
U.P.B. Sci. Bull., Series A, Vol. 83, Iss. 4, 2021 ISSN 1223-7027

AN ITERATIVE APPROACH FOR THE SOLUTION OF THE

VARIATIONAL INCLUSION AND THE SPLIT FIXED POINT

PROBLEM
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In this paper, we study the variational inclusion and the split fixed point prob-
lem in Hilbert spaces. We propose an iterative algorithm by using the resolvent operator

technique for solving the variational inclusion and the split fixed point problem involved
in two pseudocontractive operators. Strong convergence analysis of the suggested algo-

rithm is demonstrated.
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1. Introduction

In this paper, we consider the following variational inclusion (shortly, VI) which con-
sists in finding a point u† ∈ H1 with the property

0 ∈ f(u†) + g(u†), (1)

where f : H1 → 2H1 is a multi-valued operator of a real Hilbert space H1 and g : H1 → H1

is a single-valued operator. The solution set of the VI is denoted by Ω1.
The VI includes several problems as special cases.
SI (i). For the case when H1 = Rn, the VI reduces to the generalized equation

investigated by Robinson [26].
SI (ii). If the operator g is identically null, then the VI reduces to the inclusion

problem investigated by Rockafellar [27].
SI (iii). With the choice f = ∂h, the subdifferential of a proper and lower semi-

continuous convex function h, the VI reduces to the following mixed quasi-variational in-
equality ([13, 23]) of finding u† ∈ H1 such that

〈g(u†), u− u†〉+ h(u)− h(u†) ≥ 0, ∀u ∈ H1.

SI (iv). Setting f = ∂(δC), the subdifferential of the indicator function δC of a
nonempty closed convex subset C, the VI reduces to the following variational inequality
([29]) of finding u† ∈ C such that

〈g(u†), u− u†〉 ≥ 0, ∀u ∈ C. (2)

Variational inequality and variational inclusion problems have attracted so much attention,
see, e.g., [1, 5, 6, 45, 46, 51]. The VI will continue to be one of the central problems in
nonlinear analysis and optimization ([15, 28, 34, 47, 48, 53, 56]). We begin by recalling
some notations as well as summarizing existing algorithms for solving the VI. Let H1 be a
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real Hilbert space with corresponding inner product 〈·, ·〉 and norm ‖ · ‖. A multi-valued
operator f : H1 → 2H1 with domain D(f) := {x ∈ H1 : f(x) 6= ∅} is called monotone if
〈x− y, u− v〉 for all u ∈ f(x) and v ∈ f(y). A monotone operator f is maximal if its graph,
i.e., the set Graph(f) := {(x, u) : x ∈ D(f), u ∈ f(x)} is not properly contained in the graph
of any other monotone operator. It is well known that a monotone operator f is maximal if
and only if for (x, u) ∈ H1 ×H1, 〈x− y, u− v〉 ≥ 0 for every (y, v) ∈ Graph(f) implies that
u ∈ f(x). A single-valued operator g : H1 → H1 is said to be $-inverse strongly monotone if
for all x, x† ∈ H1, ω‖ϕ(x)−ϕ(x†)‖2 ≤ 〈ϕ(x)−ϕ(x†), x−x†〉, where ω is a positive constant.

There are many iterative algorithms for solving the VI. Among them, a common
method is to use resolvent operator technique introduced in [27]. Especially, Zhang, Lee and
Chan [55] introduced an iterative scheme for finding a common element of the set of solutions
to the VI and the set of fixed points of nonexpansive mappings in Hilbert spaces. Kheaw-
borisut and Kangtunyakarn [18] proposed a modified subgradient extragradient method for
solving a system of variational inclusion problem and finite family of variational inequalities
problem. Zhang, Dong and Chen [54] presented a multi-step inertial proximal contraction
algorithm for solving monotone variational inclusion problem. Cholamjiak, Suantai and
Sunthrayuth [12] introduced an explicit parallel algorithm for solving variational inclusion
problem and fixed point problem. Kazmi et. al. [17] investigated a hybrid iterative algo-
rithm for solving monotone variational inclusion and hierarchical fixed point problems.

Recently, the split fixed point problem has been investigated extensively due to it is
an extension of the split feasibility problem ([7]). In this paper, we are interested in the
split fixed point problem for the class of pseudocontractive operators. This more general
class, which properly includes the classes of nonexpansive operators, directed operators and
demicontractive operators, is more desirable in fixed point methods [31, 32, 33, 38, 58]. To
begin with, let us recall that the split feasibility problem (shortly, SFP) is to find a point
x† with the property

x† ∈ C such that Ax† ∈ Q, (3)

where C and Q are two nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively and A : H1 → H2 is a bounded linear operator.

The SFP arises from phase retrievals and in medical image reconstruction ([3, 4, 8])
and has been studied extensively, see [35, 37, 49]. In the case where C and Q in the SFP are
the fixed point sets of nonlinear operators, the SFP was named the split fixed point problem
in [9]. More precisely, the split fixed point problem (shortly, SFPP) is to find an element
x† ∈ H satisfying

x† ∈ Fix(ψ) and Ax† ∈ Fix(ϕ), (4)

where Fix(ψ) and Fix(ϕ) denote the fixed point sets of two nonlinear operators ψ : H1 → H1

and ϕ : H2 → H2. The solution set of the SFPP is denoted by Ω2.
In order to solve the SFPP, Censor and Segal ([9]) suggested the following iterative

algorithm: for given x0 ∈ H1, let the sequence {xn} defined by

xn+1 = ψ(xn − τA∗(I − ϕ)Axn), (5)

where ψ and ϕ are two directed operators.
Iterative algorithms for solving the split problems have been further studied and

developed ([39]-[44]). Moudafi ([22]) extended the SFPP to demicontractive operators.
Cholamjiak and Shehu ([11]) investigated the SFPP regarding an asymptotically nonexpan-
sive semigroup and a total asymptotically strict pseudocontractve operator. Liu, Chen and
Liu ([19]) considered the SFPP for strict quasi-phi-pseudocontractive operators in Banach
spaces. Reich and Tuyen ([25]) suggested two projection algorithms for solving the SFPP.
Taiwo, Alakoya and Mewomo ([30]) proposed a Halpern-type iterative process for solving the
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SFPP and monotone variational inclusion problem between Banach spaces. Some related
results, please refer to [10, 14, 52].

It is our main purpose of this paper that we devote to investigate the iterative methods
for solving the VI and the SFPP in Hilbert spaces. We propose an iterative algorithm for
finding a common solution of the VI and the SFPP with the help of the resolvent operator
technique. We show that the suggested algorithm has strong convergence.

2. Preliminaries

Let H be a real Hilbert space. In what follows, we shall write → and ⇀ to denote
respectively, the strong norm convergence and the weak convergence on H.

Definition 2.1. An operator S : H → H is said to be
(i) L-Lipschitz if there exists a constant L ≥ 0 such that

‖S(x)− S(y)‖ ≤ L‖x− y‖,∀x, y ∈ H.

If L = 1, then S is called nonexpansive. If L < 1, then S is called L-contractive.
(ii) Directed if

〈S(x)− x†, S(x)− x〉 ≤ 0

for all x ∈ H and x† ∈ Fix(S);
(iii) Demicontractive if

‖S(x)− x†‖2 ≤ ‖x− x†‖2 + k‖S(x)− x‖2

for all x ∈ H and x† ∈ Fix(S), where k ∈ [0, 1).
(iv) Strictly pseudocontractive if

‖S(x)− S(y)‖2 ≤ ‖x− y‖2 + k‖(I − S)x− (I − S)y‖2

for all x, y ∈ H, where k ∈ [0, 1).

Definition 2.2. An operator S : H → H is said to be pseudocontractive if ∀x, y ∈ H,

〈S(x)− S(y), x− y〉 ≤ ‖x− y‖2,

which equals

‖S(x)− S(y)‖2 ≤ ‖x− y‖2 + ‖(I − S)x− (I − S)y‖2.

It is obvious that the pseudocontractive operator S with Fix(S) 6= ∅ includes the
nonexpansive operator, the directed operator, the demicontractive operator and the strictly
pseudocontractive operator as special cases ([2]).

Definition 2.3. Let C ⊂ H be a nonempty closed convex set. The orthogonal projection
projC : H → C is defined by

projC(x†) := arg min
x∈C
{‖x− x†‖}, x† ∈ H.

It is obvious that projC is the nearest point projection from H onto C and satisfies the
characteristic inequality ([50])

〈x† − projC(x†), x− projC(x†)〉 ≤ 0, ∀x† ∈ H,x ∈ C.

Let a multi-valued operator ψ : H → 2H be maximal monotone. Let ζ > be a
constant. Define the resolvent operator (I + ζψ)−1, which is single-valued and firmly non-
expansive, i.e.,

‖(I + ζψ)−1(x)− (I + ζψ)−1(x†)‖2 ≤ 〈(I + ζψ)−1(x)− (I + ζψ)−1(x†), x− x†〉

for all x, x† ∈ H.



26 Xiaopeng Zhao, Tzu-Chien Yin

For all x, y ∈ H, we have

‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, t ∈ R, (6)

‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2, (7)

and

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉. (8)

Lemma 2.1 ([24]). Let H be a real Hilbert space. Let f : H → 2H be a maximal monotone
operator and g : H → H be an ω-inverse strongly monotone operator. Let σ > 0 be a
constant. Then, we have

(i) If σ ∈ (0, 2ω), then (I + σf)−1(I − σg) is an averaged operator.
(ii) 0 ∈ f(x†) + g(x†) if and only if x† ∈ Fix((I + σf)−1(I − σg)).

Lemma 2.2 ([42]). Let H be a real Hilbert space. Let S : H → H be an L-Lipschitz
pseudocontractive operator with Fix(S) 6= ∅. Then, for all x ∈ H and x† ∈ Fix(S), we have

‖S((1− η)x+ ηS(x))− x†‖2 ≤ ‖x− x†‖2 + (1− η)‖x− S((1− η)x+ ηS(x))‖2,

where η is a constant in (0, 1√
1+L2+1

).

Lemma 2.3 ([16]). Let H be a real Hilbert space. Let S : H → H be a nonexpansive
operator. Then I − S is demi-closed at zero.

Lemma 2.4 ([57]). Let H be a real Hilbert space. Let S : H → H be a continuous pseudo-
contractive operator. Then S is demi-closed.

Lemma 2.5 ([36]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + µn, n ∈ N,

where {γn} is a sequence in (0, 1) and {µn} is a sequence such that
(1)

∑∞
n=1 γn =∞;

(2) lim supn→∞
µn

γn
≤ 0 or

∑∞
n=1 |µn| <∞.

Then limn→∞ an = 0.

Lemma 2.6 ([20]). Let {wn} be a sequence of real numbers. Assume {wn} does not decrease
at infinity, that is, there exists at least a subsequence {wnk

} of {wn} such that wnk
≤ wnk+1

for all k ≥ 0. For every n ≥ N0, define an integer sequence {τ(n)} as

τ(n) = max{i ≤ n : wni < wni+1}.

Then τ(n)→∞ as n→∞ and for all n ≥ N0

max{wτ(n), wn} ≤ wτ(n)+1.

3. Main results

In this section, we present our main results. Let H1 and H2 be two real Hilbert
spaces. Let f : H1 → 2H1 be a maximal monotone operator and g : H1 → H1 be an
ω-inverse strongly monotone operator. Let A : H1 → H2 be a bounded linear operator and
B : H1 → H1 be a $-strongly positive bounded linear operator. Let φ : H1 → H1 be a
κ-contractive operator. Let ϕ : H2 → H2 be an L1-Lipschitz pseudocontractive operator
and ψ : H1 → H1 be an L2-Lipschitz pseudocontractive operator.

Now, we present our iterative procedure for solving the split fixed point problem and
the variational inclusion problem. First, we given several iterative parameters. Let {λn},
{βn} , {γn}, {αn} and {ηn} be five real number sequences in (0, 1). Let σ and µ be two
positive constants.
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Algorithm 3.1. For any given initial point x0 ∈ H1, define an iterative sequence {xn} by
the following form 

yn = (I + σf)−1(xn − σg(xn)), (9)

wn = (1− ηn)Ayn + ηnϕ(Ayn), (10)

zn = (1− αn)Ayn + αnϕ(wn), (11)

vn = yn − µA∗(Ayn − zn), (12)

un = λnφ(xn) + (I − λnB)vn, (13)

rn = (1− γn)un + γnψ(un), (14)

xn+1 = (1− βn)un + βnψ(rn), n ≥ 0. (15)

Theorem 3.1. Suppose that Γ := Ω1 ∩ Ω2 6= ∅. Assume that the following conditions are
satisfied:
(i) L1 > 1, L2 > 1, $ > κ, σ ∈ (0, 2ω) and µ ∈ (0, 1

‖A‖2 );

(ii) 0 < a1 < αn < a2 < ηn < a3 <
1√

1+L2
1+1

;

(iii) 0 < b1 < βn < b2 < γn < b3 <
1√

1+L2
2+1

;

(iv) limn→∞ λn = 0 and
∑∞
n=1 λn =∞.

Then the sequence {xn} defined by (15) converges strongly to q† = projΓ(I + φ−B)(q†).

Proof. Owing to the operator projΓ(I + φ−B) ([21]) is contractive, denote its unique fixed
point by q†, i.e., q† = projΓ(I+φ−B)(q†). By Lemma 2.1, the operator (I+σf)−1(I−σg)
is averaged. Thus, (I + σf)−1(I − σg) can be written as (I + σf)−1(I − σg) = (1− ς)I + ςS
in which ς ∈ (0, 1) is a constant and S : H1 → H1 is a nonexpansive operator. From (9), we
have

yn = (I + σf)−1(xn − σg(xn)) = (1− ς)xn + ςS(xn). (16)

It follows from (6) and (16) that

‖yn − q†‖2 = ‖ς(xn − q†) + (1− ς)(S(xn)− q†)‖2

= (1− ς)‖xn − q†‖2 + ς‖S(xn)− q†‖2 − ς(1− ς)‖xn − S(xn)‖2

≤ ‖xn − q†‖2 −
1− ς
ς
‖xn − yn‖2

≤ ‖xn − q†‖2.

(17)

Using Lemma 2.2, we deduce

‖ϕ(wn)−Aq†‖2 ≤ ‖Ayn −Aq†‖2 + (1− ηn)‖ϕ(wn)−Ayn‖2, (18)

and

‖ψ(rn)− q†‖2 ≤ ‖un − q†‖2 + (1− γn)‖un − ψ(rn)‖2. (19)

By (6) and (11), we obtain

‖zn −Aq†‖2 = ‖(1− αn)(Ayn −Aq†) + αn(ϕ(wn)−Aq†)‖2

= (1− αn)‖Ayn −Aq†‖2 + αn‖ϕ(wn)−Aq†‖2

− αn(1− αn)‖ϕ(wn)−Ayn‖2.
(20)

Combining (18) and (20), we obtain

‖zn −Aq†‖2 ≤ ‖Ayn −Aq†‖2 − αn(ηn − αn)‖ϕ(wn)−Ayn‖2

≤ ‖Ayn −Aq†‖2.
(21)
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From (6), (15) and (19), we have

‖xn+1 − q†‖2 = ‖(1− βn)(un − q†) + βn(ψ(rn)− q†)‖2

= (1− βn)‖un − q†‖2 + βn‖ψ(rn)− q†‖2 − βn(1− βn)‖un − ψ(rn)‖2

≤ ‖un − q†‖2 − βn(γn − βn)‖un − ψ(rn)‖2

≤ ‖un − q†‖2.

(22)

Since the linear operator B is $-strongly positive, ‖I − λnB‖ ≤ (1 − λn$). By virtue of
(13), we get

‖un − q†‖ = ‖λn(φ(xn)−Bq†) + (I − λnB)(vn − q†)‖

≤ λn‖φ(xn)−Bq†‖+ ‖I − λnB‖‖vn − q†‖

≤ λn‖φ(xn)− φ(q†)‖+ λn‖φ(q†)−Bq†‖+ (1− λn$)‖vn − q†‖

≤ λnκ‖xn − q†‖+ λn‖φ(q†)−Bq†‖+ (1− λn$)‖vn − q†‖.

(23)

According to (12), we derive

‖vn − q†‖ = ‖yn − q† − µA∗(Ayn − zn)‖2

= ‖yn − q†‖2 + µ2‖A∗(Ayn − zn)‖2 − 2µ〈yn − q†, A∗(Ayn − zn)〉.
(24)

Note that

〈yn − q†, A∗(Ayn − zn)〉 = 〈Ayn −Aq†, Ayn − zn〉

= ‖Ayn − zn‖2 + 〈zn −Aq†, Ayn − zn〉.
(25)

Applying (7), we obtain

〈zn −Aq†, Ayn − zn〉 =
1

2
(‖Ayn −Aq†‖2 − ‖zn −Aq†‖2 − ‖Ayn − zn‖2). (26)

Combining (21), (25) and (26), we deduce

〈yn − q†, A∗(Ayn − zn)〉 =
1

2
(‖Ayn −Aq†‖2 + ‖Ayn − zn‖2 − ‖zn −Aq†‖2)

≥ 1

2
(‖Ayn −Aq†‖2 + ‖Ayn − zn‖2 − ‖Ayn −Aq†‖2)

=
1

2
‖Ayn − zn‖2.

This together with (17) and (24) implies that

‖vn − q†‖2 ≤ ‖yn − q†‖2 + µ2‖A∗(Ayn − zn)‖2 − µ‖Ayn − zn‖2

≤ ‖yn − q†‖2 − µ(1− µ‖A‖2)‖Ayn − zn‖2

≤ ‖yn − q†‖2

≤ ‖xn − q†‖2.

(27)

Substituting (27) into (23) to deduce

‖un − q†‖ ≤ λn‖φ(q†)−Bq†‖+ [1− ($ − κ)λn]‖xn − q†‖. (28)

In the light of (22) and (28), we get

‖xn+1 − q†‖ ≤ λn‖φ(q†)−Bq†‖+ [1− ($ − κ)λn]‖xn − q†‖

≤ max{‖xn − q†‖,
‖φ(q†)−Bq†‖

$ − κ
},
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which implies that ‖xn − q†‖ ≤ max{‖x0 − q†‖, ‖φ(q†)−Bq†‖
$−κ } by induction. Therefore, the

sequences {xn}, {yn}, {un} and {vn} are bounded.
Next, we consider two possibilities. Possibility 1. There exists some n0 such that the

sequence {‖xn − q†‖} is decreasing when n ≥ n0. Possibility 2. For any n0, there exists at
least an integer m ≥ n0 such that ‖xm − q†‖ ≤ ‖xm+1 − q†‖.

For Possibility 1, we deduce that limn→∞ ‖xn − q†‖ exists. Based on (22) and (23),
we obtain

‖xn+1 − q†‖2 ≤
(
λn(‖xn − q†‖+ ‖φ(q†)−Bq†‖) + (1− λn$)‖vn − q†‖

)2
≤ λn(‖xn − q†‖+ ‖φ(q†)−Bq†‖)2/$ + (1− λn$)‖vn − q†‖2.

(29)

Moreover, it follows from (17) and (27) that

‖vn − q†‖2 ≤ ‖xn − q†‖2 −
1− ς
ς
‖xn − yn‖2 − µ(1− µ‖A‖2)‖Ayn − zn‖2. (30)

Substituting (30) into (29), we have

‖xn+1 − q†‖2 ≤ (1− λn$)‖xn − q†‖2 −
ς(1− λn$)

1− ς
‖xn − yn‖2

− (1− λn$)(µ− µ2‖A‖2)‖Ayn − zn‖2 +Mλn

≤Mλn + ‖xn − q†‖2,

(31)

where M > 0 is a constant such that supn{(‖xn−q†‖+‖φ(q†)−Bq†‖)2/$+‖xn−q†‖2} ≤M .
Hence,

(1− λn$)(µ− µ2‖A‖2)‖Ayn − zn‖2 +
ς(1− λn$)

1− ς
‖xn − yn‖2

≤ (1− λn$)‖xn − q†‖2 − ‖xn+1 − q†‖2 +Mλn

→ 0.

It results in that

lim
n→∞

‖Ayn − zn‖ = 0, (32)

and

lim
n→∞

‖xn − yn‖ = lim
n→∞

‖xn − (I + σf)−1(I − σg)xn‖ = 0. (33)

By (11), we have zn −Ayn = αn(ϕ(wn)−Ayn). This together with (32) implies that

lim
n→∞

‖Ayn − ϕ(wn)‖ = 0. (34)

Since ϕ is L1-Lipschitz, from (10), we conclude

‖Ayn − ϕ(Ayn)‖ ≤ ‖Ayn − ϕ(wn)‖+ ‖ϕ(wn)− ϕ(Ayn)‖
≤ ‖Ayn − ϕ(wn)‖+ L1ηn‖Ayn − ϕ(Ayn)‖.

It yields that

‖Ayn − ϕ(Ayn)‖ ≤ 1

1− L1ηn
‖Ayn − ϕ(wn)‖,

which together with (34) implies that

lim
n→∞

‖Ayn − ϕ(Ayn)‖ = 0. (35)

Taking into account (12) and (13), we have

‖un − yn‖ = ‖µA∗(zn −Ayn) + λn(φ(xn)−Bvn)‖
≤ µ‖A‖‖zn −Ayn‖+ λn‖φ(xn)−Bvn‖.
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This together with (32) implies that

lim
n→∞

‖un − yn‖ = 0. (36)

On account of (22) and (28), we deduce

‖xn+1 − q†‖2 ≤ ‖xn − q†‖2 + λnM − βn(γn − βn)‖un − ψ(rn)‖2.

It leads to that

βn(γn − βn)‖un − ψ(rn)‖2 ≤ ‖xn − q†‖2 − ‖xn+1 − q†‖2 + λnM

→ 0.

So,

lim
n→∞

‖un − ψ(rn)‖ = 0. (37)

Owing to ψ is L2-Lipschitz, by (14), we get

‖un − ψ(un)‖ ≤ ‖un − ψ(rn)‖+ ‖ψ(rn)− ψ(un)‖
≤ ‖un − ψ(rn)‖+ L2γn‖un − ψ(un)‖.

It follows that

‖un − ψ(un)‖ ≤ 1

1− L2γn
‖un − ψ(rn)‖.

With the help of (37), we have

lim
n→∞

‖un − ψ(un)‖ = 0. (38)

Now, we show that

lim sup
n→∞

〈φ(q†)−Bq†, un − q†〉 ≤ 0.

Thanks to the boundedness of the sequence of {un}, we can choose a subsequence {uni
} of

{un} such that uni
⇀ z and

lim sup
n→∞

〈φ(q†)−Bq†, un − q†〉 = lim
i→∞
〈φ(q†)−Bq†, uni

− q†〉 (39)

From (33) and (36), we deduce ‖xn − un‖ → 0. Then,

xni
⇀ z and yni

⇀ z. (40)

Since the operator (I + σf)−1(I − σg) is averaged, it is also nonexpansive. Using Lemma
2.3 and (40), we conclude that z ∈ Fix((I +σf)−1(I −σg)) = Ω1. By Lemma 2.4 and (38),
we have z ∈ Fix(ψ). Noting that Ayni ⇀ Az, by Lemma 2.4 and (35), we conclude that
Az ∈ Fix(ϕ). Thus, z ∈ Ω1 ∩ Ω2 = Γ. Thanks to q† = projΓ(I + φ−B)(q†), we deduce

lim sup
n→∞

〈φ(q†)−Bq†, un − q†〉 = lim
i→∞
〈φ(q†)−Bq†, uni − q†〉

= lim
i→∞
〈φ(q†)−Bq†, z − q†〉

≤ 0.

(41)



The variational inclusion and the split fixed point problem 31

Applying (8) to (13) to get

‖un − q†‖2 = ‖(I − λnB)(vn − q†) + λn(φ(xn)−Bq†)‖2

≤ (1−$λn)2‖vn − q†‖2 + 2λn〈φ(xn)−Bq†, un − q†〉

≤ (1−$λn)2‖xn − q†‖2 + 2λn〈φ(xn)− φ(q†), un − q†〉

+ 2λn〈φ(q†)−Bq†, un − q†〉

≤ (1−$λn)2‖xn − q†‖2 + 2κλn‖xn − q†‖‖un − q†‖

+ 2λn〈φ(q†)−Bq†, un − q†〉

≤ (1−$λn)2‖xn − q†‖2 + λnκ‖xn − q†‖2 + κλn‖un − q†‖2

+ 2λn〈φ(q†)−Bq†, un − q†〉.
It follows that

‖un − q†‖2 ≤
[
1− 2($ − κ)λn

1− κλn

]
‖xn − q†‖2 +

$2λ2
n

1− κλn
‖xn − q†‖2

+
2λn

1− κλn
〈φ(q†)−Bq†, un − q†〉.

(42)

Combining (22) with (42), we have

‖xn+1 − q†‖2 ≤
[
1− 2($ − κ)λn

1− κλn

]
‖xn − q†‖2 +

2($ − κ)λn
1− κλn

×
{
$2Mλn
2($ − κ)

+
1

$ − κ
〈φ(q†)−Bq†, un − q†〉

}
.

(43)

According to Lemma 2.5, (41) and (43), we deduce xn → q†.
Now, we consider Possibility 2. In this case, for any integer m, there exists integer

k ≥ m such that ‖xk − q†‖ ≤ ‖xk+1 − q†‖. Set ϑn = ‖xn − q†‖2. Then, ϑm ≤ ϑm+1. Define
an integer sequence {τn} for all n ≥ m as follows:

τ(n) = max{i ∈ N|m ≤ i ≤ n, ϑi ≤ ϑi+1}.
It is obviously that the sequence τ(n) is non-decreasing and satisfies limn→∞ τ(n) =∞ and
ϑτ(n) ≤ ϑτ(n)+1 for all n ≥ m.

By the similar proof as that of Possibility 1, we can deduce

lim sup
n→∞

〈φ(q†)−Bq†, uτ(n) − q†〉 ≤ 0, (44)

and

ϑτ(n)+1 ≤
[
1−

2($ − κ)λτ(n)

1− κλτ(n)

]
ϑτ(n) +

2($ − κ)λτ(n)

1− κλτ(n)

×
{
$2Mλτ(n)

2($ − κ)
+

1

$ − κ
〈φ(q†)−Bq†, uτ(n) − q†〉

}
.

(45)

Since ϑτ(n) ≤ ϑτ(n)+1, it follows from (45) that

ϑτ(n) ≤
$2Mλτ(n)

2($ − κ)
+

1

$ − κ
〈φ(q†)−Bq†, uτ(n) − q†〉. (46)

Combining (44) and (45), we have lim supn→∞ ϑτ(n) ≤ 0 and hence

lim
n→∞

ϑτ(n) = 0. (47)
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Moreover, by (45), we obtain

lim sup
n→∞

ϑτ(n)+1 ≤ lim sup
n→∞

ϑτ(n).

This together with (47) implies that

lim
n→∞

ϑτ(n)+1 = 0.

Applying Lemma 2.6 to deduce

0 ≤ ϑn ≤ max{ϑτ(n), ϑτ(n)+1}.

Therefore, ϑn → 0. That is, xn → q†. This completes the proof. �

Remark 3.1. If the operators ϕ and ψ are quasi-nonexpansive operators or directed opera-
tors or demicontractive operators, Theorem 3.1 is still correct.
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