U.P.B. Sci. Bull., Series C, Vol. 71, Iss. 3, 2009 ISSN 1454-234x

FRAMEWORK FOR DATA-INTENSIVE APPLICATIONS
OPTIMIZATIONIN LARGE-SCALE DISTRIBUTED
SYSTEMS

Catalin CIRSTOIU', Nicolae TAPUS®

Lucrarea de fatd promoveaza ideea ca problema aplicatiilor data-intensive
in sistemele distribuite de mari dimensiuni trebuie abordata depasind simpla idee de
planificare a cererilor de executat, cautind suport la nivelul platformei. Astfel, se
propune ideea schimbadrii dinamice a configuratiei resurselor folosite, pe baza
cererilor efective, intr-o abordare coerentd si consistenta la toate nivelele. Concret,
aceasta inseamnd considerarea retelei nu doar o resursda importantd, ci un element
activ al sistemului, ce trebuie monitorizat, urmarit si optimizat.

Plecand de la aceste idei, sunt prezentati algoritimii si serviciile de
optimizare implementate in cadrul platformei propuse. In final, este ardtati
eficacitatea abordarilor alese in mai multe medii reale, precum Gridul ALICE sau
sistemul de videoconferinta EVO.

In this work we argue that when dealing with data-intensive applications in
large distributed systems it is important to go beyond the simple scheduling of
application tasks that have to run, and to support at the framework level the process
of dynamically changing the configuration of the underlying resources, based on
actual requirements, in a coherent and consistent manner. In practice, this means
considering the network not only an important resource, but also an active element,
whose use has to be monitored, tracked and optimized.

We have designed and implemented an optimization framework, together
with several algorithms and corresponding optimizer services. Finally, we prove the
effectiveness of our approaches in several environments, real such as the ALICE
Grid or the EVO videoconferencing system.

Keywords: distributed systems, data transfers scheduling, network topology
1. Introduction

The experiments in the field of High Energy Physics (HEP) have proven
the necessity for large distributed systems. The largest collaborations as of today,
such as ALICE, ATLAS, CMS and LHCDb of the CERN’s Large Hadron Collider
(LHC) [1] program, encompass thousands of physicists from hundreds of

1 Project Assistant, European Center for Nuclear Research — CERN, Geneva, Switzerland,;
Assistant, Faculty of Automatics and Computer Science, University POLITEHNICA of Bucharest
2 Prof. Faculty of Automatics and Computer Science, University POLITEHNICA of Bucharest,

ntapus@cs.pub.ro

90 Catalin Cirstoiu, Nicolae Téapus

institutions in more than 30 countries worldwide. They drive the construction of a
Data Grid [2] capable of handling massive datasets on a global scale. Managing
these massive amounts of data requires two fundamental components at the
network layer, on which higher-level services can be built: (a) a reliable, secure,
high-performance data transfer protocol for use in wide area environments; and
(b) proper management of the data transfer requests, in regard to the scheduling
and handling of the ongoing transfers.

Another area of interest in the field of distributed data-intensive
applications is the delivery of multimedia information in distributed computing
environments. Typically, this employs multicast technologies which can be
supported on regular Internet through overlay networks. The solution that was
adopted to solve the multicast problem was called the funneling approach. The
tunnels should be established dynamically in order to form the overlay network
that is used by the application.

We can clearly see a strong connection at the network level between these
two kinds of applications. An efficient approach for both this problems consists in
considering the network as an active element and an important resource, similar to
computing and storage components, whose use should be monitored, tracked and
optimized in real time. Moreover, latest developments in the field of high-speed
networking brought closer and closer to the production status the idea of hybrid
networks, trying to combine conventional parts of the network (packet switched)
with circuit-oriented segments. This way, the most demanding applications make
use of dynamically constructed optical paths which ensure the desired high end-
to-end throughput.

This idea is actively investigated by projects such as DRAC [3],
DRAGON [4], or OSCARS [5]. However, their focus is only on dynamic network
configuration for the purpose of bandwidth time-slots reservations. Projects that
handle transfer requests, like FTS [6] or Stork [7] consider only the end-points
when performing data transfers scheduling, ignoring the common network
segments on the actual paths.

Employing direct light-paths also reduces the cost of the entire system, as
the cost of optical switches is much lower for high-speed data transfers, than the
full stack of components in a 10Gbps layer 3 Router.

We have developed a framework for performing and handling data
transfers and bandwidth requests with capabilities for network provisioning, based
on FDT (Fast Data Transfer) [8] and MonALISA (Monitoring Agents in a Large
Integrated Services Architecture) [9]. FDT is an application for efficient data
transfers over wide area networks, capable of transferring data at disk (storage)
speed. MonALISA is a large scale distributed monitoring system, with support
controlling remote services from high-level clients. It offers a pluggable interface
for monitoring and controlling modules. The MonALISA clients can also be

Framework for data-intensive applications optimization in large-scale distributed systems 91

extended to implement custom behavior based on the monitoring information
received from the distributed services, such as controlling the network topology.

2. Framework design

The role of the envisioned system is twofold: (a) optimizing the selection
of the used network connections and (b) the efficient management of data
transfers and bandwidth requests running over both regular and dynamically
configurable network paths. To achieve this, the decisions taken both at the task
scheduling level and the network topology level, must be based on the available
bandwidth, delay and other concurrent activities on each segment of the network.

Overview

The connectivity between sites can be assured by a set of possible paths
with different characteristics in regard to bandwidth, delay, quality of service or
cost. By default, if no administration privileges are available on the end hosts,
routing to various destinations is determined by the default site network
configuration. However, if end system’s parameters, can be changed, alternate but
predefined paths, can be used instead the default. When paths can be dynamically
setup by sending commands to various network devices, the flexibility of the
system can be increased by providing more alternative paths (Fig. 1).

Fig. 1. Multiple paths in the network core available at different OSI layers

Setting up an alternative path is a process that could require activating
each individual link on the path, by sending specific commands to the
corresponding network device.

Having a path or virtual circuit setup, accomplishes the requirements
related to quality of service. However, in case of massive data transfers, the

92 Catalin Cirstoiu, Nicolae Téapus

network and endpoint storages can become overwhelmed and fail to cope with all
the traffic. This problem can be solved only through the scheduling of the
incoming requests. Instead of performing each request independently, users will
hand them to a scheduling service which will schedule their execution in such a
way that the system doesn’t become overloaded. The goal of this service is to
make efficient use of the resources, minimize the response time and take care of
errors by, for example, attempting to execute the requests several times, possibly
on different paths.

Summing, in order to perform intelligent handling of the requests, an
optimizer must know the topology of the network, its parameters and its current
and future load.

The knowledge of the network topology is also vital for the multicast-
based distributed applications. Optimizing the communication quality for this kind
of applications requires continuous data feeds concerning the network, the nodes
and the current traffic. Processing this data has to be fast and the decisions have to
be propagated immediately from a topology optimizer service through the network
so that the overlaid topology is kept within the optimum parameters.

We can distinguish here between two distinct, but closely related
optimization problems: the fopology optimization as a problem in its own and the
requests execution optimization, which is an extension of the former, adding the
time dimension.

Distributed services for monitoring and controlling network and tasks

The accomplishment of such a system can be achieved through a set of
distributed services, loosely coupled and with well defined roles (Fig. 2).

Monitoring &
Controlling
Service

Monitoring &
Controlling
Service

Monitoring &
Controlling
Service

Monitoring &
Controlling
Service

Controlling with near real
time monitoring feedback

6@«---@3&’3@---» Optimizer

Fig. 2. Distributed services for monitoring and controlling end-to-end paths

Registration & Discovery

Communication platform

The monitoring and controlling services are distributed throughout the
system, on each end-point where requests are actually executed, or close to

Framework for data-intensive applications optimization in large-scale distributed systems 93

intermediate points in the network that can provide monitoring information or that
can be controlled.

The optimizer service coordinates the entire system based on the
monitoring information received from the other services and on the users’
requests. At the optimizer’s core lays an interface for pluggable topology and
scheduling algorithms, based on the other components. This approach should
allow for the evolution of the employed scheduling algorithms, as will be needed.

The interactions between the optimizer and the distributed services is
assured by an advanced communication platform, which besides transporting
monitoring and controlling messages, it provides registration and discovery.

In general, a monitoring and controlling service is responsible for
discovering the local network topology and retrieve monitoring information about
the local nodes and links. It makes this information available to the optimizer
through the flow of monitoring data. The optimizer, by retrieving this information
from all the existing services, can infer the entire topology.

A monitoring and controlling service that runs on an end-point should be
able to setup the host in order to send the packets on the interface bound to the
chosen path, optimize network related parameters (for example setup kernel
network buffers size), start the transfer using some available protocol, monitor it
and stop it. Finally, once the transfer is completed, it should again update the local
configuration to the original settings. On an intermediary node, this service should
monitor the network traffic as seen by the equipment (data provided by switches’
and routers’ counters), and it should be able to send commands to the network
equipment or to other service that manages network paths to setup segments of the
possible path.

Each network link advertised by the monitoring and controlling service
can have associated procedures for setup or teardown, in controlling module’s
configuration. This way, the commands accepted by the distributed services can
be generic, being particularized locally, on each service, based on the defined
configuration. Thus, the underlying details of each administrative domain are
hidden from the optimizer, making the whole framework flexible and extensible.

In this presentation, the optimizer is referred to as a single service, but this
is only for the simplicity of the explanation. In reality, in order to assure the
requirements for reliability and to avoid single points of failure, this service
should be replicated and several similar entities should be available to users.

Abstracted network topology
The real network topology is abstracted as a graph within the optimizer,

based on the available network segments reported by all the distributed
monitoring services. This graph includes a set of nodes, interconnected through a

94 Catalin Cirstoiu, Nicolae Téapus

number of links with additional information. The algorithms implemented in the
optimizer will run over this abstracted topology.

Some of these nodes represent real network devices or end-points.
Likewise, some of the links are the representation of the actual underlying
connections, others are only logical connections. However, due to the restrictions
present in existent networks (i.e. firewalls), some of these nodes might not be
visible to conventional network monitoring tools. Moreover, it could be
impossible or unfeasible to add the complexity of the underlying network of
various network domains. Therefore, we consider two types of network elements:
real and virtual. For each of those, we can distinguish between manageable and
fixed configuration network elements. An example of manageable virtual element
would be another service that conFig.s a set of links on the computed path.

On the real network, we can distinguish between two types of paths: (a)
concrete network paths — consists of the existing network links, which don’t need
any additional setup in order to be used, typically at layer 3 in the OSI hierarchy;
and (b) configurable paths — end-to-end virtual circuits that already exist or that
can be setup dynamically. Fig. 3 shows an environment supporting multiple path
types, with the features and the commands suitable for each of them in the process
of executing a request.

Default IP route Layer 3

Layer 2

Layer 1

Fig. 3. Choosing and setting-up end-to-end paths at different network layers

In the abstracted topology, in order to support the paradigm of virtual
circuits, with multiple links between two nodes and some of the links may be
tagged with a certain path ID. Tagging is needed because not all possible paths in
this graph can be followed in reality, due to actual routing configurations.

With this convention, describing the virtual circuits at levels 1 and 2
would mean adding links between the intermediary nodes, with a certain ID.

Framework for data-intensive applications optimization in large-scale distributed systems 95

Supporting paths at layer 3 would mean tagging all these links with a default tag
(for example -1). Now, finding a path from a source to a destination node is
reduced to exploring this graph (based on a certain cost criteria) with the
restriction that all the links in the path must have the same ID (Fig. 4).

@ End point node
Intermediary node

3 Link participating to the path with ID=3
Fig. 4. Paths abstraction in the topology graph

Besides the regular monitoring information, each link in this graph has an
associated queue with the current and future requests to be executed. This allows
the other components in the optimizer to monitor the behavior of the network, to
track the executing requests, and to decide how to execute the future requests.

3. Optimizing the execution of data transfers and bandwidth requests

The process of handling users’ requests, either bandwidth reservations or
data transfers can be seen as a two step procedure, requiring the solution for two
problems: (a) the path discovery problem — finding possible paths between the
two end-points involved in the request; (b) the path allocation problem —
allocating the request to one of the available paths.

The path discovery problem (PDP) is a variant of the breadth-first search
(BFS) algorithm [10] that we have developed for exploring graphs. The similitude
comes from the constraint of finding shortest paths from source to destination.
The difference of PDP from BFS stems from the possibility of having multiple
edges between the same two nodes and their tagging. Another difference is the
stopping condition: the algorithm will stop as soon as it finds the destination,
instead of exploring the entire graph.

In the following two subsections we define and present the design details
for two policies we have implemented for handling the path allocation problem:

96 Catalin Cirstoiu, Nicolae Téapus

(a) time-based path scheduling — the requests are scheduled in time over the
existing links; (b) dynamic bandwidth allocation — priority based, immediate
execution with dynamic bandwidth allocation for the existing requests.

Time-based path scheduling

The path allocation problem (PAP) concerns the allocation of all the
network segments on the path associated with users’ requests. The requests arrival
in the system is on-line. Due to the fact that the capacity of the network is limited,
the requests cannot be executed immediately, as they are received. System’s goal
is to execute all of them eventually, optimizing the resources usage. In our case,
the allocated resources consist in the network segments, defined for the
underlying physical network.

With a running system, when a new request is received, the scheduling
process means finding the starting time for this request based on the estimated
processing time (from the prediction module), the path (from the PDP algorithm)
and the used bandwidth (as specified by user, in the path’s limits).

There are two constraints, which differentiate this scheduling process from
a classic job scheduling problem: (a) the request requires not a single, but a set of
resources in order to be executed successfully — all the network link segments, are
needed in order to perform a transfer, end-to-end; (b) a resource can be only
partially used by a request — on the same network link segment several data
transfers can be performed simultaneously, provided that the link’s bandwidth is
sufficient.

A visual representation of the constraints is depicted in Fig. 5. When
scheduling a new request, we have to make sure that there is sufficient available
bandwidth on all the link segments in the path, for at least an interval equal to the
request’s processing time.

A new request

Overall usage
Link segment 3
Bandwidth Link segment 2

usage i 15 15 Link segment 1

Fig. 5. Bandwidth usage over the links in a path

Framework for data-intensive applications optimization in large-scale distributed systems 97

The complexity of the time-based path scheduling algorithms can vary
from simple greedy approaches to complex algorithms and data structures for
handling optimally all the needed details. However, in the current work we focus
on the infrastructure itself, being concerned with its generality and flexibility to
accommodate any scheduling algorithm.

Dynamic bandwidth allocation

The time-based scheduling policy works fine especially for batch-style
requests. Regardless of the quality of the schedule and the efficiency of the
scheduling algorithm, the handling of high-priority requests is not very good.

Typically, there are two basic approaches: (a) non preemptive scheduling,
when the higher priority request is executed only after the end of the currently
running requests (that affect the requested links) — which could mean an arbitrary
long delay for the high priority request; (b) preemptive scheduling, when the
currently running requests are interrupted and they are restarted (possibly from the
beginning) when the higher priority request ends — which could mean the arbitrary
delay of low-priority requests.

Another, novel, policy is to start the high-priority request immediately and
reduce the bandwidth of the ongoing requests dynamically, without stopping
them. This way, the two problems of classic time-based scheduling are solved.
For this approach to work, it is needed that the underlying transfer protocol
supports changing dynamically the bandwidth limitation.

The two policies are not exclusive and can be used simultaneously. In fact,
in practice, dynamic bandwidth allocation should be supported by a time-
scheduling mechanism, since the requests duration can vary in time, compared to
the initially estimated interval.

4. Optimizing the overlay topology for a distributed application

A distributed application that uses an overlay network to communicate
must take into account two main aspects in order to be able to perform efficiently:
(1) Routing — since the routing of packets (at the reflectors level) is performed not
by the underlying network, but at logical level, the application has to handle it;
and (2) Performance — the tunnels that are selected to connect the reflectors have
to be chosen in such a way that the links quality between all peers is maximized.

In order to support the first constraint, the typical choice is to build a tree
over the possible connections in the mesh graph formed by all the participant
reflectors. Using a tree for this purpose has two advantages: routing is simple —
what is received by a reflector on a link will be forwarded automatically on all the
other links; the amount of data that flows over the network is minim (Fig. 6).

98 Catalin Cirstoiu, Nicolae Téapus

. Access Node
|:| Backbone Node
—— Available link

= Active link

Fig. 6. Spanning tree over the actual network topology

Therefore, the tree topology must be enforced, to avoid cycles. If at some
point cycles appear in this topology, packets will be forwarded continuously until
the expiration of their time to live, which will generate high load on the reflectors
and on the network. It becomes clear that the problem of optimizing the entire
overlay topology for a distributed application involves finding the best spanning
tree over the graph formed by the existing network segments.

The network topology optimization problem

The quality of this spanning tree is highly dependent on the quality of the
links in the graph, which can be reduced to the cost, also known as weight, of the
edges in the graph.

The overlay topology optimization (OTQO) problem can be defined as
follows: Given an undirected, possibly non-connex graph G = (¥, E) with real
weights assigned to its edges, the problem consists in finding a set of non-
overlapping minimum spanning trees {(V, 7)}, one for each connex component of
G, with T < E with the minimal possible weight w(7):

OTO = { e| e e T, with min(X.cg w(e)), covering all V' }

However, in real circumstances, this might not be sufficient for providing
a reliable service for the distributed application that uses the overlay network.
Before we can properly define the algorithm, we have to note that one must take
into account a set of time-dependent constraints that apply on the spanning tree
that is calculated. Thus, special care should be taken with new nodes that join the
system at some point; or the nodes that join and leave in a quick sequence.

The idea of the overlay topology optimization (OTO) algorithm is to
consider initially each node of the graph as a tree and then connect together pair of
trees, until the whole graph is covered by a single tree. The process of joining is

Framework for data-intensive applications optimization in large-scale distributed systems 99

performed gradually, choosing at each step the edge with the smallest weight that
has its nodes in separate trees.
0TO(V, E)
MST <« @
NODE_IN_TREE & @
for each n in V do
put(NODE_IN_TREE, n, n)
made_connection & true
while made_connection do
made_connection & false
best e < nil
for each e in E do
if best_edge = nil or e.w < best_e.w then
tl ¢ get(NODE_IN_TREE, e.nl)
t2 & get(NODE_IN_TREE, e.n2)
if tl # t2 then
best e ¢ e
if best e # nil then
made_connection € true
tl = get(NODE_IN_TREE, best_e.nl)
2 get(NODE_IN_TREE, best_e.n2)
for each n in V do
it get(NODE_IN_TREE, n) = t2 then
put(NODE_IN_TREE, n, tl1)
enqueue(MST, best_e)

return MST
The overall complexity of the OTO algorithm is O(n-m).

5. Experimental results

To achieve our goals we have developed modules at all layers of the
MonALISA framework. On the service side we have developed monitoring
modules for connectivity (ping-like) and topology (traceroute-like); application
control modules for links, bandwidth reservations and data transfers with FDT.
On the client side we have developed two Optimizer services, one for each of the
problems presented in the previous sections.

The next two subsections present the tests we have performed with the two
optimizing services in order prove their efficacy.

Data transfers on the ALICE Grid
Since 2005, MonALISA is used in the process of monitoring the ALICE

Grid [11], AliEn [12]. The data replication among AliEn storage elements is of
particular interest for the ALICE community. In this section we present the results

100 Catalin Cirstoiu, Nicolae Téapus

of our tests with the time-based path scheduling policy, in the attempt to use the
designed framework in the real environment of the AliEn Grid.

Regarding the network topology of the ALICE sites, we have built a
logical configuration, which is shown in Fig. 7. This includes only the sites which
have open ports in their firewall (needed for the actual data transfers with FDT),
out of the 60 ALICE sites. If needed, this topology can be refined to include more
details, as the local administrators would consider appropriate.

@ NorduGrid @
Russia

e
CNIHAM D

CERN-Net GEANT

@ INFN Abilene-US @

Cosc D
CBolomne D ionacat> Cagtari >

Fig. 7. Part of the ALICE sites and their assumed topology

For our testing purposes, the topology chosen for the participating sites
was one of a tree, having as core nodes the major network providers and the sites
as leafs. We have chosen the bandwidths of the links in such a way that from
CERN to the others we have enough bandwidth for 10 x 100Mbps concurrent
transfers, but the other networks support only 1 or 2 x 100Mbps simultaneous
transfers. On this topology we have issued a set of transfer requests from both
nodes at CERN, (CERN and CERN-L) to all the other participating sites. The
Optimizer schedules the requests, using a time-based path scheduling policy, in
three rounds, as in Fig. 8.

One can observe that there are no two concurrent transfer requests to two
nodes belonging to the same group (regional network). The overlapping is
allowed by the high capacity networks connecting the CERN nodes, but not by the
other links.

Framework for data-intensive applications optimization in large-scale distributed systems 101

Transfer Scheduler

Overview | Modes | Links | Paths | Requests | Add Request | Add Batch Test | Admin Users | Log out {catac)

MNr. RequestID Status From To Sched. Start Estim. Duration Duration LimitBwW CrtBW

| 117 ~lof 46 | Any | Ay =] | Any ~l

1 cat-439 SCHEDULED CERM-L UiQ 26.02.2008 11:52 5 min A - 100 mbps -

2 cat-434 SCHEDULED CERM-L OSC 26.02,.2008 11:48 5 min : - 100 mbps -

3 cat-438 STARTING CERM uio 26.02.2008 11:47 5 min 3 - 100 mbps -

4 cat-437 STARTING CERM WuT 26.02,2008 11:47 5 min : - 100 mbps -

S cat-436 RUNNING CERM-L Prague 26.02.2008 11:47 5 min ') - 100 mbps -

6 cat-435 RUNNING CERM Kosice 26.02.2008 11:43 5 min A - 100 mbps 49.4 mbps
7 cat-433 RUNNING CERM Qs5C 26.02.2008 11:43 5 min E - 100 mbps 13.4 mbps
8 cat-43Z2 RUNNING CERM-L Trujillo 26.02,2008 11:42 5 min | - 100 mbps 80.5 mbps
9 cat-4z29 RUNNING CERM Troitsk 26.02,2008 11:42 5 min 2 - 100 mbps 32.5 mbps
10 cat-4z8 RUNNING CERM-L SPbsU 26.02.2008 11:42 5 min : - 100 mbps 14.1 mbps
11 cat-426 RUNNING CERM TriGrid_«Catania 26.02.2008 11:42 5 min : - 100 mbps 47 mbps
12 cat-425 RUNNING ZERM-L Legnaro 26.02,2008 11:42 5 min : - 100 mbps 88.7 mbps
13 cat-424 RUNNING CERM Cagliari 26.02.2008 11:42 5 min v - 100 mbps 7.1 mbps
14 cat-431 FINISHED CERM Madrid 26.02.2008 11:37 5 min "'I‘ 5.3 min 100 mbps -

15 cat-427 FINISHED CERM IPMNO 26.02.2008 11:37 5 min]I. 5 min 100 mbps -

16 cat-423 FINISHED CERM-L Bologna 26.02.2008 11:37 5 min I 5.3 min 100 mbps -

17 cat-4:z22 FINISHED CERM Bari 26.02.2008 11:37 5 min \:(5.2 min 100 mbps -

Fig. 8. Scheduled, starting, running and finished transfer requests in ALICE

In Fig. 9 we present the actual transfer speeds, for the issued transfers. We
can see the clear separation of the three rounds, conforming to the schedule.

FDT transfer speed of requests from CERN FDT transfer speed of requests from CERN-L
1084 = R P] 2 > R mmmmmmn 3o > - 1 e g 2 e > R =
2 19
s .
" T T

wan 1z Was 148 1ae 1 e v e wa 1w 1048 1z) T
Service Local Time Service Local Time

Fig. 9. Transfer speed of the requests from CERN and CERN-L to the other sites

With this example we have shown that scheduling of data transfers on a
real Grid middleware is easily possible with our Optimizer. The data transfer
speeds are relatively small in this case, since the transfers were performed
between head nodes in each site, instead of the dedicated storage elements and
paths, which are used in reality.

Optimizing the EVO topology

EVO [13] is a next generation videoconferencing system, based on a
distributed architecture, which was created to provide support for the High Energy

102 Catalin Cirstoiu, Nicolae Téapus

Physics community. EVO evolved from VRVS [14], the focus being put on the
capability of the infrastructure to adapt itself dynamically to the network status
and ongoing changes, in order to ensure that the collaboration service runs
without disruption.

We have adapted the Global Connectivity Optimizer, to run in the context
of the EVO system. It receives monitoring information about the quality of the
links (both available and selected in the current topology) and computes the
minimum spanning tree that connects all the Panda servers (the reflector nodes).

The generated commands are sent through the communication platform
and then they are forwarded to the Panda servers. These act on them, by changing
the active communicating peers [15]. In Fig. 10 we show the generated tree.

URL ST [T
v s o™
@i_-'w:)) G [
ST
Puce_
> <o
- CEm
i IR
T R [T A
o
«_USFO1_BR 3 @
TR < <o
<« URERNA_UK -
< TURER A _UK
> e
@ [T e e
LT

Fig. 10. Overlay topology - Minimum Spanning Tree

The cost of this tree is based on the monitored quality of the selected links.
This quality varies in time according to the changes in the network. In general, if
there are no major network events, it is rather stable. However, the situation is
different if we look at system’s behavior for a longer period of time, as shown in
Fig. 11. The high peaks are generated by the penalized nodes. When a node is
unstable, all its connections will be penalized with a cost of 5000. This way, we
can keep the nodes that misbehave outside of the computed tree’s core.

Higher peaks represent a larger instability in the network (either of
essential core nodes, that have many peers, or multiple leaf nodes). As one can
observe, the system quickly restores the tree and brings the topology to a stable
status. We note that this system is in production since 2007, being actively used
by the community.

Framework for data-intensive applications optimization in large-scale distributed systems 103

MST Total Cost

l
| |

| A . 1l

] 1 2

Days 3 4

Fig. 11. Evolution of the MST total cost over a period of 5 days

6. Conclusions and future work

In large distributed systems, such as the Data Grids created for the data
intensive applications of the HEP experiments, monitoring information is vital for
understanding the behavior of the system, the fault conditions and fine-tuning the
operation. Developing on the MonALISA framework, we could accommodate
advanced features ranging from controlling of remote services to complex high-
level clients that can not only monitor, but also drive the distributed system.

Integrating the FDT application brought the flexibility to introduce new
data transfer handling policies that help optimizing the data transfers on a
different perspective, besides the raw efficiency of the transfer protocol. It also
allowed novel developments such as dynamic bandwidth adjustment at the
application level, an elegant solution to problems of the classic time-based
scheduling approach.

We demonstrated the utility of the Global Connectivity Optimizer in the
EVO videoconferencing system where it runs in production since 2007. The
overlay topology used by the videoconferencing system, which is maintained in a
permanent optimum shape by our framework, interconnects hundreds of users,
participating in tens of daily conferences. The lack of any major outage stands as
proof for its effectiveness.

104 Catalin Cirstoiu, Nicolae Téapus

We have demonstrated the functionality of our framework in a real-life
environment, such as the worldwide distributed ALICE Grid, proving that our
proposed goals can be achieved.

Since the Global Connectivity Optimizer is already in production, our
future research interest is focused more towards the Transfer Scheduler
Optimizer. In this area, we plan several developments, which include: adding
support for rescheduling of the requests, implementing the ideas for Optimizer’s
replication, developing a programmatic interface to the system based on web
services, integrating the two policies for handling requests and investigating more
complex scheduling algorithms.

REFERENCES

[1] The Large Hadron Collider, http://www.cern.ch/LHC

[2] Ann Chervenak, lan Foster, Carl Kesselman, Charles Salisbury, Steven Tuecke, The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large Scientific
Datasets, http://www.globus.org, 1999

[3] Dynamic Resource Allocation Controller (DRAC), http://www.nortel.com/drac

[4] Dynamic Resource Allocation via GMPLS Optical Networks (DRAGON),
http://dragon.east.isi.edu

[5] On-demand Secure Circuits and Advance Reservation System (OSCARS)
http://www.es.net/oscars/

[6] The File Transfer Service, http://egee-jral-dm.web.cern.ch/egee-jral-dm/FTS/default.htm

[7] T. Kosar, M. Livny, Stork: Making data placement a first class citizen in the Grid, ICDCS,
2004

[8] Fast Data Transfer: http://monalisa.cern.ch/FDT

[9]1 L.C. Legrand, H.B. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, M. Toarta, C. Dobre,
MonALISA: An Agent based, Dynamic Service System to Monitor, Control and Optimize
Grid based Applications, CHEP, 2004

[10] Thomas H. Cormen et. al., Introduction to Algorithms, Second Edition, McGraw-Hill, 2001

[11] C. Cirstoiu, C. Grigoras, L. Betev, A. Costan, I. C. Legrand, Monitoring, Accounting and
Automated Decision Support for the ALICE Experiment Based on the MonALISA
Framework, HPDCO07, California, USA, 2007

[12] 8. Bagnasco, L. Betev, P. Buncic, F. Carminati, C. Cirstoiu, C. Grigoras, P. Mendez Lorenzo,
A. Peters, F. Rademakers, P. Saiz, ALEn2: The ALICE Grid Environment, CHEP07,
Canada, 2007

[13]1 EVO Videoconferencing system, See http://evo.caltech.edu

[14] D. Adamczyk, D. Collados, G. Denis, J. Fernandes, P. Galvez, I. C. Legrand, H. Newman, K.
Wei, Global Platform for Rich Media Conferencing and Collaboration, CHEP03,
California, 2003

[15]1 M. Toarta, C. Cirstoiu, Monitoring and controlling applications using MonALISA. Case
study: VRVS, RoEduNet International Conference, Timisoara, 2004

