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ASPECTS OF RUIN PROBABILITY IN INSURANCE

Maria Cristina GURAU *

Se studiaza probabilitatea de ruinare a unei companii de asigurari tindnd
cont de frecventa si amploarea cererilor de despagubire. O prima evaluare se
obtine cu inegalitatea lui Lundberg iar apoi se stabileste o ecuatie integro-
diferentiala verificatd de aceasta. Se va aplica pe cazul particular al cererilor cu
repartitie exponentiald.

Study of ruin probability for an insurance company taking into account the
firequency and size of the claims. A first evaluation is obtained using the Lundberg
inequality and then an integro-differential equation satisfied by the ruin probability
is established. This will be applied to the particular case of exponentially distributed
claims.
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Introduction

This paper presents the classical model for the risk process in insurance
and exposes results regarding the infinite time ruin probability. It is firstly recalled
the adjustment coefficient and then established the Lundberg inequality (see [1],
[2]). Furthermore, the article presents an integro-differential equation verified by
the ruin probability for arbitrary claims, and determines its solution for the case of
exponentially distributed claims.

1. The classical risk model

The standard mathematical model for insurance risk consists of the
following: the occurrence of the claims is described by a Poisson process with

intensity 4. It is denoted by N, the number of claims within the interval

(0,¢]. The amounts of money to be paid by the company at each claim is
considered to be a sequence of random variables, denoted {X;,X>,...} which are
independent identically distributed (i.i.d.) positive variables with distribution
function F' and finite mean . It is denoted by S, the total amount of claims
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within interval (0,7],thus we have S, =Zj_v:'1 X ,. Therefore the process

{S;,t=0} 1s a composed Poisson process and for each ¢>0 it
results: E(S;) = E(N)E(X ;) = (At)(u) = pit .

Furthermore, it is assumed that the insurance premiums are paid
continuously, with a premium income ratec, the total income within (0,7]
beingct .

In order for the company to cover its liabilities, the premium rate must
verify the following inequality: ct > E(S;), equivalent to ¢ > ul.

Thus, there exists @ > 0 called the safety loading so that:

c=(1+6)Au (1.1)

The capital at time ¢ is: U, =Uy +ct—S;,t 20, where U, =u is the
initial capital.

The survival probability in infinite time, with initial capital u is defined
by: ¢(u)=Pr(U, 20,Vt > 0|U0 =u). Thus, the ruin probability in infinite time
will be: w(u)=1-¢(u).

2. Lundberg inequality

In this section it is demonstrated an inequality satisfied by the ruin
probability i/ (u) . For this, the following concept is introduced:

Definition: It is called an adjustment coefficient for a positive random variable X
of mean u, the unique positive solution of the & variable equation:

1+ (1 + 0) ik = E(e™). (1.2)

We present here a justification for the existence and singularity of a strict
positive solution for the equation (1.2).

It is obvious that the equation admits £ =0 as a solution.

Then, let: y(t)=1+(1+60)ut and y,(t)=E (etX ) be the functions which
will be graphically represented. The graphic of y; is a line of slope (1+86)4,
which passes through (0, 1), as shown in Figure 1. Concerning y, , we notice that
it is an ascending function, since y'z ®) =E(XetX )>0 and it is also convex
because y; ()= E(XzetX) >0.

The two curves cross each other in (0, 1), as we previously noticed.
Since y'z O)y=pu<(1+Hu-= yi (0), the graphical representation of y, descends
below the graphical representation ofy;, and because of its profile, it will
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intersect the graphic of y; once more. The x-value of the point of intersection is
the strict positive value of k that we are looking for.

L L

] k

Fig. 1: Illustration of the existence of the adjustment coefficient

We will add an alternative definition for the adjustment coefficient, which
will be later used.

By integrating the expression of E(e*") it results:

E(e™)= je’“dF(x) =—e"[1- F(x)]|: +k j e [1— F(x)]dx .
0 0
The first term of this sum is analyzed. In order to do this, the following
inequalities are established:

0<e[1-F(x)]= e’“TdF( ) < Te/“/dF(y)

and because limIe"de(y) =0, we obtain: lime"[1- F(x)]=0.

Thus, forx — oo, the expression from the first term tends to 0, and for
x — 0 the expression tends to 1.
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This results in: E(e™) = J e dF (x) =1+ k‘[ [1-F(x)]dx
0

Becausel + (1 + ) uk = E(e"") , it obtains:

1+6’=Tek"fe(x)dx (1.3)
where:
S (x)=——

The choice for the denotation is justified by the fact that f, is in fact a

12F0) s (1.4)

distribution density: j f.(x)dx = lj[l — F(x)dx =1
0 /u 0

Theorem. The ruin probability satisfies the Lundberg inequality:

ww)<e™ u>0. (1.5)
Demonstration. It is denoted by y, (1) the probability that the ruin occurs at the
n-th claim or before. Theny (1) = ll_rg v, (u).

It will be proven that v, (1) < e™,u >0 forany n>0
Forn=0,p,(u)=0<e™,u>0.

Supposing thaty, (u) < e™,u >0, it will be shown thaty,, (1) <e™,u>0.
First, the moment when the first claim appears is analyzed. The time elapsed until
the appearance follows an exponential repartition with a repartition density of
Ae”* because the process {N,;¢>0}is assumed to be a Poisson process of

intensity A . It is denoted by ¢ > 0 the moment of the first claim appearance. The
company’s surplus at that time isu + ¢t . There are two possible situations: either
the claim quantum surpasses the value of the present capital, in which case ruin
occurs, this event having the probability Pr(X; >u+ct)=1-F(u+ct), or the

claim quantum is inferior to the present capital, 0 < x <u +ct, in which case the
claim will be paid and the process will be retaken with a capital of u +ct—x. If it
hasn’t occurred because of the first claim, ruin can occur at the next n claims.
Because the process has stationary and independent increments, the probability of
ruin occurring in the interval between the second claim and the n-th claim
starting with a surplus of u + cf at moment ¢ is the same as the probability of ruin
at the first n claims if the starting surplus is u +ct — x
Using the total probability formula, it results that:
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u+ct

v, (1) = T[l —F(u+ct)+ jy/n (u+ ct — x)dF (x)]Ae ¥ dt

= T[ T dF (x)+ ”].‘f://n (u+ ct — x)dF (x)] e “dt

Using the inductive hypothesis, it results:

o —k(utct=x) utct

v, (u) < j [ j e dF(x) + j e I GR ()] Ae Mt
0 wu+tct 0
Then: v, (u) < j [ j eI IR ()] de M dt
00
0 o0 o0
= ae M [e R [ ar (oyle M dt = e [ AN T Yar
0 0 0

o kX
_ AE(ekX)e—kuJ‘e—(bch)tdt _AE(e )e—ku

0 A+ke

According to expressions (1.2) and (1.1), it results:
AEE )= A1+ (1 +O)ku]=A+ k(1 +0)Au= A+ ke
Thus: v, (1) <e™ , which completes the induction.

Because w(u) = limy, (u) and v, (1) < e™,Vn,

then y(u)<e™ .
The importance of the result consists in the fact that it establishes a
connection between the initial surplus # and the value of the safety coefficient .
For example, if the insurer wants to take a maximum risk of & =0.01 and
he has a fixed initial capitalu, the safety coefficient which he has to take into

loga
22 x))-13
u _1,

—uloga

u{E[exp(-

account is: 0=

wherek = (—loga)/u.
By applying the above theorem, it is obtained: w(u)<e™ =e
Otherwise if one wants to have a certain predetermined value of the safety
coefficient, and the initial capital may vary, one will consider: u = (—loga)/k .
Furthermore, expression (1.5) confirms a fact which is intuitively obvious, namely
that the ruin probability, for infinite initial capital, is O.

loga

=Q.
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y (o) =limy (u) =0 (1.6)

In order to justify this, the next argument is given: In accordance with the
theorem:

0<w(u)<e™. (1.7)
Tendingu — oo , it results: 0 < limy () < lime™ =0.

From equality (1.6) it results that the survival probability satisfies the condition:

P(0) =1 (1.8)

2. Integro-differential equations satisfied by the survival and ruin
probabilities

At this point, the article presents an explicit formula for the ruin
probability y(u) or an equivalent for the survival probability ¢(u).
Definition. For u>0and y >0, it is denoted by G(u, y)the probability of ruin
when starting with an initial capitalu , with a produced deficit not greater then y

monetary units.
Thus:
w(u) =limG(u, y),u > 0. 2.1)

Theorem. The function G(u, y)satisfies the equation:
0 A A7 A

™ G(u,y)=—G(u,y) —— I G(u—x,y)dF(x) ——[F(u+y)-F(u)],u>0(2.2)
u c cy c

Demonstration. It will be studied what happens in the first /4 time units, for very
small values of /2. Because the number of claims is a Poisson process, during this
time frame there can be 0 or 1 claims. The probability of having more then one
claim is negligible.

If no claims occur, which happens with a probability of 1—- A4, the
probability of ruin with a deficit not greater then y is G(u +ch,y). If a claim

occurs, which happens with a probability of A4, we have the following possible
situations: either its quantum x satisfies the inequality 0<x <u+ch which
means that the ruin has not yet occurred, but can occur from now on with the
probability of G(u + ch — x, y)or it satisfies the inequality u+ch <x<u+ch+y,

at which point ruin has already occurred with a deficit not greater then y . For the
case ofx>u-+ch+y, the deficit will surpassy. Using the total probability
formula, it is obtained:
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u+ch

G(u,y)=(0-A)G(u+ch,y)+ Ah IG(u +ch—x,y)dF(x)+

+ AW F(u+ch+ y)— F(u+ch)]+o(h)
Gu+ch,y)—G(u,y)
ch

This is equivalent to: ¢ =AG(u+ch,y) -

u+ch

) jG(u +ch—x, y)dF(x) -

—/1[F(u+ch+y)—F(u+ch)]+%h)

Dividing it by ¢ and tending 27 — 0, the desired expression is obtained:
0 A A A
——G(u,y)= —G(u,y)——fG(u —x, )AF (x) =—{F(u+y) = F(u)]
ou c ¢y c
Theorem. The function G(0,y) is provided by the equality:
G(0,y) = iJ.[l —F(xX)]dx, y>20 (6.16)
¢ 0

Demonstration. Because: 0 < G(u, y) < w(u) <e™,

then: 0 < G(0, y) = lim G(u, y) < lime™ = 0, which gives: G(0,y)=0.

Moreover, IG(u,y)du < Ie"‘“du =k <.
0 0

The following function is introduced: 7(y) = j G(u,y)du .
0

From the above results, this function verifies the inequality: 0 < 7(y) < oo, Vy.
By integrating the relation (2.2) in respect to # from 0 to oo, it results:

ﬂ/ ﬂl 0 U ﬂl 0

~G(0,y) =2 1(3) == [ [ Glu—x, y)dF (x)du == [ [F(u + y) = F(u)du.
c oo cy

By changing the order of integration, it is obtained:

G(0,y) = —%r( ¥)+ % [ [ Gu—x, y)dudF (x) + % [LF@u+ )= F(u)ldu

Inside the double integral, changing the variable from u into v = u — x leads to:

0

G(0,y) = - % () + % [ [ GO, y)dvaF (x)+ % [IF @+ y) = Fu)ldu

0
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0

e G+ 2 [ F G+ ) = Fldu

0

yl yl
=-——1(y)+—
C C

Because J dF(x) =1, the following equality is obtained:
0

A7 A% A%
G(0,y) == [[F(u+y) = Fw)ldu == [[1= F(u)ldu - =[[1 = F(u + y)ldu
¢ 0 ¢ 0 ¢ 0
In the second integral the variable is changed from « into x =u + y
A% A% 2%
G(0,y) == [[1 = F(w)ldu == [ [1= F(x)ldx == [[1- F(x)]dx .
< cy Y

The next theorem provides an important result regarding the survival probability
with initial capital zero.

Theorem. The probability of survival with zero initial capital is given by the
expression:

_ 9
$0) =12 (2.3)

¥y
Demonstration. Inside the equality: G(0, y) = 4 J- [1-F(x)ldx,
¢ 0

tending y — oo leads to:

w(0) = lim G(0,7) =2 [[1-For = = L
Yo €o c 1+6

For this, expression (1.1) and I[l — F(x)]dx = u are used.
0

Thus:

§O)=1-p(O) =

Further, it is established the integro-differential equation satisfied by @(u), with
initial condition (2.3).
Theorem. The survival probability ¢(u) satisfies the equation:

P (u)= i¢(u) - iJ.¢(u —x)dF(x),u>0. (2.4)
c ¢y

Demonstration. From equality (2.1) and ' (1) = limaiG(u, ),
Yoo oy

using (2.2) it results:
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, A A A
v () =y )= [y (u=2)dF (1) = [1 = Fu)],u > 0. (2.5)
0
From this the next expression in ¢ (1) is obtained:

~ ) =21 g [11- gl -0 (021 - Flw)

C c9

6=~ 2 p(u) =L [ aF ()42 [ gt —x)dF 1)+ 2 Py
C C 0 C 0 c

=2 g+ 2 [ ptu - ) (x)
C C 0

This proves the desired result.
As an application of this result, we will determine the solution to equation (2.4)

for a particular distribution function ' .

3. Determining the survival probability for exponentially distributed
claims

Supposing that X is an exponential distribution, having the repartition
function:
F(x)=1-e"* x>0
We want to calculate ¢(u) .
In this case, equation (2.4) becomes:

' /I /1 u i
#' () == p(u)— == [ plu—x)e™ dx
c uc s,
By changing the variable xinto y = u — x, it results:
! i ﬂ’ ~u ( y
¢ (u)=—¢(u)-—-e ”’f(ﬁ(y)e' “dy . (6.20)
c Lc 0
By differentiating expression (6.20) with respect tou , it is obtiained:

" A, A uiaf A
)= =g )+ [Py)e’  dy ——p(u)
c ue 0 Hc
The integral can be calculated from expression (6.20), and then by
replacing it inside the expression we obtain the following differential equation:

5w =24 w2 gy + L1 ) - ¢ ).
c uc u c
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or, yet: ¢ (u) = (f —%)qﬁ‘(u)

Using the method of separation of variables and the expression (1.1), it
is obtained:

pw_ 6
p)  u(l+0)
Integrating in respect to u , the general solution is obtained:

6u

logg (1) = ————+K,.
gg (u) 1(1+0) 1
In order to evaluate Ky, let # =0 in (6.20), and then using (2.3) it is obtained:
A6 A 0 0

) == = =
¢ ) cl+0 Au(1+0)1+6 u(1+86)
From the previous expression the exact value of K; is obtained:

0
K = log[m]
. . ! — 0 —
Getting back to ¢(u): ¢ (u) = 1+ 0) exp| 1+ 9)]'

Integrating, the general solution is obtained:

1 b
pu) = =175l ﬂ(1+9)]+K2

In order to obtain K5, let u = 0and expression (2.3) will lead to K, =1.

In the end, the desired formula for the survival probability is obtained:

1 Ou
$(u) =1-——exp[-————].
1+6 u(l1+9)
Remark: Even though the mathematical model presented in this paper is an
idealized one, the results it provides correspond to real world situations and can be

useful in the development of a financial long term plan for an insurance company.
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