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PARALLEL TRANSPORT AND MULTI-TEMPORAL

CONTROLLABILITY

Cristian Ghiu1, Constantin Udrişte2

Our idea was to make a bridge between the parallel transport in dif-

ferential geometry and the controllability of evolutionary linear PDE systems. The

purpose is threefold: (i) to highlight the origin of some linear homogeneous PDE

systems; (ii) to formulate new controllability theorems regarding the bilinear sys-

tems; (iii) to prove that the problem of the Riemannian metric can be thought of

as a problem of multitime controllability. The results are concise and confirmed

by examples and counterexamples. In particular, the control of metric phases in

Riemannian geometry is a new subject in our research group.
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1. Controlled multitime linear homogeneous PDE systems

1.1. Multitime linear homogeneous PDE systems

Our aim is to study homogeneous PDE systems of the type

∂x

∂tα
(t) = Uα(t)x(t), ∀α = 1,m, (1)

where t = (t1, . . . , tm) ∈ Rm, x : Rm → Rn = Mn,1(R), and Uα : Rm → Mn(R) are

C1 matrix functions indexed after α = 1,m.

Proposition 1.1. The PDE system (1) is completely integrable iff, for any α, β =

1,m and any t ∈ Rm, we have

∂Uα

∂tβ
(t) + Uα(t)Uβ(t) =

∂Uβ

∂tα
(t) + Uβ(t)Uα(t). (2)

Specification. A matrix-valued function F (t) ∈ Mn(R), t ∈ I is said to be

(i) proper on the interval I if F (t) = f(t, A), t ∈ I, and a fixed constant matrix

A ∈ Mn(R), where f is a scalar function, and (ii) F (t) is said to be semiproper on

I if F (t)F (τ) = F (τ)F (t), ∀t, τ ∈ I.
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The PDE system (1) is called semiproper if

Uα(t)Uβ(τ) = Uβ(τ)Uα(t), t, τ ∈ Rm,∀α, β ∈ 1,m

(functional commutativity of the matrices Uα). A semiproper PDE system has a

closed form fundamental matrix

χ(t, t0) = exp

∫
γt0t

Uα(s) ds
α.

Consequently, the problem of solving a semiproper system amounts to that of finding

a finite form expression for the exponential matrix.

If the complete integrability conditions are taken simultaneously with semiproper

conditions, then the matrices Uα are the components of gradient of a matrix U .

Using Theorem 5.5 and Proposition 5.2 of the paper [5], we obtain

Proposition 1.2. Let t0 ∈ Rm and x0 ∈ Rn. If the matrix functions Uα(·) verify

the relations (2), then the Cauchy problem {(1), x(t0) = x0} has a unique solution

x : Rm → Rn, x(t) = χ(t, t0)x0, ∀t ∈ Rm, (3)

where χ(·, ·) : Rm ×Rm → Mn(R) is the fundamental matrix associated to the PDE

system (1). The solution x(·) is a function of class C2.

A source for PDE systems of type (1) is the parallel transport in differential

geometry (on a manifold or on jet bundle of order one), modulo the notations of

coordinates and functions.

For example, on an n-dimensional manifoldM , with local coordinates x = (xi),

we define a covariant derivative operator ∇, and its components Γi
jk(x) (connection

coefficients), to perform the components of covariant derivative, in a way indepen-

dent of coordinates.

(i) A vector field X = (Xi) on M is called parallel if

∇jX
i(x) =

∂Xi

∂xj
(x) + Γi

jk(x)X
k(x) = 0, i, j, k ∈ 1, n.

(ii) A second order tensor g = (gij) on M is called parallel if

∇kgij(x) =
∂gij
∂xk

(x)− Γh
ki(x)ghj(x)− Γh

kj(x)ghi(x)

=
∂gij
∂xk

(x)−
(
Γh
ki(x)δ

l
j + Γh

kj(x)δ
l
i

)
ghl(x) = 0, i, j, h, k, l ∈ 1, n.

For identifying with the PDE system (1), we need to identify: (i) the ranges

1,m, 1, n; (ii) t with x; and (iii) Xi, resp. gij with the unknowns xi.

Remark 1.1. In differential geometry, the parallel transport is a way of transporting

geometrical data along smooth curves in a manifold. If the manifold is equipped with

an affine connection (a covariant derivative or connection on the tangent bundle),

then this connection allows one to transport tensors of the manifold along curves so

that they stay parallel with respect to the connection.

The papers [1]–[4], [6]–[13], [15]–[17] include information and related tech-

niques, the relevant sources for original ideas in this article.
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1.2. Controlled multitime linear homogeneous PDE systems

Linear PDE systems on Lie groups are a natural generalization of linear PDE

systems on Euclidean spaces. Indeed, a homogeneous linear system on a Lie group

is a controlled system
∂x

∂tα
(t) = uβα(t)Xβ(x(t)),

where Xα(x) are linear vector fields. Of course, these PDE systems can be written

in the form (1) and conversely.

We reconsider the PDE system (1) as a controlled bilinear system, where the

matrix functions

(Uα(·))α=1,m, Uα : Rm → Mn(R),

are controls of class C1, ∀α = 1,m, which verify the relations (2) on Rm, for

any α, β = 1,m. If in addition, for any α, the functions Uα(·) are constant, then

(Uα(·))α=1,m is called constant control.

Definition 1.1. The family of matrix functions (Uα(·))α=1,m, of class C1, which

verify the relations (2) on Rm, is called control for the PDE system (1).

The set of controls, resp. the set of constant controls, is denoted by

U1 :=
{
(Uα)α=1,m

∣∣∣ (Uα)α=1,m is control for the PDE system (1)
}
,

U 2 :=
{
(Uα)α=1,m

∣∣∣ (Uα)α=1,m is constant control for the PDE system (1)
}
.

Hence, the system (1) is completely integrable if and only if (Uα(·))α=1,m is a

control function.

It is obvious that U1 and U 2 are real vector spaces and U 2 ⊆ U1.

Definition 1.2. Let (t0, x0), (t1, x1) ∈ Rm×Rn be two phases. We say that the phase

(t0, x0) is transferred to phase (t1, x1), if there exists a control (Uα(·))α=1,m , in the

PDE system (1), such that the solution x(·) of the Cauchy problem {(1), x(t0) =

x0}, verifies also the relations x(t1) = x1. In other words, for the same control

(Uα(·))α=1,m , the Cauchy problems {(1), x(t0) = x0} and {(1), x(t1) = x1} have

the same solution. We will say that the control (Uα(·))α=1,m transfers the phase

(t0, x0) into the phase (t1, x1).

Remark 1.2. Let (t0, x0), (t1, x1) ∈ Rm × Rn. The control (Uα(·))α=1,m ∈ U1 ,

transfers the phase (t0, x0) into the phase (t1, x1), iff χ(t1, t0)x0 = x1 (here χ(·, ·)
is the fundamental matrix of the PDE system (1) in which the family (Uα(·))α=1,m

is as above, which makes the transfer of phases). This follows immediately from

Proposition 1.2.

Remark 1.3. Let x(·) be a solution of the PDE system (1). If there exists s ∈ Rm

such that x(s) = 0, then x(t) = 0, ∀t ∈ Rm. Suppose that the phase (t0, x0) transfers

to the phase (t1, x1). Then x0 = 0 iff x1 = 0. It is noticed immediately that any

control transfers the phase (t0, 0) into the phase (t1, 0) (∀t0, t1 ∈ Rm).
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For x0 ̸= 0 and x1 ̸= 0, we further study the transfer of the phase (t0, x0) into

the phase (t1, x1). In the case n ≥ 2, we prove that for any t0, t1, different, the

phase (t0, x0) transfers in the phase (t1, x1).

Lemma 1.1. If a, b ∈ R and A =

(
a b

−b a

)
, then eA = ea

(
cos b sin b

− sin b cos b

)
.

Proof. For an original proof, we show that eτA = eaτ
(

cos(τb) sin(τb)

− sin(τb) cos(τb)

)
, ∀τ ∈

R; then we set τ = 1 and we obtain the conclusion.

We denote F (τ) := eaτ
(

cos(τb) sin(τb)

− sin(τb) cos(τb)

)
, τ ∈ R. It suffices to show

that F ′(τ) = AF (τ), ∀τ ∈ R, and F (0) = I2. The equality F (0) = I2 is obvious.

By computation, we find

F ′(τ) = aeaτ
(

cos(τb) sin(τb)

− sin(τb) cos(τb)

)
+ eaτ

(
−b sin(τb) b cos(τb)

−b cos(τb) −b sin(τb)

)
.

AF (τ) =

(
aI2 + b

(
0 1

−1 0

))
· eaτ

(
cos(τb) sin(τb)

− sin(τb) cos(τb)

)
= aeaτ

(
cos(τb) sin(τb)

− sin(τb) cos(τb)

)
+ b eaτ

(
− sin(τb) cos(τb)

− cos(τb) − sin(τb)

)
= F ′(τ).

�

Lemma 1.2. Let n ≥ 3. For any x0, x1 ∈ Rn \ {0}, there exists Y0, Y1 ∈ R2 \ {0},
and there exists an invertible matrix P ∈ Mn(R), such that

Px0 =

(
Y0

On−2,1

)
and Px1 =

(
Y1

On−2,1

)
. (4)

Proof. First, do the proof for the case in which vectors x0 and x1 are linearly inde-

pendent.

Let S = Sp {x0, x1}. The set {x0, x1} is a basis of the vector subspace S and

hence dimS = 2. Then dimS⊥ = n − 2 ≥ 1. Let {c3, . . . , cn} be a basis of the

vector subspace S⊥. The set {x0, x1, c3, . . ., cn} is a basis of Rn = Mn,1(R), since

S⊕S⊥ = Rn = Mn,1(R). It follows that the matrix P :=



x⊤0

x⊤1

c⊤3
...

c⊤n


is invertible. For

j = 3, n, we have c⊤j x0 = x⊤0 cj = ⟨cj , x0⟩ = 0 and c⊤j x1 = x⊤1 cj = ⟨cj , x1⟩ = 0, due

to the fact cj ∈ S⊥. Hence

Px0 =

 ∥x0∥2

⟨x1, x0⟩
On−2,1

 and Px1 =

 ⟨x0, x1⟩
∥x1∥2

On−2,1

 .
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It is enough to choose Y0 =

(
∥x0∥2

⟨x1, x0⟩

)
and Y1 =

(
⟨x0, x1⟩
∥x1∥2

)
. The vectors Y0

and Y1 are nonzero, since ∥x0∥ ̸= 0 and ∥x1∥ ̸= 0.

Let us suppose now that x0 and x1 are linearly dependent. There exists λ ∈ R,
λ ̸= 0, such that x1 = λx0. Let S0 = Sp {x0}. The set {x0} is a basis of S0 and

hence dimS0 = 1. Then dimS⊥
0 = n− 1 ≥ 2.

Let {c2, . . ., cn} be a basis of S⊥
0 . The set {x0, c2, . . ., cn} is a basis of

Rn = Mn,1(R). It follows that the matrix P =


x⊤0

c⊤2
...

c⊤n

 is invertible.

For j = 2, n, we have c⊤j x0 = x⊤0 cj = ⟨cj , x0⟩ = 0, since cj ∈ S⊥. Consequently

Px0 =

(
∥x0∥2

On−1,1

)
and Px1 = λPx0 =

(
λ∥x0∥2

On−1,1

)
. We choose Y0 =

(
∥x0∥2

0

)
and Y1 = λY0. The vectors Y0 and Y1 are non-zero, since x0 ̸= 0 and λ ̸= 0. �

Proposition 1.3. Let n ≥ 2. For any x0, x1 ∈ Rn \ {0}, there exists A ∈ Mn(R)
such that eAx0 = x1. If x0 = x1, we can choose A = 0. If x0 ̸= x1, then A can be

chosen with rankA = 2.

Proof. First, we refer to the case n = 2. Let x0 = (x10, x
2
0)

⊤, x1 = (x11, x
2
1)

⊤. We

consider the complex numbers z0 := x20 + ix10 and z1 := x21 + ix11. The numbers z0
and z1 are non-zero since x0 and x1 are non-zero.

Write z0 and z1 in trigonometric form. There exists r0, r1 ∈ (0,∞) and there

exists θ0, θ1 ∈ [0, 2π), such that z0 = r0(cos θ0+i sin θ0) and z1 = r1(cos θ1+i sin θ1).

Let z =
z1
z0

. Obviously z =
r1
r0

(
cos(θ1 − θ0) + i sin(θ1 − θ0)

)
.

Let G :=

{(
a b

−b a

)
∈ M2(R)

∣∣∣∣∣ a, b ∈ R

}
. We consider the function

f : C → G, f(a+ ib) =

(
a b

−b a

)
(a, b ∈ R).

It is easily proved that G, with operations of addition and multiplication of matrices,

is a field and the function f is an isomorphism of fields.

Consequently we have zz0 = z1 =⇒ f(z)f(z0) = f(z1), i.e.,

r1
r0

(
cos(θ1 − θ0) sin(θ1 − θ0)

− sin(θ1 − θ0) cos(θ1 − θ0)

)(
x20 x10
−x10 x20

)
=

(
x21 x11
−x11 x21

)
. (5)

Let a := ln
(r1
r0

)
, b := θ1 − θ0 and A :=

(
a b

−b a

)
. We use Lemma 1.1 and

it follows

eA = ea
(

cos b sin b

− sin b cos b

)
=

r1
r0

(
cos(θ1 − θ0) sin(θ1 − θ0)

− sin(θ1 − θ0) cos(θ1 − θ0)

)
. (6)
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From (5) and (6) we deduce the equality

eA
(

x20 x10
−x10 x20

)
=

(
x21 x11
−x11 x21

)
.

Equalizing the second column in the left hand side with second column from the

right, and we get

eA
(

x10
x20

)
=

(
x11
x21

)
⇐⇒ eAx0 = x1.

The matrix A, chosen above, is void if and only if a = b = 0 ⇐⇒ r1 = r0 and θ1 = θ0
⇐⇒ z1 = z0 ⇐⇒ x1 = x0. Hence A = 0 iff x0 = x1.

It follows that if x0 ̸= x1, then A is non-zero, hence a ̸= 0 or b ̸= 0, and from

det(A) = a2 + b2 we obtain rankA = 2.

We remark that in the case n = 2, we can choose A ∈ G (A = O2 or rankA =

2).

So we have proved the Proposition for n = 2.

Let n ≥ 3.

If x0 = x1, we choose A = 0 and it is obvious that eAx0 = I2x0 = x1.

Now treat the case where x0 ̸= x1.

According Lemma 1.2, there exists Y0, Y1 ∈ R2 \ {0}, and there exists an

invertible matrix P ∈ Mn(R), such that the equalities (4) hold.

We apply the case n = 2 to the vectors Y0, Y1. We saw that one can choose

A1 ∈ G, such that eA1Y0 = Y1.

Let A2 :=

(
A1 O2,n−2

On−2,2 On−2,n−2

)
. Using the relations (4), we obtain

eA2Px0 =

(
eA1 O2,n−2

On−2,2 In−2

)(
Y0

On−2,1

)

=

(
eA1Y0
On−2,1

)
=

(
Y1

On−2,1

)
= Px1.

Hence eA2Px0 = Px1. Since P is invertible, it follows P−1eA2Px0 = x1. We choose

A = P−1A2P . We get

eAx0 = eP
−1A2Px0 = (P−1eA2P )x0 = x1.

Obviously, rankA= rankA2= rankA1.

If we had rankA1 ̸= 2, then det(A1) = 0. Since A1 ∈ G and det(A1) = 0, it

follows that A1 = O2, hence also A2 = On. From A = P−1A2P , we obtain A = On,

and from eAx0 = x1, it follows x0 = x1, which is false.

Hence rankA1 = 2. It follows rankA = 2. �

In general, the matrix A, appearing in the conclusion of Proposition 1.3 can

not have the rank 1. We show this in the following example.

Example 1.1. Let n ≥ 2, x0 ∈ Rn, x0 ̸= 0 and x1 = −ξx0, with ξ ∈ (0,∞). If the

matrix A ∈ Mn(R) verifies the relations eAx0 = x1, then rankA ̸= 1.
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Let us suppose that rankA = 1. Let J ∈ Mn(C), be the canonical Jordan

form o the matrix A. Rank J = rankA = 1. If on the principal diagonal of J should

exists at least two nonzero elements, then rank J ≥ 2, which is impossible.

It follows that at least n − 1 from the eigenvalues of the matrix A are zero,

and the last eigenvalue, λ, is real, since λ = Tr(A) ∈ R.
Then the matrix eA has n − 1 eigenvalues equal to 1, an the n-th eigenvalue

is eλ. It follows that eA + ξIn has n − 1 eigenvalues equal to 1 + ξ, and the n-th

eigenvalue is eλ + ξ. Hence det(eA + ξIn) = (1+ ξ)n−1(eλ + ξ) > 0. We deduce that

the matrix eA + ξIn is invertible.

The equality eAx0 = x1 is equivalent to eAx0 + ξx0 = 0 or (eA + ξIn)x0 = 0.

Since the matrix eA + ξIn is invertible, it follows x0 = 0, that is false. �

We denote by U 3 the set of families of functions (Uα(·))α=1,m ,

Uα(·) : Rm → Rn, with the property

– Uα(·) are all identically zero,

or

– there exists α0 = 1,m and there exists a matrix M ∈ Mn(R), with rankM =

2, such that

Uα(t) =

{
M, ∀t ∈ Rm; if α = α0

On, ∀t ∈ Rm; ifα ̸= α0.

Note that for such families, the relations (2) are true. It follows that the elements

of the set U 3 are constant controls for the PDE system (1).

Hence U 3 ⊆ U 2 ⊆ U 1.

Theorem 1.1. Let n ≥ 2. For any (t0, x0), (t1, x1) ∈ Rm×Rn, with x0 ̸= 0, x1 ̸= 0

and t0 ̸= t1, there exists a control in U 3 which transfers the phase (t0, x0) into the

phase (t1, x1).

Proof. Since t0 ̸= t1, there exists α0 = 1,m, such that tα0
0 ̸= tα0

1 .

According the Proposition 1.3, there exists A ∈ Mn(R), with A = 0 or

rankA = 2, such that eAx0 = x1. Let M =
1

tα0
1 − tα0

0

A. We choose

Uα(t) =

{
M, ∀t ∈ Rm; if α = α0

On, ∀t ∈ Rm; if α ̸= α0.

Obviously, (Uα(·))α=1,m ∈ U 3.

Taking into account the Proposition 1.2 and the formula

χ(t, t0) = eMα(tα−tα0 ), ∀(t, t0) ∈ Rm × Rm, (7)

it follows that the solution of the Cauchy problem {(1), x(t0) = x0} is

x : Rm → Rn, x(t) = e(t
α0−t

α0
0 )Mx0, ∀t = (t1, . . . , tm) ∈ Rm.

We obtain x(t1) = e(t
α0
1 −t

α0
0 )Mx0 = eAx0 = x1, therefore chosen control transfers

the phase (t0, x0) into the phase (t1, x1). �
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The Theorem 1.1 says that for n ≥ 2, in the case of the PDE system (1), it is

sufficient to consider as controls only elements of the set U 3.

In the case n = 1, we have the next result

Theorem 1.2. Let n = 1, (t0, x0), (t1, x1) ∈ Rm × R, with x0 ̸= 0 and x1 ̸= 0.

a) If the phase (t0, x0) transfers into the phase (t1, x1), then sgn(x0) = sgn(x1).

b) Let us suppose that sgn(x0) = sgn(x1) and t0 ̸= t1. Let α0 = 1,m, such that

tα0
0 ̸= tα0

1 . We consider the functions

Uα : Rm → R, Uα(t) =


1

tα0
1 − tα0

0

ln

(
x1
x0

)
,∀t ∈ Rm; if α = α0

0 , ∀t ∈ Rm; if α ̸= α0.

(8)

Then (Uα(·))α=1,m is a constant control for the PDE system (1), and transfers

the phase (t0, x0) into the phase (t1, x1).

Proof. a) The function χ(·, t0) : Rm → R is continuous. Since for any t ∈ Rm, the

matrix χ(t, t0) is invertible, i.e., χ(t, t0) ̸= 0, it follows that the function χ(·, t0) has
constant sign. But χ(t0, t0) = 1 > 0; hence χ(t, t0) > 0, ∀t ∈ Rm.

According the Remark 1.2, we have χ(t1, t0)x0 = x1. Since χ(t1, t0) > 0, it

follows that x0 and x1 have the same sign.

b) We have
x1
x0

> 0, since sgn(x0) = sgn(x1). Hence Uα is well definite.

Because the relations (2) are obviously true, it follows that (Uα(·))α=1,m ∈ U 2.

Using the formula (7), we obtain,

χ(t1, t0)x0 = e
ln

(
x1
x0

)
x0 =

x1
x0

· x0 = x1.

Consequently the control (Uα(·))α=1,m transfers the phase (t0, x0) into the phase

(t1, x1), according the Remark 1.2. �

The Theorem 1.2 says that, for n = 1, in the case of the PDE system (1), it

is sufficient to consider as controls only constant functions form (8).

For the PDE systems of the type (1) we may consider other sets of controls,

how was it U 3, for example. Also, it may impose conditions on solutions x(·); for
example, require that x(·) take values in a given set, included in Rn.

2. Metric parallelism (metric phase transfer)

In the paper [14] one solves the following problem: giving a second order

differential equation, under what conditions the graphs of solutions of this equations

are geodesics for a Riemannian manifold
(
D ⊆ R2, gij

)
? Obviously g = (gij)i,j∈{1,2},

is a Riemannian metric that must be determined. It shows that it is necessary

that the given equation to be a Riccati second order equation and Γ1
ij = 0. In

these conditions, the coefficients of the Levi-Civita connection, Γ2
ij , are expressed

with respect to the functions which defines the Riccati equation and conversely.
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Equivalently, the Riccati equation is known if and only if the coefficients Γ2
ij , ∀i, j ∈

{1, 2} are known. Let us show that (g11, g12, g22)
⊤ is the solution of the linear

homogeneous PDE system (9), written below.

We consider the linear homogeneous PDE system

∂x

∂t1
= U1(t)x,

∂x

∂t2
= U2(t)x, (9)

where t = (t1, t2) ∈ R2, x = (x1, x2, x3)⊤ : R2 → R× R× (0,∞),

and U1, U2 : R2 → M3(R) are C1 matrix functions of the form

U1(t) =

 0 2Γ2
11(t) 0

0 Γ2
12(t) Γ2

11(t)

0 0 2Γ2
12(t)

 , U2(t) =

 0 2Γ2
12(t) 0

0 Γ2
22(t) Γ2

12(t)

0 0 2Γ2
22(t)

 . (10)

Note that systems (9) are a special cases of the PDE systems (1), with m = 2,

n = 3.

In the paper [14] was proved the following result

Theorem 2.1. We consider given C1 functions Γ2
11,Γ

2
12,Γ

2
22 : R2 → R.

a) The following statements are equivalent:

i) On R2 there are true the relations

∂Γ2
12

∂t2
=

∂Γ2
22

∂t1
,

∂Γ2
12

∂t1
+
(
Γ2
12

)2
=

∂Γ2
11

∂t2
+ Γ2

11Γ
2
22. (11)

ii) There exists the C3 function W : R2 → R, such that on R2 we have the

relations

∂W

∂t2
> 0, Γ2

11 =

∂2W

∂(t1)2

∂W

∂t2

, Γ2
12 =

∂2W

∂t1∂t2

∂W

∂t2

, Γ2
22 =

∂2W

∂(t2)2

∂W

∂t2

. (12)

iii) The PDE system (9) has at least a solution x : R2 → R × R × (0,∞), of

class C1.

b) Suppose the equivalent statements i), ii), iii) are true. Let W be a function as in

the point ii).

Then all the solutions, x = (x1, x2, x3)⊤ : R2 → R × R × (0,∞), of the PDE

system (9), are of the form

x1 = a

(
∂W

∂t1
+ c

)2

+ b; x2 = a

(
∂W

∂t1
+ c

)
·
(
∂W

∂t2

)
; x3 = a

(
∂W

∂t2

)2

(13)

with a > 0, b, c arbitrarily real constants.

In these conditions, the functions x1(·), x2(·), x3(·) are of class C2.

Proposition next check immediately.

Proposition 2.1. Suppose that we are considering Theorem 2.1 and that the equiv-

alent statements i), ii), iii) are true. Let W as in the statement ii) of the Theorem

2.1.
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Then ∀t0 ∈ R2, ∀x0 ∈ R2 × (0,∞), the Cauchy problem {(9), x(t0) = x0} has

a unique solution. This is given by the formulas (13), where

a =
x30(

∂W

∂t2
(t0)

)2 , b =
1

x30

∣∣∣∣ x10 x20
x20 x30

∣∣∣∣ = x10 −
(x20)

2

x30
, (14)

c =
1

x30

∣∣∣∣∣∣
x20 x30

∂W

∂t1
(t0)

∂W

∂t2
(t0)

∣∣∣∣∣∣ = x20
x30

· ∂W
∂t2

(t0)−
∂W

∂t1
(t0). (15)

Definition 2.1. The pair of matrix functions
(
U1(·), U2(·)

)
is called control for the

PDE system (9) if there exists a function W : R2 → R, of class C3, with
∂W

∂t2
(t) > 0,

∀t ∈ R2, such that, U1, U2 are defined by the relations (10), for Γ2
ij given by the

formulas (12). The function W defines completely the control. We denote by UW ,

the control defined the function W .

We observe that the pair
(
U1, U2

)
is control for the PDE system (9) iff the

functions Γ2
ij , which define U1 and U2, verify the equivalent statements i), ii), of the

Theorem 2.1.

For the PDE system (9), the phase transfer is similar to the exposed in Section

1, for the PDE system (1). It differs only choice controls; they are now the ones

presented in Definition 2.1.

Proposition 2.2. For any control
(
U1, U2

)
and any solution x(·) of the PDE system

(9), there exists a constant k ∈ R, such that

x1(t)− (x2(t))2

x3(t)
= k, ∀t ∈ R2, (16)

i.e., the function F (x1, x2, x3) = x1 − (x2)2

x3
is a first integral for the PDE system

(9).

Proof. Any solution is given by the formulas (13). We have

x1(t)x3(t) = a2
(
∂W

∂t1
(t) + c

)2

·
(
∂W

∂t2
(t)

)2

+ bx3(t) = (x2(t))2 + bx3(t).

Hence x1(t)x3(t) = (x2(t))2 + bx3(t), equivalent to x1(t)− (x2(t))2

x3(t)
= b. We choose

k = b. �

Proposition 2.3. Let x0, x1∈ R2 × (0,∞) and t0, t1∈ R2.

a) If the phase (t0, x0) transfers to the phase (t1, x1), then

x10 −
(x20)

2

x30
= x11 −

(x21)
2

x31
. (17)

b) Let us suppose that the equality (17) is true.
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Let W : R2 → R, of class C3, with
∂W

∂t2
(t) > 0, ∀t ∈ R2. Then the control UW

transfers the phase (t0, x0) into the phase (t1, x1) iff

x30(
∂W

∂t2
(t0)

)2 =
x31(

∂W

∂t2
(t1)

)2 and (18)

x20
x30

· ∂W
∂t2

(t0)−
∂W

∂t1
(t0) =

x21
x31

· ∂W
∂t2

(t1)−
∂W

∂t1
(t1). (19)

Proof. a) If the phase (t0, x0) transfers to the phase (t1, x1), then there exists a

control, such that the Cauchy problems {(9), x(t0) = x0} and {(9), x(t1) = x1}
have the same solution x(·). According the Proposition 2.2, there exists k ∈ R, such
that the relation (16) holds true, ∀t ∈ R2. Hence we have

x1(t0)−
(x2(t0))

2

x3(t0)
= x1(t1)−

(x2(t1))
2

x3(t1)
= k ⇐⇒ x10 −

(x20)
2

x30
= x11 −

(x21)
2

x31
= k.

b) The control UW transfers the phase (t0, x0) into the phase (t1, x1) iff the

Cauchy problems {(9), x(t0) = x0} and {(9), x(t1) = x1} have the same solution

x(·). This is equivalent, according the Proposition 2.1, to the fact that the numbers

a, b, c are

a =
x30(

∂W

∂t2
(t0)

)2 =
x31(

∂W

∂t2
(t1)

)2 , b = x10 −
(x20)

2

x30
= x11 −

(x21)
2

x31
and

c =
x20
x30

· ∂W
∂t2

(t0)−
∂W

∂t1
(t0) =

x21
x31

· ∂W
∂t2

(t1)−
∂W

∂t1
(t1).

�

Theorem 2.2. Let x0, x1∈ R2 × (0,∞), such that the relation (17) is true. Then,

for any t0, t1∈ R2, t0 ̸= t1, the phase (t0, x0) transfers to the phase (t1, x1).

a) If t10 ̸= t11, we consider

W : R2 → R, W (t1, t2) = A
(t1 − t10)

2

2
+ eB(t1−t10) · (t2 − t20), ∀(t1, t2) ∈ R2,

where B =
lnx31 − lnx30
2(t11 − t10)

, A =
1

t11 − t10
·

(
x21√
x31x

3
0

− x20
x30

−B(t21 − t20)

√
x31√
x30

)
.

Then the control UW transfers the phase (t0, x0) into the phase (t1, x1).

b) If t10 = t11, t
2
0 ̸= t21, x

3
0 ̸= x31, we consider

W : R2 → R, W (t1, t2) =
1

B
· eAB(t1−t10) · eB(t2−t20), ∀(t1, t2) ∈ R2,

where A =
1√

x31 −
√

x30
·

(
x21√
x31

− x20√
x30

)
, B =

lnx31 − lnx30
2(t21 − t20)

.

Then the control UW transfers the phase (t0, x0) into the phase (t1, x1).



90 Cristian Ghiu, Constantin Udrişte

c) If t10 = t11, t
2
0 ̸= t21, x

3
0 = x31, we consider

W : R2 → R, W (t1, t2) = eA(t1−t10) · (t2 − t20), ∀(t1, t2) ∈ R2,

where A =
x21 − x20

x30
.

Then the control UW transfers the phase (t0, x0) into the phase (t1, x1).

Proof. One applies the Proposition 2.3.

We have to show that
∂W

∂t2
> 0 and that the equalities (18), (19) are true.

a)
∂W

∂t2
(t1, t2) = eB(t1−t10) > 0,

∂W

∂t1
(t1, t2) = A(t1 − t10) +BeB(t1−t10) · (t2 − t20).

∂W

∂t2
(t0) = 1,

∂W

∂t1
(t0) = 0,

∂W

∂t2
(t1) = eB(t11−t10),

∂W

∂t1
(t1) = A(t11 − t10) +BeB(t11−t10) · (t21 − t20).

The equality (18) is equivalent to

x30
1

=
x31

e2B(t11−t10)
⇐⇒ eB(t11−t10) =

√
x31√
x30

⇐⇒ B =
lnx31 − lnx30
2(t11 − t10)

,

the last equality being true.

The equality (19) is equivalent to

x20
x30

=
x21
x31

· eB(t11−t10) −A(t11 − t10)−BeB(t11−t10) · (t21 − t20). (20)

Since eB(t11−t10) =

√
x31√
x30

, the equality (20) is equivalent to

x20
x30

=
x21
x31

·
√
x31√
x30

−A(t11 − t10)−B ·
√

x31√
x30

· (t21 − t20),

or A =
1

t11 − t10
·

(
x21√
x31x

3
0

− x20
x30

−B(t21 − t20)

√
x31√
x30

)
,

which is true.

Analogously, we treat the cases b) and c). �
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