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The main objective of this article is to establish some new inequalities of 

Hermite-Hadamard type via Riemann-Liouville fractional integrals. We establish a 
new fractional integral identity for differentiable function, then using this identity 
as auxiliary result we derive some fractional Hermite-Hadamard type inequalities 
for differentiable s -preinvex functions and for differentiable s -Godunova-Levin 
preinvex functions.  
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1. Introduction 

 
 The relationship between theory of convex functions and theory of 

inequalities has inspired many researchers to investigate these theories. A very 
interesting result in this regard is due to Hermite and Hadamard independently that 
is Hermite-Hadamard’s inequality. This remarkable result of Hermite and 
Hadamard can be viewed as necessary and sufficient condition for a function to be 
convex. This famous result reads as follows: 

Let :f I ⊂ →R R  be a convex function with <a b  and ,a b I∈ . Then  

 1 ( ) ( )( ) .
2 2

b

a

a b f a f bf f x dx
b a

+ +⎛ ⎞ ≤ ≤⎜ ⎟ −⎝ ⎠ ∫  (1.1) 

 For some useful details on Hermite-Hadamard type inequalities, see 
[2,4,5,7,9-13,15-20]. 

Recently many researchers have extended the classical concept of convex 
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functions. As a result many new and interesting generalizations of classical convex 
functions can be found in the literature, see [3-6,15,17,18,19,21]. An important 
extension of convex functions was the introduction of preinvex functions [21]. For 
some useful and interesting investigations on preinvex functions, see [1, 2, 9, 10, 
11, 14, 15, 18, 19, 22]. Noor [19] and Noor [18] extended the class of preinvex 
functions and introduced the concepts of s -preinvex functions and s
-Godunova-Levin preinvex functions respectively. 

In this paper, we derive a new fractional integral identity for differntiable 
functions. Using this we obtain our main results that are fractional 
Hermite-Hadamard type inequalities for differentiable s -preinvex functions and 
differentiable s -Godunova-Levin functions. Some special cases are also deduced. 
This is the main motivation of this paper.  

 
2  Preliminary Results 
   
Let K  be a nonempty closed set in nR . Let :f K → R  be a continuous 

function and let (.,.) : nK Kη × →R  be a continuous bifunction. First of all, we 
recall some known results and concepts.  

Definition 2.1 [21]. A set K  is said to be invex set with respect to (.,.)η , if  
 ( , ) , , , [0,1].u t v u K u v K tη+ ∈ ∀ ∈ ∈  (2.1) 

 The invex set K  is also called η -connected set.  
  
Remark 2.2 [1]. We would like to mention that Definition 2.1 of an invex set 

has a clear geometric interpretation. This definition essentially says that there is a 
path starting from a point u  which is contained in K . We do not require that the 
point v  should be one of the end points of the path. This observation plays an 
important role in our analysis. Note that, if we demand that v  should be an end 
point of the path for every pair of points ,u v K∈ , then ( , ) =v u v uη − , and 
consequently invexity reduces to convexity. Thus, it is true that every convex set is 
also an invex set with respect to ( , ) =v u v uη − , but the converse is not necessarily 
true, see [14, 22]  and the references therein. For the sake of simplicity, we always 
assume that = [ , ( , )]K u u v uη+ , unless otherwise specified.  

  
Definition 2.3 [21] A function f  is said to be preinvex with respect to 

arbitrary bifunction (.,.)η , if  
( ( , )) (1 ) ( ) ( ), , , [0,1].f u t v u t f u tf v u v K tη+ ≤ − + ∀ ∈ ∈  (2.2) 

  The function f  is said to be preconcave if and only if f−  is preinvex. 
  For ( , ) =v u v uη −  in (2.2) the preinvex functions becomes convex 
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functions in the classical sense. 
Note that every convex function is a preinvex function. However it is 

known [21] that preinvex functions may not be convex functions.  
 
Definition 2.4 [19]. A function :f K → R  is said to be s -preinvex of 

second kind with respect to (.,.)η , if  
 ( ( , )) (1 ) ( ) ( ), , , [0,1], (0,1).s sf u t v u t f u t f v u v K t sη+ ≤ − + ∈ ∈ ∈  
 Note that for =1s  the definition of s -preinvex functions reduces to the 

definition of preinvex functions. And for ( , ) =b a b aη − , then we have the 
definition of s -Breckner convex functions.  

Definition 2.5 [18]. A function :f K → R  is said to be s
-Godunova-Levin preinvex of second kind with respect to (.,.)η , if  

( ) ( )( ( , )) , , , (0,1), [0,1].
(1 )s s

f u f vf u t v u u v K t s
t t

η+ ≤ + ∀ ∈ ∈ ∈
−

 (2.3) 

 It is obvious that for = 0s , s -Godunova-Levin preinvex functions of 
second kind reduces to the definition of P -preinvex functions [18] and for =1s  it 
reduces to the definition of Godunova-Levin preinvex functions [18]. When 

( , ) =v u v uη −  then we have definition of s -Godunova-Levin functions of second 
kind [4, 5].  

Definition 2.6 [8]. Let 1[ , ]f L a b∈ . Then Riemann-Liouville integrals 

a
J fα

+  and 
b

J fα
−  of order > 0α  with 0a ≥  are defined by  

 11( ) = ( ) ( )d , > ,
( )

x

a
a

J f x x t f t t x aα α

α
−

+ −
Γ ∫  

 and  11( ) = ( ) ( )d , < ,
( )

b

b
x

J f x t x f t t x bα α

α
−

− −
Γ ∫  

 where   1

0
( ) = d ,te x xαα

∞ − −Γ ∫  

 is the well known Gamma function.  
 We now give the definition of hypergeometric series which will be used in 

the obtaining some integrals.  
Definition 2.7 [8]. For the real or complex numbers , ,a b c , other than 

0, 1, 2,− − … , the hypergeometric series is defined by  
 

2

2 1
=0

( ) ( )( 1) ( 1)[ , , ; ] = 1 = .
1! ( 1) 2! ( ) !

m
m m

m m

a bab z a a b b z zF a b c z
c c c c m

∞+ +
+ + +

+ ∑…  

 Here ( )mφ  is the Pochhammer symbol, which is defined by  
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1 = 0,

( ) =
( 1) ( 1), > 0,m

m
m m

φ
φ φ φ
⎧
⎨ + + −⎩ …

 

which has the integral form:  

 
1 1 1

2 1 0

1[ , ; ; ] = (1 ) (1 ) d
B( , )

b c b aF a b c z t t zt t
b c b

− − − −− −
− ∫  

 where | |< 1, > > 0z c b  and  

 
1 1 1

0
B( , ) = (1 ) d ,x yx y t t t− −−∫  

 is Euler function Beta with  

 ( ) ( )B( , ) = .
( )
x yx y
x y

Γ Γ
Γ +

 

Now we prove the following auxiliary result which plays a key role in 
proving our main results.  

Lemma 2.8. Let :f K → R  be differentiable function such that 
[ , ( , )]f L a a b aη′∈ + . Then for > 0α , we have  
 ( ; , , )( )a x b fαΦ  

 
1 11

0 0

( , ) 1 1= { ( ( , ))d ( ( , ))d }
2 ( , ) 2 2

x a t tt f a x a t t f a x a t
b a

α
α αη η η

η

+ + −′ ′+ − +∫ ∫  

 
1 11

0 0

( , ) 1 1{ ( ( , ))d ( ( , ))d },
2 ( , ) 2 2

b x t tt f x b x t t f x b x t
b a

α
α αη η η

η

+ − +′ ′− + − +∫ ∫  

 where  
 ( ; , , )( )a x b fαΦ  

( , ) ( ( , )) ( , ) ( ( , )) ( , ) ( ) ( , ) ( )=
( , ) ( , )

x a f a x a b x f x b x x a f a b x f x
b a b a

α α α αη η η η η η
η η

+ + + +
+

 

 
[ ( , )]

2 ( 1) 1 1[ ( ( , )) ( ( , ))
( , ) 2 2a x a a

J f a x a J f a x a
b a

α
α α

η

α η η
η − ++

Γ +
− + + +  

 
[ ( , )]

1 1( ( , )) ( ( , ))].
2 2x x b x

J f x b x J f x b xα α

η
η η+ −+

+ + + +  

  
Proof. It suffices to show that  

 
1

0

1( ( , ))d
2 2
t tf a x a t
α

η+′ +∫  
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1

1

0

1 ( 1) 1 1= ( ( , )) ( ( , ))d
( , ) ( , ) ( ) 2

tf a x a t f a x a t
x a x a

ααη η
η η α

−Γ + +
+ − +

Γ ∫  

 
( , )

1
1

1 ( , )
2

1 2 ( 1) 1 1= ( ( , )) ( ( , )) ( )d
( , ) ( , ) ( ) 2

a x a

a x a

f a x a u a x a f u u
x a x a

ηα
α

α

η

αη η
η η α

+
−

+

+

Γ +
+ − − −

Γ ∫  

1 [ ( , )]

1 2 ( 1) 1= ( ( , )) ( ( , )).
( , ) ( , ) 2a x a

f a x a J f a x a
x a x a

α
α

α η

αη η
η η −+ +

Γ +
+ − +  (2.4) 

 Similarly  
1

1
0

1 1 2 ( 1) 1( ( , ))d = ( ) ( ( , )),
2 2 ( , ) ( , ) 2a

t tf a x a t f a J f a x a
x a x a

α α
α

α

αη η
η η ++

− Γ +′ + − + +∫   (2.5) 

  
 

1

1
0

1 1 2 ( 1) 1( ( , ))d = ( ) ( ( , )),
2 2 ( , ) ( , ) 2x

t tf x b x t f x J f x b x
b x b x

α α
α

α

αη η
η η ++

− Γ +′ + − + +∫   (2.6) 

 and  
 

1

1 [ ( , )]
0

1 1 2 ( 1) 1( ( , ))d = ( ( , )) ( ( , )),
2 2 ( , ) ( , ) 2x b x

t tf x b x t f x b x J f x b x
b x b x

α α
α

α η

αη η η
η η −+ +

+ Γ +′ + + − +∫
 (2.7) 

 After suitable rearrangements the proof is complete.  
Remark 2.9. We would like to remark that for ( , ) =b a b aη −  Lemma 2.8 

reduces to Lemma 1 [13].  
 
3  Main Results 
  
In this section, we derive our main results.  
 
Theorem 3.1. Let :f K → R  be differentiable function such that 

[ , ( , )]f L a a b aη′∈ + . If | |f ′  is is s -preinvex function of second kind, then, for 
> 0α , we have  

| ( ; , , )( ) |a x b fαΦ  
1 1 1 11 2

1 [ ( , ) | ( ) | { ( , ) ( , )} | ( ) | ( , ) | ( ) |],
2 ( , )s x a f a x a b x f x b x f b

b a
α α α αϑ ϑ η η η η

η
+ + + +

+

+ ′ ′ ′≤ + + +

 where  
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1

1
0

(1 ) (1 )= (1 ) =
(2 )

s st t dt
s

α αϑ
α

Γ + Γ +
−

Γ + +∫    (3.1) 

 ( )
1

2 2 1
0

= (1 ) = 1 [ ,1 , 2 , 1].st t dt F sαϑ α α α+ + ⋅ − + + −∫   (3.2) 

 Proof. Using Lemma 2.8, taking modulus and the fact that | |f ′  is s -preinvex 
function of second kind, we have:  

 | ( ; , , )( ) |a x b fαΦ  
 

1 11

0 0

( , ) 1 1{ | ( ( , )) | d | ( ( , )) | d }
2 ( , ) 2 2

x a t tt f a x a t t f a x a t
b a

α
α αη η η

η

+ + −′ ′≤ + + +∫ ∫  

 
1 11

0 0

( , ) 1 1{ | ( ( , )) | d | ( ( , )) | d }
2 ( , ) 2 2

b x t tt f x b x t t f x b x t
b a

α
α αη η η

η

+ − +′ ′+ + + +∫ ∫  

 
11

0

( , ) 1 1{ [ | ( ) | | ( ) |]d
2 ( , ) 2 2

s sx a t tt f a f x t
b a

α
αη

η

+ − +⎛ ⎞ ⎛ ⎞′ ′≤ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  

 
1

0

1 1[ | ( ) | | ( ) |]d }
2 2

s st tt f a f x tα + −⎛ ⎞ ⎛ ⎞′ ′+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  

 
11

0

( , ) 1 1{ [ | ( ) | | ( ) |]d
2 ( , ) 2 2

s sb x t tt f x f b t
b a

α
αη

η

+ + −⎛ ⎞ ⎛ ⎞′ ′+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  

 
1

0

1 1[ | ( ) | | ( ) |]d }
2 2

s st tt f x f b tα − +⎛ ⎞ ⎛ ⎞′ ′+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  

 
1 1 1 11 2

1= [ ( , ) | ( ) | { ( , ) ( , )} | ( ) | ( , ) | ( ) |].
2 ( , )s x a f a x a b x f x b x f b

b a
α α α αϑ ϑ η η η η

η
+ + + +

+

+ ′ ′ ′+ + +

 
 This completes the proof.  

  
Theorem 3.2. Let :f K → R  be differentiable function such that 

[ , ( , )]f L a a b aη′∈ + . If | |f ′  is is s -Godunova-Levin preinvex function of second 
kind, then, for > 0α , we have  

| ( ; , , )( ) |a x b fαΦ  
1 1 1 11 2

1 [ ( , ) | ( ) | { ( , ) ( , )} | ( ) | ( , ) | ( ) |],
2 ( , )s x a f a x a b x f x b x f b

b a
α α α αϕ ϕ η η η η

η
+ + + +

−

+ ′ ′ ′≤ + + +

 where  
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1

1
0

(1 ) (1 )= (1 ) =
(2 )

s st t dt
s

α αϕ
α

− Γ − Γ +
−

Γ − +∫   (3.3) 

 
1

2 2 1
0

= (1 ) = (1 ) [ ,1 , 2 , 1].st t dt F sαϕ α α α−+ + ⋅ + + −∫  (3.4) 

 
Theorem 3.3. Let :f K → R  be differentiable function such that 

[ , ( , )]f L a a b aη′∈ +  and > 0α . If | |qf ′  is s -preinvex function of second kind 

where 0 < <1s  and 1 1 = 1, > 1q
p q
+ , then  

 | ( ; , , )( ) |a x b fαΦ  

 
1 1

1
1 2

1

1 1( ) { ( , ){( | ( ) | | ( ) | )
1

2 ( , )

q qp q
s
q

x a f a f x
p

b a

αη μ μ
α

η

+

+
′ ′≤ +

+
 

1 1
1

2 1 2 1( | ( ) | | ( ) | ) } ( , ){( | ( ) | | ( ) | )q q q qq qf a f x b x f x f bαμ μ η μ μ+′ ′ ′ ′+ + + +  

 
1

1 2( | ( ) | | ( ) | ) }},q q qf x f bμ μ′ ′+ +  
 where  

 
1

1
0

1= (1 ) =
1

st dt
s

μ −
+∫  

 
1 1

2
0

2 1= (1 ) = .
1

s
st dt

s
μ

+ −
+

+∫  

 Proof. Using Lemma 2.8, Hölder’s inequality and the fact that | |qf ′  is s
-preinvex function of second kind  

        | ( ; , , )( ) |a x b fαΦ  
 

1 11

0 0

( , ) 1 1{ | ( ( , )) | d | ( ( , )) | d }
2 ( , ) 2 2

x a t tt f a x a t t f a x a t
b a

α
α αη η η

η

+ + −′ ′≤ + + +∫ ∫  

 
1 11

0 0

( , ) 1 1{ | ( ( , )) | d | ( ( , )) | d }
2 ( , ) 2 2

b x t tt f x b x t t f x b x t
b a

α
α αη η η

η

+ − +′ ′+ + + +∫ ∫  

 
1 11 11

0 0

( , ) 1( ( ) d ) [( | ( ( , )) | d )
2 ( , ) 2

p qp qx a tt t f a x a t
b a

α
αη η

η

+ +′≤ +∫ ∫  
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11

0

1( | ( ( , )) | d ) ]
2

q qtf a x a tη−′+ +∫  

 
1 11 11

0 0

( , ) 1( ( ) d ) [( | ( ( , )) | d )
2 ( , ) 2

p qp qb x tt t f x b x t
b a

α
αη η

η

+ −′+ +∫ ∫  

 
11

0

1( | ( ( , )) | d ) ]
2

q qtf x b x tη+′+ +∫  

 
1 111

1
0

( , ) 1( ) {( [(1 ) | ( ) | (1 ) | ( ) | ]d )
1

2 ( , )

s q s qp q
s
q

x a t f a t f x t
p

b a

αη
α

η

+

+
′ ′≤ − + +

+ ∫  

 
11

0

( [(1 ) | ( ) | (1 ) | ( ) | ]d ) }s q s q qt f a t f x t′ ′+ + + −∫  

 
1 111

1
0

( , ) 1( ) {( [(1 ) | ( ) | (1 ) | ( ) | ]d )
1

2 ( , )

s q s qp q
s
q

b x t f x t f b t
p

b a

αη
α

η

+

+
′ ′+ + + −

+ ∫  

 
11

0

( [(1 ) | ( ) | (1 ) | ( ) | ]d ) }s q s q qt f x t f b t′ ′+ − + +∫  

 
1 1

1
1 2

1

1 1= ( ) { ( , ){( | ( ) | | ( ) | )
1

2 ( , )

q qp q
s
q

x a f a f x
p

b a

αη μ μ
α

η

+

+
′ ′+

+
 

 
1 1

1
2 1 2 1( | ( ) | | ( ) | ) } ( , ){( | ( ) | | ( ) | )q q q qq qf a f x b x f x f bαμ μ η μ μ+′ ′ ′ ′+ + + +  

 
1

1 2( | ( ) | | ( ) | ) }}.q q qf x f bμ μ′ ′+ +  
 This completes the proof.  

  
Theorem 3.4. Let :f K → R  be differentiable function such that 

[ , ( , )]f L a a b aη′∈ +  and > 0α . If | |qf ′  is s -Godunova-Levin preinvex 

function of second kind where 0 < <1s  and 1 1 = 1, > 1q
p q
+ , then  

 | ( ; , , )( ) |a x b fαΦ  

 
1 1

1
1 2

1

1 1( ) { ( , ){( | ( ) | | ( ) | )
1

2 ( , )

q qp q
s
q

x a f a f x
p

b a

αη λ λ
α

η

+

−
′ ′≤ +

+
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1 1

1
2 1 2 1( | ( ) | | ( ) | ) } ( , ){( | ( ) | | ( ) | )q q q qq qf a f x b x f x f bαλ λ η λ λ+′ ′ ′ ′+ + + +  

 
1

1 2( | ( ) | | ( ) | ) }},q q qf x f bλ λ′ ′+ +  
 where  

 
1

1
0

1= (1 ) =
1

st dt
s

λ −−
−∫  

 
1

2
0

2 ( 2 2 )= (1 ) = .
1

s s
st dt

s
λ

−
− − +

+
−∫  

  
Theorem 3.5. Let :f K → R  be differentiable function such that 

[ , ( , )]f L a a b aη′∈ +  and > 0α . If | |qf ′  is s -preinvex function of second kind, 
where 0 < <1s  and > 1q , then  

 | ( ; , , )( ) |a x b fαΦ  

 
1 11

1
1 2

1

1 1( ) { ( , ) {( | ( ) | | ( ) | )
1

2 ( , )

q qq q
s
q

x a f a f x
b a

αη ϑ ϑ
α

η

−
+

+
′ ′≤ +

+
 

 
1 1

1
2 1 2 1( | ( ) | | ( ) | ) } ( , ) {( | ( ) | | ( ) | )q q q qq qf a f x b x f x f bαϑ ϑ η ϑ ϑ+′ ′ ′ ′+ + + +  

 
1

1 2( | ( ) | | ( ) | ) }},q q qf x f bϑ ϑ′ ′+ +  
 where 1ϑ  and 2ϑ  are given by (3.1) and (3.2).  
Proof. Using Lemma 2.8, Power’s mean inequality and the fact that | |qf ′  

is s -preinvex function of second kind  
 | ( ; , , )( ) |a x b fαΦ  
 

1 11

0 0

( , ) 1 1{ | ( ( , )) | d | ( ( , )) | d }
2 ( , ) 2 2

x a t tt f a x a t t f a x a t
b a

α
α αη η η

η

+ + −′ ′≤ + + +∫ ∫  

1 11

0 0

( , ) 1 1{ | ( ( , )) | d | ( ( , )) | d }
2 ( , ) 2 2

b x t tt f x b x t t f x b x t
b a

α
α αη η η

η

+ − +′ ′+ + + +∫ ∫  

 
1 11 11 1

0 0

( , ) 1( d ) [( | ( ( , )) | d )
2 ( , ) 2

qq qx a tt t t f a x a t
b a

α
α αη η

η

+ − +′≤ +∫ ∫  
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11

0

1( | ( ( , )) | d ) ]
2

q qtt f a x a tα η−′+ +∫  

 
1 11 11 1

0 0

( , ) 1( d ) [( | ( ( , )) | d )
2 ( , ) 2

qq qb x tt t t f x b x t
b a

α
α αη η

η

+ − −′+ +∫ ∫  

 
11

0

1( | ( ( , )) | d ) ]
2

q qtt f x b x tα η+′+ +∫  

 
1 11

1
1 2

1

1 1( ) { ( , ) {( | ( ) | | ( ) | )
1

2 ( , )

q qq q
s
q

x a f a f x
b a

αη ϑ ϑ
α

η

−
+

+
′ ′≤ +

+
 

1 1
1

2 1 2 1( | ( ) | | ( ) | ) } ( , ) {( | ( ) | | ( ) | )q q q qq qf a f x b x f x f bαϑ ϑ η ϑ ϑ+′ ′ ′ ′+ + + +  

 
1

1 2( | ( ) | | ( ) | ) }}.q q qf x f bϑ ϑ′ ′+ +  
 This completes the proof.  

  
Theorem 3.6. Let :f K → R  be differentiable function such that 

[ , ( , )]f L a a b aη′∈ +  and > 0α . If | |qf ′  is s -Godunova-Levin preinvex 
function of second kind, where 0 < <1s  and > 1q , then  

 | ( ; , , )( ) |a x b fαΦ  

 
1 11

1
1 2

1

1 1( ) { ( , ) {( | ( ) | | ( ) | )
1

2 ( , )

q qq q
s
q

x a f a f x
b a

αη ϕ ϕ
α

η

−
+

+
′ ′≤ +

+
 

1 1
1

2 1 2 1( | ( ) | | ( ) | ) } ( , ) {( | ( ) | | ( ) | )q q q qq qf a f x b x f x f bαϕ ϕ η ϕ ϕ+′ ′ ′ ′+ + + +  

 
1

1 2( | ( ) | | ( ) | ) }},q q qf x f bϕ ϕ′ ′+ +  
 where 1ϕ  and 2ϕ  are given by (3.3) and (3.4).  
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