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FRACTIONAL HERMITE-HADAMARD INEQUALITIES FOR
SOME CLASSES OF DIFFERENTIABLE PREINVEX
FUNCTIONS

Muhammad Aslam NOOR?, Khalida Inayat NOOR,?> Marcela V. MIHAF,
Muhammad Uzair AWAN*

The main objective of this article is to establish some new inequalities of
Hermite-Hadamard type via Riemann-Liouville fractional integrals. We establish a
new fractional integral identity for differentiable function, then using this identity
as auxiliary result we derive some fractional Hermite-Hadamard type inequalities
for differentiable S -preinvex functions and for differentiable S -Godunova-Levin
preinvex functions.
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1. Introduction

The relationship between theory of convex functions and theory of
inequalities has inspired many researchers to investigate these theories. A very
interesting result in this regard is due to Hermite and Hadamard independently that
is Hermite-Hadamard’s inequality. This remarkable result of Hermite and
Hadamard can be viewed as necessary and sufficient condition for a function to be
convex. This famous result reads as follows:

Let f:1 <R — R beaconvex function with a<b and a,bel. Then

f (“bjsrlaif(x)dxsw. (1.1)

2

For some useful details on Hermite-Hadamard type inequalities, see
[2,4,5,7,9-13,15-20].
Recently many researchers have extended the classical concept of convex
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functions. As a result many new and interesting generalizations of classical convex
functions can be found in the literature, see [3-6,15,17,18,19,21]. An important
extension of convex functions was the introduction of preinvex functions [21]. For
some useful and interesting investigations on preinvex functions, see [1, 2, 9, 10,
11, 14, 15, 18, 19, 22]. Noor [19] and Noor [18] extended the class of preinvex
functions and introduced the concepts of s -preinvex functions and s
-Godunova-Levin preinvex functions respectively.

In this paper, we derive a new fractional integral identity for differntiable
functions. Using this we obtain our main results that are fractional
Hermite-Hadamard type inequalities for differentiable s-preinvex functions and
differentiable s-Godunova-Levin functions. Some special cases are also deduced.
This is the main motivation of this paper.

2 Preliminary Results

Let K be a nonempty closed setin R". Let f:K — R be a continuous
function and let 7(.,.): KxK —R" be a continuous bifunction. First of all, we

recall some known results and concepts.
Definition 2.1 [21]. Aset K issaid to be invex set with respectto 7(.,.), if

u+tn(v,u) e K, Vvu,veK,te[0,1]. (2.1)
The invex set K is also called 7 -connected set.

Remark 2.2 [1]. We would like to mention that Definition 2.1 of an invex set
has a clear geometric interpretation. This definition essentially says that there is a
path starting from a point u which is contained in K. We do not require that the
point v should be one of the end points of the path. This observation plays an
important role in our analysis. Note that, if we demand that v should be an end
point of the path for every pair of points u,ve K, then 7(v,u)=v-u, and

consequently invexity reduces to convexity. Thus, it is true that every convex set is
also an invex set with respect to 7(v,u) =v—u, but the converse is not necessarily

true, see [14,22] and the references therein. For the sake of simplicity, we always
assume that K =[u,u+#(v,u)], unless otherwise specified.

Definition 2.3 [21] A function f is said to be preinvex with respect to
arbitrary bifunction 7(.,.), if
f(u+tn(v,u)) <(1-t)f(u)+tf(v), Yu,veK,te[0,1]. (2.2)
The function f issaid to be preconcave if and only if —f is preinvex.
For n(v,u)=v—u in (2.2) the preinvex functions becomes convex
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functions in the classical sense.
Note that every convex function is a preinvex function. However it is
known [21] that preinvex functions may not be convex functions.

Definition 2.4 [19]. A function f :K — R issaid to be s-preinvex of
second kind with respectto 7(.,.), if

f(u+ty(v,u)) <(1-t)° f(u)+t°f(v), u,vekK,te[0,1],5€(0,1).
Note that for s=1 the definition of s-preinvex functions reduces to the
definition of preinvex functions. And for 7(b,a)=b-a, then we have the
definition of s-Breckner convex functions.
Definition 2.5 [18]. A function f:K — R issaidto be s
-Godunova-Levin preinvex of second kind with respectto 7(.,.), if
fu , 1)
(1-t°
It is obvious that for s=0, s-Godunova-Levin preinvex functions of
second kind reduces to the definition of P -preinvex functions [18] and for s=1 it
reduces to the definition of Godunova-Levin preinvex functions [18]. When
n(v,u) =v—u then we have definition of s-Godunova-Levin functions of second
kind [4, 5].
Definition 2.6 [8]. Let f L [a,b]. Then Riemann-Liouville integrals
J;f and Jb”jf oforder o >0 with a>0 are defined by

f(u+tn(v,u)) <——— , VYu,veK,te(0,1),s[0,1]. (2.3)

=(Lix t)* 7 f(t)dt, x>a,

and RIOE %T(t ~x)“Lf(t)dt, x<b,
a X

where ['(a) = .|'O°Oe‘t X“ X,

is the well known Gamma function.

We now give the definition of hypergeometric series which will be used in
the obtaining some integrals.

Definition 2.7 [8]. For the real or complex numbers a,b,c, other than
0,-1,-2,..., the hypergeometric series is defined by
Flabcz]=1+2 ab z a(a+1)b(b+1) z _ z(a) n(B)n 2"
c 1! c(c+1) 2! mo (©), mt’
Here (¢), isthe Pochhammer symbol, which is defined by
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~ 1 m=0,
@) _{¢(¢+1)...(¢+m—1), m>0,
which has the integral form:
P — 1 b 1 c-b-1
,F[a,b;c;z]= Bb.c_b) j (1-t)° > (1—zt) 2dt

where |z|<1,c>b>0 and
B(x, y) = I:tx’l(l—t)y’l dt,
is Euler function Beta with
rx)r
B(x,y) = LOTO).
r'(x+y)
Now we prove the following auxiliary result which plays a key role in

proving our main results.
Lemma 2.8. Let f :K — R be differentiable function such that

f'eL[a,a+n(b,a)]. Thenfor « >0, we have
D(a;a, x,b)(f)

3 770:+1(X,a) 1-t
" 2n(.2) ﬁ f(a+ L(x,a)dt - jt frast n(x a))dt}
_—na+l(b,X) la d 1;t _la ' ﬂ
Tty Ut 00 g O [t O =0, ),

where
Dd(a;a, x,b)(f)

n”(x,a)f(@+n(xa))+5"[0,x) f (x+1(b,x)  7"°(xa)f(@)+,"{0,x)f(x)

n(b,a) n(b,a)
_2T(a+l) .
(b a) [ [a+n(x.a)]"

+J Cf(x+= n(b X)) + Ji o )]f(x+%77(b,x))].

(a+%77(x,a))+ Jof (a+%77(x, a))

Proof. It suffices to show that

J'Kf (a+—77(x a))dt

0



Fractional Hermite-Hadamard inequalities for some classes of differentiable preinvex functions 167

=1 faipa) T@HD 1 e (a+1%t77(x,a))dt

1(x,a) n(x,a) T'(a)q
1 C2T(a+1) 1 TRY 1 ot
_—n(x’a)f(aH](x,a)) 7 (xa) F(a)aﬂ,,(x,a)(u a 277(x,a)) f (u)du
1 2T(a+1) ., 1
= —n(x,a) f (a+n(x,a)) —n“*l(x, 2 J[am(X‘a)]_ f(a+ 277(x,a)). (2.4)
Similarly
L, 1-t _ 1 2°T(ax +1) ., 1
_([?f (a+777(x,a))dt— —n(x,a) f(a)+—77“*1(x,a) Ja+f(a+277(x,a)), (2.5)
ftr ., 1t _ 1 2°T(a +1) ,, 1
E[?f (x+777(b,x))dt— —n(b,x) f(x)+—77”+1(b,x) Jx+f(x+277(b,x)), (2.6)
and
fte ., 1+t 1 _2'T(a+]) ., 1
!Ef (x+777(b, x))dt—mf(x+n(b,x)) —77‘”1(b,x) J[Xw(b’x)rf(x+277(b,x)),
(2.7)

After suitable rearrangements the proof is complete.
Remark 2.9. We would like to remark that for 7(b,a)=b—-a Lemma 2.8

reduces to Lemma 1 [13].
3 Main Results
In this section, we derive our main results.
Theorem 3.1. Let f:K — R be differentiable function such that
f'el[a,a+n(b,a)].If | f'| isis s-preinvex function of second kind, then, for

a >0, we have
| D (a;a, x,b)(f)]
< Zsigf;‘gz[na”(x, a)| f'(@) | Hn" (x,a)+7* (b, )} £'() [+7°" (b, x)| f'(b) ],
n(b,a)
where
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Char e TL+S)T(L+a)
91_“<[t (otyde= I'2+s+a) (3.1)
4, = jta(1+t)sdt = (1+ a)-z Fl-s1+a,2+a,-1]. (3.2)

Proof. Using Lemma 2.8, taking modulus and the fact that | f'| is s-preinvex
function of second kind, we have:
| @ (a;a, x,b)(f)]

’72“ (E)X i){jta | fras 2t 77(x a))|dt+jt“ | f (a+—n(x a))|dt}
L1, X){It frxe =t 77(b x))|dt+jt | f (x+—77(b X)) | dt}
2n(b, a)

sn;;(g;;){ﬁ“[( @2 e
i @i+ reons
e S IR G NICT

. jt[(%‘j )] +(1§‘j | /(b) 1y

[ (x, @) | £'(@) |-+ (x,a) + 7" (0, )} '(x) [+17°" (b, %) | T'(D) ]

_ 3+
25+177(b )

This completes the proof.

Theorem 3.2. Let f:K — R be differentiable function such that
f'el[a,a+n(b,a)].If | f'| isis s-Godunova-Levin preinvex function of second
kind, then, for « >0, we have
| D (ar;a, x,0)(f)]
21501 (;02 )[n“*l(x )| f@) [+ (x, @) +7 (b, )} £'0) [ +7° (b, x) | £'(B) 11,
where
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r(1-s)I'(l+a)

r(2-s+a) 33)

1
= ft@-ty*dt=
0

= j.t“ (1+t)°dt=(1+a)-, F[s,1+a,2+a,-1]. (3.4)

Theorem 3.3. Let f : K — R be differentiable function such that
f'elL[a,a+n(b,a)] and a>0.If | f'|° is s-preinvex function of second kind

where 0<s<1 and l+1:1,q >1, then
P q

| ®(a;a,x,b)(f)]

< b g ad(u ] F@F | TR
1+ pa +1
2 n(b,a)

1 1

(i | @ 2] £ 0O 3+7 0, 00{(ut, | T +44 ] /(D) )°

1

+ (] T +a1, | £/(0) 1) 3,

where

h 1
=j(1—t)5dt:—
5 1+s

1 1+s
27 -1
= [(1+t)°dt = .
#y !( yt="—
Proof. Using Lemma 2.8, Holder’s inequality and the fact that | f'|® is s

-preinvex function of second kind
| @ (a;a, x,b)(f)]

< ;1? ?{ﬁ [ Fa+ Tt n(x a»ldHIt a5 nna) 6
7“7 (b, X){It frxe =t 77(b x))|dt+jt | f (x+—77(b X)) | dt}
2n(b,a)

77(%,2) f

<L 5.3 (j(t )°dt)? [(j|f(a+—n<x A dt)*
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1

() fa+rtn(ua)f ']

L1 0.X) (|

+ b2 (J(t )Pdt)? [(j| f (x+—n(b O d°

1

+<j| f (x+—n(b X)) [ dt)]

a+1(x a) ( 1

" )5{( L7 F@ P+ | 109 [y
2 “n(b,a) °

+(I[(1+t)5| F(@) +(1-1)° | /09 [1dt)"}

na+l (b X) ( 1

w2 pa+1

)L+t | ()1 +@-1)° | £(0) [*1d)*
2 *n(b.a) k

+(f[(1—t)s | /00 [F +(1+1)° | /() [*]dt)*3

= s @ 0P
in(b,a

1 1

(| £1@) 1 +24 ] /001 F+77 10,0ty | £/ 1F +24 | £/ (D) [)°

1

(| OO+, | £1(0) )3
This completes the proof.

Theorem 3.4. Let f:K — R be differentiable function such that
f'el[a,a+n(b,a)] and a>0.If | f'|" is s-Godunova-Levin preinvex
function of second kind where 0<s<1 and l+1 =1,9>1, then
q

p
| D(a;a, x,b)(f)]

- L g (@F + | £100 )7
< (pa+1) U a{(A ] '@ [ +4 | (91"

2 n(b,a)
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(A | F@F +4 ] £ 00 ) F+77 0, )4 | FO) [ +4 | £/(b)[7)°
(A1) +4,] F/(b) ) 3,

where

A= j(l t)” dt—l -

s 27°(-2+2°%)
A =|A+t)dt=———=,
2 j (1+1) !
Theorem 3.5. Let f:K — R be differentiable function such that
f'el[a,a+n(b,a)] and «>0.If | f'|® is s-preinvex function of second kind,
where 0<s<1 and gq>1, then
| @ (e;a, %, b)(f)]
1 1 17; a+l ! ' S
<— (—) mxa) (G| '@+ | F'(x)[")*
14> a+l
2 n(b,a)

1 1

(& @ +8 1 100 1) I+nb 0 S | () +4] F' (b))

1
+H(G O+ [ H(0) 1)},
where & and 4, are given by (3.1) and (3.2).
Proof. Using Lemma 2.8, Power’s mean inequality and the fact that | f'|*

is s -preinvex function of second kind
| D (a;a,%,b)(f)]

< ;(i)x f;){ﬁ | frasitt 77(X a))|dt+jt | f (a+—77(X a)) |dt}
’72“ (f)b ’;){jta frxs22t n(b x))|dt+jt“ | f'(x+—77(b,><))|dt}

a+1
78§

2.5 (jt dt) q[(Jm f (a+—77(X A dt)*
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1

(e s tnxa)l o)

L170X)

+ o) (Jt“dt) “[(Jt“If(X+—f7(b O dt?

1

F(j FOcr o, 6]

< (e @ @+ | )
14> a+l
2 9n(b,a)

L 1

(G @ +8 1 F001) F+nb,0 (& | T +4] F'B)[)°

M CARNCIEAREOTIR 32

This completes the proof.

Theorem 3.6. Let f:K — R be differentiable function such that
f'elL[a,a+n(b,a)] and «>0.If | f'|° is s-Godunova-Levin preinvex
function of second kind, where 0<s<1 and q>1, then
| D(c;a, x,b)(f)]
1 1 :
< (a+1) () {a | F'@ +o,| F'()")"
2 n(b,a)

+(, | F' @1+, | £/ 1) F+700, 0" 4@, | £'() " +¢;] F'(B)[)°
| FOO P 4+, | £1(0) 1) 3,
where ¢, and ¢, are given by (3.3) and (3.4).
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