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PARALLEL TRANSPORT AND MULTI-TEMPORAL
CONTROLLABILITY

Cristian Ghiu', Constantin Udriste?

Our idea was to make a bridge between the parallel transport in dif-
ferential geometry and the controllability of evolutionary linear PDE systems. The
purpose is threefold: (i) to highlight the origin of some linear homogeneous PDE
systems; (i1) to formulate new controllability theorems regarding the bilinear sys-
tems; (iii) to prove that the problem of the Riemannian metric can be thought of
as a problem of multitime controllability. The results are concise and confirmed
by examples and counterexamples. In particular, the control of metric phases in
Riemannian geometry is a new subject in our research group.
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1. Controlled multitime linear homogeneous PDE systems
1.1. Multitime linear homogeneous PDE systems

Our aim is to study homogeneous PDE systems of the type

ox
Ty (t) =

where t = (t!,...,t™) € R™, z: R™ — R" = M,,1(R), and U, : R™ — M,(R) are

@! matrix functions indexed after a = 1, m.

Us(t)x(t), Ya=1,m, (1)

Proposition 1.1. The PDE system (1) is completely integrable iff, for any o, 8 =
1,m and any t € R™, we have

U, oU;
o) 4 UL (D Us(E) = —L (¢ UL (1). 2
ge5 (1) + Ua®Us(t) = 5.2 (1) + Us(t)Ual(t) (2)
Specification. A matrix-valued function F(t) € M, (R), t € I is said to be
(i) proper on the interval I if F(t) = f(t,A),t € I, and a fixed constant matrix

A € M, (R), where f is a scalar function, and (ii) F(¢) is said to be semiproper on
Iif F(t)F(r) = F(r)F(t), Vt, 7 € I.
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The PDE system (1) is called semiproper if
Ua(t)Up(T) = Ug(1)Uq(2), t, 7 € R™ Vo, € 1,m

(functional commutativity of the matrices U,). A semiproper PDE system has a
closed form fundamental matrix

x(t, to) = exp/ Ua(s) ds®™.

Tigt
Consequently, the problem of solving a semiproper system amounts to that of finding
a finite form expression for the exponential matrix.
If the complete integrability conditions are taken simultaneously with semiproper
conditions, then the matrices U, are the components of gradient of a matrix U.
Using Theorem 5.5 and Proposition 5.2 of the paper [5], we obtain

Proposition 1.2. Let ty € R™ and xo € R™. If the matriz functions Uy(-) verify
the relations (2), then the Cauchy problem {(1), x(to) = xo} has a unique solution

x:R™ = R"  x(t) = x(t, to)zg, VteR™, (3)

where x(+,+) : R™ x R™ — M,,(R) is the fundamental matriz associated to the PDE
system (1). The solution x(-) is a function of class C2.

A source for PDE systems of type (1) is the parallel transport in differential
geometry (on a manifold or on jet bundle of order one), modulo the notations of
coordinates and functions.

For example, on an n-dimensional manifold M, with local coordinates z = (z?),
we define a covariant derivative operator V, and its components I‘;k(a:) (connection
coefficients), to perform the components of covariant derivative, in a way indepen-
dent of coordinates.

(i) A vector field X = (X%) on M is called parallel if

V;iX'(z) = B (x) + ij(x)Xk(x) =0,14,j,k € 1,n.
(ii) A second order tensor g = (g;j) on M is called parallel if

Vagis (@) = 92 ) D)y () — T )ana ()

9gij . —
= S (@) = (Thi(@)d) + Thy(@)3}) gle) = 0,5,k 1 € T

For identifying with the PDE system (1), we need to identify: (i) the ranges
I,m, 1,n; (ii) t with 2; and (iii) X", resp. g;; with the unknowns z‘.

Remark 1.1. In differential geometry, the parallel transport is a way of transporting
geometrical data along smooth curves in a manifold. If the manifold is equipped with
an affine connection (a covariant derivative or connection on the tangent bundle),
then this connection allows one to transport tensors of the manifold along curves so
that they stay parallel with respect to the connection.

The papers [1]-[4], [6]-[13], [15]-][17] include information and related tech-
niques, the relevant sources for original ideas in this article.
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1.2. Controlled multitime linear homogeneous PDE systems

Linear PDE systems on Lie groups are a natural generalization of linear PDE
systems on Fuclidean spaces. Indeed, a homogeneous linear system on a Lie group
is a controlled system

Oox
5ra (1) = ua () X((1)),
where X, (x) are linear vector fields. Of course, these PDE systems can be written
in the form (1) and conversely.

We reconsider the PDE system (1) as a controlled bilinear system, where the
matrix functions

(Ual-atzms Ua : R™ = Ma(R),

are controls of class €!, Va = 1,m, which verify the relations (2) on R™, for
any «, 8 = 1,m. If in addition, for any «, the functions U,(-) are constant, then
(Ua(*)) a=17m is called constant control.

Definition 1.1. The family of matriz functions (Ua("))a—1m, of class @, which
verify the relations (2) on R™, is called control for the PDE system (1).
The set of controls, resp. the set of constant controls, is denoted by

Uy := {(Ua)a:L—m ‘ (Ua)q=1m is control for the PDE system (1)},

Uq := {(Ua)alen ‘ (Ua)a=T7m is constant control for the PDE system (1)}
Hence, the system (1) is completely integrable if and only if (Uy(-)) is a
control function.

It is obvious that U; and U, are real vector spaces and Uy C U;.

a=1lm

Definition 1.2. Let (to, xo), (t1,21) € R™xR" be two phases. We say that the phase
(to, zo) is transferred to phase (t1,1), if there exists a control (Ua(+)) =17 » in the
PDE system (1), such that the solution x(-) of the Cauchy problem {(1), z(ty) =
xo}, verifies also the relations x(t1) = x1. In other words, for the same control
(Ua(*) a1 » the Cauchy problems {(1), x(to) = zo} and {(1), z(t1) = z1} have
the same solution. We will say that the control (Uy(+)) transfers the phase
(to, o) into the phase (t1,z1).

a=1m

Remark 1.2. Let (fo,o), (t1,21) € R™ x R". The control (Ua(")) a1 € U1,
transfers the phase (tg,z¢) into the phase (t1,x1), iff x(t1,t0)x0 = z1 (here x(-, )
is the fundamental matrix of the PDE system (1) in which the family (U,(+)) a=Tm
is as above, which makes the transfer of phases). This follows immediately from
Proposition 1.2.

Remark 1.3. Let z(-) be a solution of the PDE system (1). If there exists s € R™
such that x(s) = 0, then z(t) = 0, Vt € R™. Suppose that the phase (¢, zo) transfers
to the phase (t1,z1). Then zy = 0 iff z; = 0. It is noticed immediately that any
control transfers the phase (g, 0) into the phase (t1,0) (Vto,t1 € R™).
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For zp # 0 and z7 # 0, we further study the transfer of the phase (¢, z¢) into
the phase (t1,21). In the case n > 2, we prove that for any tg, t1, different, the
phase (tg, zo) transfers in the phase (t1,x1).

Lemma 1.1. Ifa,b € R and A = a b . then e = e® CO,Sb sin b .
—-b a —sinb cosb

Proof. For an original proof, we show that e™ = %" < cos(rb) - sin(rb) >, VT €

—sin(7b) cos(7b)
R; then we set 7 = 1 and we obtain the conclusion.

We denote F(1) := €7 CO,S(Tb) sin(rb) , 7 € R. It suffices to show
—sin(7b) cos(7b)

that F''(1) = AF(7), V7 € R, and F(0) = I5. The equality F(0) = I, is obvious.
By computation, we find

P =ae (T o) ) 7 (Chomtes) v )

O CUI S ) R (e

_ ae‘”( cos(rb)  sin(rb) )+ be‘”( —sin(rh)  cos(rb) ) .

—sin(7b) cos(7b) —cos(tb) —sin(7b)
O

Lemma 1.2. Let n > 3. For any xo,r1 € R™\ {0}, there exists Yy, Y1 € R?\ {0},
and there exists an invertible matriz P € M, (R), such that

_ Yo _ Yy
Pxy = < On_21 > and Pz = < On1 > (4)

Proof. First, do the proof for the case in which vectors xy and x1 are linearly inde-
pendent.
Let S = Sp{xo,z1}. The set {xg,z1} is a basis of the vector subspace S and

hence dim S = 2. Then dim S+ =n —2 > 1. Let {c3, ..., ¢,} be a basis of the

vector subspace S+. The set {zq, 21, 3, ..., cu} is a basis of R" = M, 1(R), since
g
o]

S® St =R" =M, 1(R). It follows that the matrix P := cq | is invertible. For
o7

n
j = 3,n, we have cha:o = mgcj = (¢j,z09) = 0 and chxl = a:chj = (¢j,z1) = 0, due
to the fact ¢; € S-+. Hence

[EN (z0,21)
Pzxg = (x1,0) and Pz = |1 |?
On_g,l On—2,1
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. [ENE (w0, 71)
It is enough to choose Yy = and Y7 = 5 . The vectors Y
(21, 20) (BT

and Y] are nonzero, since ||zg|| # 0 and ||z1]| # 0.

Let us suppose now that g and x; are linearly dependent. There exists A € R,
A # 0, such that 1 = Azg. Let Sy = Sp{xzo}. The set {xo} is a basis of Sy and
hence dim Sy = 1. Then dim 5’0L =n—12>2.

Let {co, ..., ¢u} be a basis of Si-. The set {zg, ca, ..., ¢y} is a basis of
2
c3
R™ =M, 1(R). It follows that the matrix P = : is invertible.
cn
For j = 2,n, we have chaco = xgcj = {(cj, o) = 0, since ¢; € S. Consequently
o lol? B [ AMlzol? (ol
Pxo = and Px1 = APxo = . We choose Yy =
n—1,1 n—1,1 0
and Y7 = AY). The vectors Yy and Y7 are non-zero, since zg # 0 and A # 0. ]

Proposition 1.3. Let n > 2. For any xg,z1 € R™\ {0}, there exists A € M, (R)
such that e*zg = 1. If xg = x1, we can choose A = 0. If xg # x1, then A can be
chosen with rank A = 2.

Proof. First, we refer to the case n = 2. Let mg = (z§,23)", 1 = (z},23)T. We
consider the complex numbers z := 23 + iz} and z; := 2} + iz{. The numbers 2y
and z; are non-zero since zo and z; are non-zero.

Write zp and 21 in trigonometric form. There exists rg,r1 € (0,00) and there
exists 6p, 01 € [0,27), such that zg = ro(cosbp+isinby) and z; = ri(cosf; +isinby).

Let z = ? . Obviously z = :—1(008(91 —0p) + isin(6; — 6p)).
0 0

LetG::{<_“b 2>€M2(R)
a b

f:C=aG, f(a+z'b):<_b a) (a,b € R).

a,be R}. We consider the function

It is easily proved that GG, with operations of addition and multiplication of matrices,
is a field and the function f is an isomorphism of fields.
Consequently we have zzg = z1 = f(z)f(20) = f(21), i.e.,

ri( cos(bh —0p) sin(f; —6p) 2 ol 2 ad (5)
ro \ —sin(fy — 6p) cos(61 — 6p) —zb 22 )\ -2t 2?2 )
1

Leta::ln(%), b:=601 — 6y andA:z(

a

b > We use Lemma 1.1 and
-b a

it follows

A cosb sinb cos(01 —6p)  sin(61 — 6p)

_ a _n
€= ( —sinb cosb > 1o < —sin(f; — 0y) cos(61 — bo) > (6)
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From (5) and (6) we deduce the equality

2 1 2 1

A Lo  Tp | _ ry 21

€ 1 .2 | = 1 .2 -
-5 xf —r; i

Equalizing the second column in the left hand side with second column from the

right, and we get
1 1
6A<x8>:<x%) <~ 6A$0:$1.
T x
0 1

The matrix A, chosen above, is void if and only if a = b =0 <= ry = rg and 6; = 6
< 21 = z9 <= 11 = 2g. Hence A =0 iff g = 1.

It follows that if xg # x1, then A is non-zero, hence a # 0 or b # 0, and from
det(A) = a® + b? we obtain rank A = 2.

We remark that in the case n = 2, we can choose A € G (A = O or rank A =
2).

So we have proved the Proposition for n = 2.

Let n > 3.

If 2y = 1, we choose A = 0 and it is obvious that ez = Lxg = 1.

Now treat the case where xg # 7.

According Lemma 1.2, there exists Y, Y7 € R?\ {0}, and there exists an
invertible matrix P € M, (R), such that the equalities (4) hold.

We apply the case n = 2 to the vectors Yy, Y. We saw that one can choose
A; € G, such that Y, = V7.

Aq O2,n—2
Ag = '
Let A2 ( On—22 Op_2n-2

A0 Y
A, _ e 22 0
e 2Pxy =
0 < Opn—22 In_s > < On—2,1 >

e )= (ot )
< On—2.1 On—2.1 !

Hence e2 Pxy = Pzy. Since P is invertible, it follows pleh Pxy = x1. We choose
A =P 14,P. We get
eAxy = ePilAQP:ro = (P_leAQP):Uo = 11.
Obviously, rank A= rank As= rank A;.
If we had rank A; # 2, then det(A;) = 0. Since A; € G and det(A;) =0, it
follows that A1 = O, hence also Ay = O,,. From A = P~'A,P, we obtain A = O,

and from ez = x1, it follows 2o = 1, which is false.
Hence rank A; = 2. It follows rank A = 2. O

) . Using the relations (4), we obtain

In general, the matrix A, appearing in the conclusion of Proposition 1.3 can
not have the rank 1. We show this in the following example.

Example 1.1. Let n > 2, xg € R", 29 # 0 and x1 = —Exg, with £ € (0,00). If the
matriz A € My(R) verifies the relations ez = x1, then rank A # 1.
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Let us suppose that rank A = 1. Let J € M,(C), be the canonical Jordan
form o the matrix A. Rank J = rank A = 1. If on the principal diagonal of J should
exists at least two nonzero elements, then rank J > 2, which is impossible.

It follows that at least n — 1 from the eigenvalues of the matrix A are zero,
and the last eigenvalue, ), is real, since A = Tr(A) € R.

Then the matrix e? has n — 1 eigenvalues equal to 1, an the n-th eigenvalue
is e*. Tt follows that e? + &I, has n — 1 eigenvalues equal to 1 + &, and the n-th
eigenvalue is e + ¢. Hence det(e? +£1,,) = (1+&)"L(e* +€) > 0. We deduce that
the matrix e + 1, is invertible.

The equality e?zg = z1 is equivalent to ez + £xg = 0 or (eA +&I,)xo = 0.
Since the matrix e? + &I, is invertible, it follows zg = 0, that is false. O

We denote by U3 the set of families of functions (Uy(+)),,—
Ua(-) : R™ — R™, with the property

— Uq(+) are all identically zero,

or

1m>

— there exists g = 1, m and there exists a matrix M € M, (R), with rank M =
2, such that

Ua(t) = M, ¥Vt e R™; if a=qg
Y Op, VEER™; ifa # ap.
Note that for such families, the relations (2) are true. It follows that the elements

of the set U3 are constant controls for the PDE system (1).
Hence Ug C Uy C Uj.

Theorem 1.1. Letn > 2. For any (to, zo), (t1,21) € R™ X R", with x¢g # 0, 1 # 0
and ty # t1, there exists a control in U3 which transfers the phase (tg,zq) into the
phase (t1,x1).

Proof. Since ty # t1, there exists ag = 1, m, such that ¢;° # ¢7°.
According the Proposition 1.3, there exists A € M,(R), with A = 0 or

1
rank A = 2, such that e“zy = z;. Let M = ———— A. We choose
1 —ty°

B M, Vt e R™; if a = g
Ualt) _{ O, YVt € R™; if a # «p.

Obviously, (Un(")) -1 € Us.

a=1m
Taking into account the Proposition 1.2 and the formula

x(t o) = M=) (¢t t) € R™ x R™, (7)
it follows that the solution of the Cauchy problem {(1), z(to) = xo} is
2 R™ SR, z(t) =00 g = (. t™) € R™.

We obtain z(t1) = e(tlllo _th)Mxo = eA:UO = x1, therefore chosen control transfers
the phase (o, xo) into the phase (t1,x1). O
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The Theorem 1.1 says that for n > 2, in the case of the PDE system (1), it is
sufficient to consider as controls only elements of the set U 3.
In the case n = 1, we have the next result

Theorem 1.2. Letn =1, (to,zo), (t1,71) € R™ X R, with o9 # 0 and z1 # 0.

a) If the phase (tg, zo) transfers into the phase (t1,x1), then sgn(xo) = sgn(z1).

b) Let us suppose that sgn(xg) = sgn(x1) and tg # t1. Let ag = 1,m, such that
to° # t1°. We consider the functions

1
Uy :R™ 5 R, Uy(t)={ ti" — 1t T

0 , Vit e R™; if a # «p.

(8)

Then (Ua(+)) =17 18 @ constant control for the PDE system (1), and transfers
the phase (tg, o) into the phase (t1,x1).

Proof. a) The function x(-,¢9) : R™ — R is continuous. Since for any ¢t € R™, the
matrix x(t,%p) is invertible, i.e., x(¢,to) # 0, it follows that the function x(-,to) has
constant sign. But x(fo,t0) = 1 > 0; hence x(¢,t9) > 0, Vt € R™.

According the Remark 1.2, we have x(t1,%0)xo = x1. Since x(t1,t9) > 0, it
follows that z¢ and z; have the same sign.

b) We have SN 0, since sgn(xg) = sgn(x1). Hence U, is well definite.

o
Because the relations (2) are obviously true, it follows that (Ua(-)) =17 € U2-
Using the formula (7), we obtain,
In <a:1> 1
X(tl,t())xo:e Zo o= —*"To—=a1.
o
Consequently the control (Ua(-)),—17; transfers the phase (fo,zo) into the phase
(t1,21), according the Remark 1.2. O

The Theorem 1.2 says that, for n = 1, in the case of the PDE system (1), it
is sufficient to consider as controls only constant functions form (8).

For the PDE systems of the type (1) we may consider other sets of controls,
how was it Ugs, for example. Also, it may impose conditions on solutions z(-); for
example, require that x(-) take values in a given set, included in R™.

2. Metric parallelism (metric phase transfer)

In the paper [14] one solves the following problem: giving a second order
differential equation, under what conditions the graphs of solutions of this equations

are geodesics for a Riemannian manifold (D C R?, gij) ? Obviously g = (9ij)i je{1,2}5
is a Riemannian metric that must be determined. It shows that it is necessary

that the given equation to be a Riccati second order equation and F}j =0. In
2
ij>
with respect to the functions which defines the Riccati equation and conversely.

these conditions, the coeflicients of the Levi-Civita connection, I'7., are expressed
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Equivalently, the Riccati equation is known if and only if the coefficients F?j, Vi, j €
{1,2} are known. Let us show that (gi1,g12,922)" is the solution of the linear
homogeneous PDE system (9), written below.

We consider the linear homogeneous PDE system

Ox Ox

ﬁ = U]_(t)x, @ = UQ(t)l’, (9)
where t = (t1,#2) € R?, 2 = (2',2%,2%) T : R? - R x R x (0, 00),
and Uy, Uy : R? — M3(R) are C! matrix functions of the form

0 2I'%(t) 0 0 2I'%,(t) 0
Uit)=| 0 Th(t) THt) |, Ta(t)=| 0 T5(H) Th(t) |. (10)
0 0 212, (t) 0 0 213, (t)

Note that systems (9) are a special cases of the PDE systems (1), with m = 2,
n=3.
In the paper [14] was proved the following result

Theorem 2.1. We consider given €' functions I3, I35, '3, : R? — R.
a) The following statements are equivalent:
i) On R? there are true the relations
ori, ori, ori, ()% = or?,
otz ot ott LT
ii) There exists the C3 function W : R? — R, such that on R? we have the
relations

+ 13,13, (11)

0*wW 2W 0*wW
ow o(t1)? 1942 a(t?)?
. s LT L R (12)
ot ot ot

iii) The PDE system (9) has at least a solution x : R? — R x R x (0,00), of
class C'.
b) Suppose the equivalent statements i), ii), iii) are true. Let W be a function as in
the point ii).

Then all the solutions, v = (z*,2%,2%)T : R2 = R x R x (0,00), of the PDE
system (9), are of the form

2 2
a:lza((?;l/—kc) —i—b;xQ:a((?fl/—Fc)-(?g);xg:a(?g) (13)

with a > 0, b, ¢ arbitrarily real constants.
In these conditions, the functions x'(-), 22(-), 23(-) are of class @2.

Proposition next check immediately.

Proposition 2.1. Suppose that we are considering Theorem 2.1 and that the equiv-
alent statements i), ii), iii) are true. Let W as in the statement ii) of the Theorem
2.1.
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Then Yty € R?, Vg € R? x (0,00), the Cauchy problem {(9), z(to) = 2o} has
a unique solution. This is given by the formulas (13), where

3 1 2 2\2

= — o 5 b= i?’ xg xg — l’(l) _ (‘rOS) , (14)

ow Ty | Lo T Ty

(atg <t0)>
1 4 75 2 oW oW
0

c=—=| ow oW =3 =5 (to) — =+ (to). (15)

o | Gt Gt | ab o or

Definition 2.1. The pair of matriz functions (Uy(-),Us(-)) is called control for the
PDE system (9) if there exists a function W : R? — R, of class €3, with E;Ig(t) >0,
vVt € R?, such that, Uy, Uy are defined by the relations (10), for I’?j given by the

formulas (12). The function W defines completely the control. We denote by Uy,
the control defined the function W.

We observe that the pair (Ul, Ug) is control for the PDE system (9) iff the
functions F?j,
Theorem 2.1.

For the PDE system (9), the phase transfer is similar to the exposed in Section

1, for the PDE system (1). It differs only choice controls; they are now the ones

which define Uy and Us, verify the equivalent statements ), i), of the

presented in Definition 2.1.

Proposition 2.2. For any control (Ul, Ug) and any solution x(-) of the PDE system
(9), there exists a constant k € R, such that

z(t) — (“;2 3(3))2 =k, VteR? (16)

i.e., the function F(xl,:cz,x?’) =z — is a first integral for the PDE system

(9)-

Proof. Any solution is given by the formulas (13). We have
2 2
2t ()23 (t) = a® (g‘:f(t) + c> : (?:;(t)) + b3 (t) = (22(t))? + ba®(2).

20412

Hence 2! (t)2®(t) = (x*())* + ba?(t), equivalent to z'(t) — (@ 3((7;))) =b. We choose
x

k=0b. O

Proposition 2.3. Let zg,21€ R? x (0,00) and tg, 1€ R2.
a) If the phase (to,xo) transfers to the phase (t1,z1), then

212 212
1 (950) 1 (x)

_ _ 17

0 m% 1 :U:{’ (17)

b) Let us suppose that the equality (17) is true.
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Let W : R? = R, of class C3, with 88?2/(15) > 0, Vt € R%. Then the control Uy
transfers the phase (to, xo) into the phase (t1, 1) iff

3 3
o 5 = ! 5 and (18)
ow oW
92 (to) ﬁ(tl)
330 ow ow 2 W ow
3 8t2 (t()) atl (t(]) xé 8t2 (tl) 8t1 (tl) (19)

) 1

Proof. a) If the phase (tg,zo) transfers to the phase (¢1,z1), then there exists a
control, such that the Cauchy problems {(9), z(to) = zo} and {(9), z(t1) = z1}
have the same solution z(-). According the Proposition 2.2, there exists k € R, such
that the relation (16) holds true, V¢ € R2. Hence we have
2 2 2 2 212 212
1 (2%(t0)) (2%(t1)) _ (g) 1 (#1)
ty) — =2 (t1) — 5 =k<= 25— =z — = k.
b) The control Uy transfers the phase (tg,zp) into the phase (t1,x1) iff the
Cauchy problems {(9), z(to) = zo} and {(9), z(t1) = =1} have the same solution
x(+). This is equivalent, according the Proposition 2.1, to the fact that the numbers

a, b, c are
T T I‘Q 2 1:2 2
I S SO U C O N
8W( ) ow (t ) o €Ty
o2 oz !
2 2
x5 OW ow i oW ow
c=—3 (to) — 7 (to) = =3 (t1) — o7 (t1)-
a3 o2 ot! 23 o2 ot!

0

Theorem 2.2. Let g, 71€ R? x (0,00), such that the relation (17) is true. Then,
for any to,t1€ R?, tq # t1, the phase (to, zo) transfers to the phase (t1,x1).

a) If th # t1, we consider
A g1y2

W:R?* 5 R, W(tht?) = A(QO)
1 1 1 2 2 /3
nxll n:1707 A= g~ 58;) 3 :Eg B(t] - ) szla ’

2(t; — to) ty — g Vxixy o T Ty
Then the control Uy transfers the phase (tg,zo) into the phase (t1,x1).
b) If ty =11, t2 # 12, 23 # 23, we consider

+ePET) (2 —45), V() € R,

where B =

WiR? S R, W, £2) = — . ABE ) BE) vyl 2) ¢ R?
) b B ) ) )

2 2 3 3
T z Inz? —Inxz
where A = L 0 > = L 0

1
f—f(f‘f 2

Then the control Uy transfers the phase (tg,zo) into the phase (t1,x1).



90 Cristian Ghiu, Constantin Udrigte

c) Ifty =t}, t2 £ 42, 23 = 3, we consider

W:R2 SR, Wt e2) =) (12— ¢2), (', ¢2) € R,

2 2
3 .
T

Then the control Uy transfers the phase (to,xo) into the phase (t1,x1).

where A =

Proof. One applies the Proposition 2.3.
ow
We have to show that — > 0 and that the equalities (18), (19) are true.

ot?
W 1 o Bt —t} oW 1 1 1 B(tl—t} 2_ 42
a) 5z (') =c (#=t0) > 0, S (t119) = A(t! —t5) + Be (" =to) . (12 — £2).
oW ow
ﬁ(to) =1, m(to) =0,
ow 141 ow T
(i) = P T ) = A — 1) + BePE - (1 — ),
The equality (18) is equivalent to
3 3 3 3 3
-l Bl = — B=-—_1_—""0
1~ 2B € o 2(t1 — 1)
the last equality being true.
The equality (19) is equivalent to
2 x? 141 141
x—g = m—;) ceBU0) At — ) — BePU0) L (12 — 12). (20)
0 1
B(tt—t} xy
Since eBti—10) = \/»3, the equality (20) is equivalent to
Lo
2 2 3 3
S= YA A -g) - B YA (- 6),

I RV Vg

or = : - — = —t5)~

which is true.
Analogously, we treat the cases b) and c). O

Acknowledgments

The work has been funded by the Sectoral Operational Programme Human
Resources Development 2007-2013 of the Ministry of European Funds through the
Financial Agreement POSDRU/159/1.5/S/132395.

Partially supported by University Politehnica of Bucharest, and by Academy
of Romanian Scientists.



Parallel transport and multi-temporal controllability 91

[1]

2]

3]

[4]

[6]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

F. Borrelli, Constrained Optimal Control of Linear and Hybrid Systems, Lecture Notes in
Control and Information Sciences (290), Springer, Berlin, 2003.

L. Cesari, Existence theorems for abstract multidimensional control problems, Journal of Op-
timization Theory and Applications, 6(1970), No. 3, 210-236.

L. C. Evans, An Introduction to Mathematical Optimal Control Theory, University of Califor-
nia, Berkeley, 2010.

C. Ghiu, Popov-Belevich-Hautus theorem for linear multitime autonomous dynamical systems,
U.P.B. Scientific Bulletin, Series A, 72(2010), No. 4, 93-106.

C. Ghiu and C. Udriste, Multitime Controlled Linear PDE Systems, in Contemporary Topics
in Mathematics and Statistics with Applications, vol. 1 (2012), Chapter 5, pages 82-109, Asian
Books Private Limited, New Delhi, India, 2012.

C. Ghiu and C. Udriste, A decision functional for multitime controllability, J. Adv. Math.
Stud., 5(2012), No. 2, 32-45.

T. Malakorn, Multidimensional linear systems and robust control, PhD Thesis, Virginia Poly-
technic Institute and State University, 2003.

[http://math.ucsd.edu/~toal/ETD.pdf]

L. Matei, C. Udriste and C. Ghiu, Multitime Boussinesq solitons, International Journal of
Geometric Methods in Modern Physics, 9(2012), No. 4, 1250031; 1-19.

S. Pickenhain and M. Wagner, Piecewise continuous controls in Dieudonné-Rachevski type
problems, JOTA, 127(2005), No. 1, 145-163. 107, 2 (2000), 297 330.

V. Prepelita, Stability of a class of multidimensional continuous-discrete linear systems, Math-
ematical Reports, 9(59)(2007), No. 1, 87-98.

V. Prepelita, Minimal realization algorithm for multidimensional hybrid systems, WSEAS
Transactions on Systems, 8(2009), No. 1, 22-33.

C. Udriste, Multitime controllability, observability and bang-bang principle, JOTA, 139(2008),
No. 1, 141-157.

C. Udriste and A. Bejenaru, Multitime optimal control with area integral costs on boundary,
Balkan J. Geom. Appl., 16(2011), No. 2, 138-154.

C. Udriste, C. Ghiu and I. Tevy, Identity theorem for ODEs, auto-parallel graphs and
geodesics, Balkan J. Geom. Appl., 17(2012), No. 1, 95-114.

C. Udriste and 1. Tevy, Multitime dynamic programming for curvilinear integral actions, Jour-

nal of Optimization Theory and Applications, 146(2010), 189-207.



92 Cristian Ghiu, Constantin Udrigte

[16] C. Udriste and 1. Tevy, Multitime dynamic programming for multiple integral actions, Journal

of Global Optimization, 51(2011), No. 2, 345-360.

[17] M. Wagner, Pontryagin’s maximum principle for Dieudonné-Rashevsky type problems involv-

ing Lipschitz functions, Optimization, 46(1999), 165-184.



