.

Proof. If A is strongly noetherian, then it is finitely generated by Corollary 2.1. For the
converse, let A be generated by {z1,z2,...,2,}. So A is a homomorphic image of [}, S.
Using Corollary 2.5 and Theorem 2.1, the result follows. (]

Remark 2.3. It is easily seen that each congruence on an S-act A is a subact of the S-act
A x A. So if Ax A is noetherian, then A is strongly noetherian. But the converse is not
generally true. Indeed, the semigroup S = (N, +) explained in Example 2.1(iii) is a strongly
noetherian S-act. Clearly, (a,b)S = {(a + k,b+ k) | k € N}. Thus

(1,1)S € (1,1)SU(2,1)S € (1,1)S U (2,1)SU(3,1)S C - --

1s a strict ascending chain of subacts of S x S, which means that S x S is not noetherian and
hence not a strongly noetherian S-act.

Proposition 2.3. Let A be an S-act. If A x A is a noetherian S-act, then A has finitely
many minimal congruences.
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Proof. Assume that I' = {6;},_, is a set of distinct minimal congruences of A where I is
infinite. Let I'y C 'y C '3 C - -+ be a strict chain in P(I"), where P(I") denotes the power set
of I'. Consider the chain J;cp, 0i C U,er, i C -+ - Since each [J;p, 6; is a subact of A x A
and A X A is noetherian, the chain is eventually stationary. So there is N € N such that for
every j > N, Uierj 0; = UieFN ;. Thus for each i € I';, §; C UiEFN ;. Since #; is minimal,
it is monogenic as 6; = p(a,b),a,b € A. Then there is 0, € I'y such that (a,b) € 0 and
hence 6; = 6., by minimality of 8, which is a contradiction. O

Similarly to the proof of Proposition 2.3, one can show that a noetherian S-act for
which every congruence is a Rees congruence has finitely many minimal congruences.

Remark 2.4. Let A be a strongly artinian or a strongly noetherian S-act. Then it has only
finitely many congruences ¥ = {61,062, ...,0,} satisfying 6; C p(U;’;izl 0;) for each 8; € X.
To this end, let {0; | i € N} be an infinite set of congruences of A. For the case where A
is strongly artinian, consider the chain p(U;=, 0;) 2 p(Ujeq 0i) 2 - -+ of congruences of A.
So there exists N € N such that p(U;Zy 0:) = p(UiZni10i)- Thus On S p(Ui= 1 04)-
If A is strongly noetherian, then the chain 61 C p(6h U by) C p(61 UbyUbs) C --- of

congruences of A gives that there exists N € N such that ,O(Uiji1 ;) = p(Uf\s{l 0;) and hence

Ong1 C P(Ui\[:l 0;).

3. S-Acts with finite length

This section is devoted to introduce the notion of length of an S-act by means of
finiteness conditions on its congruences. We investigate whether the property of being of
finite length is inherited by being strongly noetherian and strongly artinian and vice versa.
In the case that S has finite length as an S-act, it is shown that each S-act has finite length
if and only if it is finitely generated. Some results are also obtained when S is a group.

Let A be an S-act and p,8 € Con(A). If p C 6 and no congruence of A lies strictly
between p and 6, we say that 6 is a cover for p and use the notation p C 6 in which “C”
denotes the cover relation on Con(A). Likewise, the cover relation on the set of subacts of
an S-act can also be defined.

Definition 3.1. Let A be an S-act. Any chain of the form
AaCprCpeC-Cpp=VaneN,

of congruences of A is called a saturated chain (of congruences of length n) for A. The
length of A, represented as l.(A), is the shortest length of saturated chains of congruences of
A. If A has no saturated chain, then we define l.(A) = co. More generally, let § € Con(A).
Every chain of the form

ApCppCpC---Cpp=0,n€N,

of congruences of A is called a saturated chain of (congruences of length n) for 6. The length
of 0, represented as 1(0), is the shortest length of saturated chains of 0. If 6 has no saturated
chain, then we define [(0) = co. So I(V4) = l.(A). Moreover, any saturated chain of the
form

fcocbC---C0,=Va

18 said to be a saturated chain containing 6.

Proposition 3.1. For an S-act A, we have the following assertions:
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(i) If A is strongly artinian, then each non-universal congruence of A has a cover. In
particular, A has a minimal congruence. Also every set of congruences of A has a minimal
element.

(ii) If A is strongly noetherian, then each non-diagonal congruence of A is a cover of a
congruence of A. In particular, A has a mazimal congruence. Also every set of congruences
of A has a maximal element.

Proof. (i) Let p be a non-universal congruence of A. If p C V, then we are done. Otherwise,
there is a chain p C 8, C V. If p C 64, there is nothing to prove. Otherwise, there is a chain
p C 0 C 01 C V. Continuing the similar argument, if each congruence 6; is not a cover of
p, then we have an infinite strict chain of congruences, which is a contradiction.

(ii) The proof is similar to (i). O

Lemma 3.1. If A is strongly noetherian as well as strongly artinian, then for all congruences
p C 0 there is a saturated chain of congruences p C p1 C pa T -+ C pp = 0.

Proof. If p C 0, then we are done. Otherwise, since A is strongly artinian, by Proposition
3.1, the set {7 € Con(A) | p C 7 C 0} has a minimal element, say p;. So p C p1 C 6.
If p; C 0, then there is nothing to prove. Otherwise, there exists ps € Con(A) such that
p1 C p2 C 0. Continuing the similar process, if each p; is a proper subset of 6, then we get
the strict infinite chain of congruences which contradicts being strongly noetherian of A.
Therefore, p,, = 6 for some n € N. Hence, pC p1 C p2 C -+ C pp, = 0 is a saturated chain
of congruences. |

Remark 3.1. As a corollary of Lemma 3.1, it is concluded that if A is both strongly noe-
therian and strongly artinian, then A has finite length. But the following example shows that
the converse of this fact is not generally true. Let S = Zy = {1,z}, and A = {a;,b; | i € N}
be the S-act with action given by a;x = b; and b;x = a;. Consider Bg = () and for eachi € N,
B; = B;—1 U{a;,b;}. So the saturated chain of Rees congruences As C pp, C pp, C -+ -,
shows that A is not necessary strongly noetherian. But A has finite lenght, for, let 8 be an
equivalence relation on A induced by the classes {a; | i € N} and {b; | i € N}. Clearly, 0 is
a congruence on A and the saturated chain Ay T 0 T V 4, shows that A has finite lenght.

In contrast to the case of modules that two saturated chains of submodules over a
ring have the same lengths and if N is a submodule of M, then I[(N) < (M), the following
example shows that two saturated chains of congruences for an S-act A with finite length
do not have necessarily the same lengths and also there exists a congruences o and 6 on A
for which o C 6 but 1(6) < i(0).

Example 3.1. Let S = Zy = {1,z}, and let A = {a,b,c,d, e} be the S-act with action given
as follows:
ar =b,bxr = a,cx =d,dr = c,ex = e.

Let By = {a,b}, Bs = {c,d},C = {a,b,e}. Clearly, A is the disjoint union of its subacts C
and A\C'. Let o be the congruence with classes C' and A\C. Then we have a saturated chain
of congruences Ag C p, T p, T 0 C Va of length 4. Now let T be the congruence on A with
classes {a,c,e},{b,d, f}. Clearly, there is no congruence 8 on A such that Ay C 0 C 7.
Thus Ay C T C V4 is a saturated chain of congruences of length 2. So there are two
saturated chains on congruences of A with different lengths. Also o has a saturated chain
as Aa C p, T p, T o, but it has no saturated chain of length 2. So l(o) =3 > 2 =1(V).

A finite S-act is clearly strongly noetherian as well as strongly artinian (and so has
finite length). But the converse does not hold in general (see [10]). In continue up to
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Proposition 3.2, we discuss about the converse of this fact in the case being S a group.
First, consider the following example.

Example 3.2. Let A be an S-act with trivial action. Then we have the saturated chain of
Rees congruences Aa T pa;} C Plaj,any C -+ C Va, where a; € A. Hence, A is finite if
and only if I.(A) is finite.

Clearly, for a semigroup S, act congruences on the S-act S are precisely the right
congruences on S. For a group S, note the following:

Lemma 3.2. Let S be a group.

(i) There exists a lattice isomorphism between act congruences on S and subgroups of
S.

(ii) There exists a lattice isomorphism between group congruences on S and normal
subgroups of S

Proof. (i) Let T be a subgroup of S. We construct an act congruence on S as follows: xzp,y
if and only if zy~! € T (and hence T' = [1]5,.)- Conversely, consider an act congruence p on
S. Then T = [1], is clearly a subgroup of S. It is also easily seen that this correspondence
is one to one.

(ii) The proof is similar to that of part (i). |

Corollary 3.1. Let a group S have finite length as an S-act. Then S has a finite length on
its group congruences.

Using Lemma 3.2(i), we have

Corollary 3.2. Let S be a group. Then the following are equivalent:

(i) I.(S) = n.

(i) There is a saturated chain {1} C S; T Sa T --- T S, = S of length n of subgroups
of S.

Lemma 3.3. Let S be a group. Then

(i) If S is a cyclic group which is strongly artinian as an S-act, then it is finite.

(ii) If S is strongly noetherian as an S-act, then every subgroup of S is a finitely
generated group.

Proof. (i) Let S = (s). Then S = (s) D (s?) 2 (s®) D -+ is a descending chain of subgroups.
Using Lemma 3.2, there exists n € N such that (s") = (s"*1). Then s" = s*("*+1) for some
k € N and hence s*("*D=" = 1 which implies that S is finite.

(ii) Let T be a non-finitely generated subgroup of S generating by an infinite set X.
Let {s;}32; € X. Consider the subgroups 71 = (s1), To = ($1,82),... of S and the S-act
congruences p; on S constructed as follow: xp;y if and only if zy~! € T; (and so T; = 1],,)-
So the infinite strict chain p; C pa C p3 C -+ contradicts the hypothesis. ]

Proposition 3.2. Let an abelian group S have finite length as an S-act. Then the following
assertions hold:

(i) S is finite.

(ii) Each finitely generated S-act is finite.

Proof. (i) First we prove the assertion for an abelian group S with finite length as an S-act.
By Remark 3.1 and Lemma 3.3(ii), S is a finitely generated group. Let S be generated by
the set X = {x1,x2,...,2,}. Take any z; € X. We claim that the subgroup T; = (x;) has
finite length as a T;-act. Otherwise, T; is not a strongly noetherian S-act or not a strongly
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artinian T;-act. Thus T; has an ascending or descending strict infinite chain of congruences.
By Lemma 3.2, T; has an ascending or descending strict infinite chain of subgroups, which
is in fact an ascending or descending strict infinite chain of subgroups of S. Using Lemma
3.2, S has infinite length, which is a contradiction. Now Remark 3.1 and Lemma 3.3(i) give
that z; has finite order and hence S is finite.

(ii) Follows from (i). O

A congruence # on an S-act A is said to be prime if p;1 N pay C 6 implies p; C 6 or
p2 C 0, for p1, pa € Con(A).

Theorem 3.1. If A has finite length and every mazimal congruence of A is prime, then the
number of maximal congruences of A is finite.

Proof. Let . = {(_; pi | n € N, p1,..., p, are maximal congruences of A}. Using Propo-
sition 3.1 and Remark 3.1, ¥ is non-empty and has a minimal element ﬂﬁzl pi, say. Now
let p be a maximal congruence of A. So p1 N---Np;Np € ¥ which implies pyN---Np: C p.
Since p is prime by the assumption, p; C p for some 1 < i <t. So p; = p by maximality of
pi. Hence, A has a finitely many maximal congruences. ]

Remark 3.2. (i) It is clear that any S-act A is simple if and only if [.(A) = 1.

(ii) If S-acts A and B are isomorphic, then l.(A) = 1.(B). But the converse fails
in general. For this, take the monoid S = {1,s} where s> = 1. Consider two S-acts
A = {a,b,c} with trivial action and B = {a,b,c,d} with a and b are fized elements and
cl =ds = c and dl = ¢s = d. The non-trivial congruences of A are Rees congruences
Plab}s> Pla,cy and pip.cy, and that of B are Rees congruences piq pys Pia,c,d}s P{c,d} and Pib.c.d}-
So l.(A) = 1.(B) =2 whereas A and B are non-isomorphic.

(iii) For each S-act A, I.(A) < |A|. Indeed, if A is infinite, then we are done. Let
|Al =n. Then A has finite length as l.(A) =m. Let po=As Cp1 CpaC - C pm =V
be a saturated chain for A. We know each p; is a principal extension of p;—1. So for all 1 <
i < m there are distinct elements (a;,b;) € p; \ pi—1. Consider L = {(a1,b1),..., (am,bm) |
(ai,bi) S pi\pi—l; 1= 1,2,...,m} and L; = {al,...,ai,bl,...,bi | (aj,b]’) el 1<j5< ’L}
for 1 < i < m. By induction on 1 < k < m, we show that k < |Lg|. For k = 1 we are
done. Let k —1 < |Lk_1|. Let (ag,br) € L and then (ar,br) € pr \ pr—1- If ag,bp € Lp_1,
then pr, = prx—1, which is a contradiction. So one of ai or by, does not belong to Ly_1. Then
|Li| > |Lp—1|+1> (k—1)+1=k. Therefore, m < |L,,| <|A].

Lemma 3.4. Let A and B be S-acts and p1,p2 € Con(A) and 6 € Con(B).
(1) If p1 T pg, then py WO C po UG in Con(AU B).
(i) max{lc(A),lc(B)} < l(AU B) < lc(A) +1c(B) + 1.

Proof. (i) Clearly, p;lU0 € Con(AUB),i =1,2. Let p; U8 C ¢ C poUB for ¢p € Con(AUB).
Then p1 C ¥|, C p2 and ¥|, = 0. So ¢|, = p1 or |, = p2 and hence ¥ = p; UG or
Y =p2U0.

(ii) The first inequality follows from the fact that the restriction of any congruence of
AU B to A (or B) is the congruence of A (or B). For the second inequality, if I.(A) = oo
or l.(B) = oo, then there is nothing to prove. Let I.(A) = n and I.(B) = m. Then there
are saturated chains Ay Cpr Cpe C - Cpp,=Vagand ApC " ---C 0, =Vp
of congruences for A and B, respectively. Then, using (i), A, , =A, UApC p1 UAB C
p1|_|91 [ p2|_|91 C---C ,On|_|91 =VaU0,C VAU C---CVaUb, =V4UVBLC VAuB'
Hence, I.(AUB) <n+m+1=1.(A)+1.(B)+ 1. O

The following example shows that the above inequality can be proper or sharp.
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Example 3.3. (i) Let A = {a,b} and B = {c} be S-acts with trivial actions. Then Ay C
Va, Ap =Vp and Aa g T Aaup U{(a,b),(bya)} C Vaug. Sol.(A) =1, 1.(B)=0 and
l.(AUB)=2.

(ii) Consider the S-act given in Example 3.1. Then A = ByU By in which By = {a, b}
and By = {c,d}. Clearly, .(B1) =1.(B2) =1 and hence [.(A) =2 < .(B1) +1.(B2) + 1.

Corollary 3.3. (i) Any S-acts A and B are of finite lengths if and only if so is AL B.
(ii) An S-act A has finite length if and only if the length of A% is finite.

Proof. (i) We get the result by appling Lemma 3.4(ii).
(ii) This is a direct consequence of part (i). O

Corollary 3.4. Let B be a subact of an S-act A. Then A has finite length if and only if B
and A/B have also finite length.

Proof. Follows from Corollary 3.3 and the fact that B U (A/B) = A%. O

Proposition 3.3. Let S have finite length as an S-act. Then an S-act A is finitely generated
if and only if it has finite length.

Proof. Let A be generated by {z1,22,...,2,}. Thus A is a homomorphic image of [} ; S.
Using the assumption and Corollary 3.3, [, S has finite length so that A has also finite
length. For the converse, let Ay C p1 C pa C -+ C pn, = V4 be a saturated chain of congru-
ences of A. By Note after Definition 2.1, each cover is a principal extension. So there is a set
H = {(a1,b1), (az,b2),...,(an,bn)} € V4 which V4 = p(H). Now for each a € A, choose
an element a # b, € A. Since (a,b,) € V4, there is a p € {a1,a2,...,an,b1,b2,...,b,}
and s € S such that a = ps. Hence, {a1,as,...,an,b1,ba,...,b,} is a generating subset of
A. O

Let B be a subact of A. Every p € Con(B) can be extended to a congruence p =
pUA, , € Con(A). Thus there is a one to one correspondence between the sets Con(B)
and {0 € Con(A) |6 C p,}.

Theorem 3.2. Let p € Con(A) and B be a subact of A. Then the following assertions hold:

(i) le(A) < 1(p) +1(A/p)-

(i) 1e(4) < 1.(B) +1.(A/B).
Proof. Tt 1.(A/p) = o0 or I.(A) = oo, so we are done. Let I(p) = n and I.(A/p) = m. Then
there are saturated chains Ay C p1 T po C -+ C pp = pand Ay, T 01/p C 02/p C
o+ C Om/p = Va/, of congruences for p and A/p, respectively. So A has the saturated
chain Ay CpprCpeC-- Cppo=pC b C O C - - C 0, =Vu of congruences. Thus
I(A) <n+m=1(p)+1.(A/p).

(ii) It is not difficult to check that {.(B) = l(p,) by using the fact that there is a
one to one correspondence between the sets Con(B) and {6 € Con(A) | § C p,}. So the
assertion follows from (i). O

The following example shows that the inequality in the previous theorem can be sharp
or proper.

Example 3.4. (i) Let S be an arbitrary semigroup. Consider the S-act A = {ag,a1,a2,a3}
with trivial action and the subact B = {ag, a1} of A. It is not difficult to check that l.(A) = 3,
I.(B)=1and l.(A/B) = 2.

(ii) In Example 3.1, it has been shown that l.(A) =2 and l.(B) = 1. Also, clearly the
S-act A/B is isomorphic to the S-act D = {ag,c,d} in which ag is a fized element, cx = d
and dr = ¢ and Ap C pye.qy C Vp. Thusl.(D) = 2.
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Proposition 3.4. Let A be an S-act and Ap T p1 T po C -+ T p, = Va be a saturated
chain of congruences of length n > 1 for A. Then the following assertions hold:

(i) Each ppm,1 < m <mn, is finitely generated by m elements.

(i) If l.(p) = k where p € Con(A), then p is generated by k elements.

(iii) A s finitely generated with 2n generators.

Proof. (i) For each 1 < ¢ < m, choose and fix (a;,b;) € p; \ pi—1- So p; = (pi—1 U (a;,b;)).
Consider H = {(a;,b;) | 1 <i <m}. Then H C p,, and hence p(H) C p,,,. On the other
hand, py C p(H),p2 = (p1 U {(a2,5)}) € p(H),ps = {p2 U {(as,bs)}) C p(H), ..., pm =
(Pm—1U{(am,bm)}) C p(H). So pm C p(H), which means that p,, is finitely generated with
m generators.

(ii) We are done by Lemma 3.1 and a similar argument as in part (i).

(iii) By part (i), V4 is generated by the set H = {(a1,b1), ..., (an,bn)}. So, for any
two distinct elements z,y € A, we have

T =P151,4151 = P252,.--,qmSm = Y.

Then each x € A is of the form x = ps where p € {a1,as,...,an,b1,ba,...,b,}. Thus A is
generated by 2n elements. O

Theorem 3.3. Let A be an S-act. If each subact of A x A is cyclic, then the following
assertions hold:

(i) A is strongly noetherian.

(ii) The lattice Con(A) forms a chain.

Proof. (i) Let 6; C 65 C --- be an ascending chain in Con(A). Consider 6 = |J;2, 6;. Then
there exist a,b € A such that 8 = p(a,b). So there is N € N such that (a,b) € 0y, which
implies § = O and hence A is strongly noetherian.

(ii) It follows from the assumption that each congruence on A is monogenic. Let
p(ay,b1) and p(az, bz) be two congruences on A. Since p(ay, b1) and p(asz, bs) are subacts of
A x A, there exists (a,b) € A x A such that p(a1,b1) U p(as,be) = (a,b)S. Thus (a,bd) €
p(ay,b1), say. Then p(az,b2) C (a,b)S C p(a,b) C p(ay,b1), which means that Con(4) is a
chain. ]

The following is a straightforward implication of Theorem 3.3, which gives a condition
for establishing the converse of Remark 3.1.

Corollary 3.5. If each subact of A X A is cyclic, then the following are equivalent:
(i) A has finite length.
(ii) Con(A) is a finite chain.
(iii) A is strongly noetherian as well as strongly artinian.
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