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OPEN 3D MESH PARAMETERIZATION BASED ON EDGE 
RATIO PRESERVATION  

Bogdan MOCANU1, Ruxandra ŢAPU2, Teodor PETRESCU3 

În acest articol este implementat un nou algoritm de parametrizare plană. 
După o scurtă prezentare a cercetărilor actuale în acest domeniu, este descrisă 
noua noastră metodă de mapare baricentrică, bazată pe conservarea rapoartelor de 
lungimi între muchiile modelelor 3D. Rezultatele obţinute prin implementarea 
algoritmului propus certifică superioritatea noii metode faţă de majoritatea 
tehnicilor de parametrizare publicate până în prezent în literatura de specialitate, 
reducând cu mai mult de 78% şi 57% distorsiunile de arii şi  lungimi, menţinând în 
acelaşi timp distorsiunile de unghiuri la valori reduse. În plus metoda noastră 
returnează rezultate valide de parametrizare indiferent de complexitatea modelelor 
3D. 

In this paper we introduce a new 3D planar parameterization algorithm. 
After presenting a brief overview of the state of the art, we introduce a new 
barycentric mapping method, based on the edge length ratio preservation. Our 
proposed approach demonstrate higher performances with respect to all main 
techniques developed so far in this direction, reducing both area and length 
distortions with more than 78% and 57% respectively, maintaining in the same time 
a low value for the angular distortion. Moreover, our method ensures valid 
embeddings for any arbitrary open 3D mesh, regardless its complexity. 

Keywords: planar parameterization, barycentric coordinates, length ratio 
preservation 

1. Introduction 

Tridimensional mesh parameterization represents an important step that 
needs to be implemented in various applications such as: remeshing, recognition, 
morphing.  

From a mathematical point of view, a parameterization of a 3D mesh M is 
defined as a homeomorphism fparam:M→D which maps the 3D mesh M over an 
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appropriate 2D domain D. The mesh M is defined as a set of vertices pi in IR3 
together with its connectivity, specified by: 

- the set of triangles F=F(f0(pi,pj,pk),…,fm(ps,pt,pu), and  
- the set of edges E=E(ek(p’

k,p”
k))).  

The parametric domain D is selected in most of the cases depending on the 
original model topology. For open triangular meshes, the most intuitive way to 
obtain a parameterization is to map its vertices in a planar domain. In the case of 
closed 3D objects, a spherical domain (e.g., the unit sphere) is more appropriate. 

As a homeomorphism the mapping is bijective, thus paramf  is continuous 
and piecewise linear. Thus, the parameterization is uniquely defined by specifying 
the parameter points φi = fparam(pi) for each vertex pi(xi, yi, zi)∈VM. The bijection is 
required because each triangle of the mesh need to have an appropriate image in 
the parameter domain. In other words, the faces must not overlap. In practice, 
there are some circumstances when the obtained function is not continuous or 
bijective and this will lead to an invalid parameterization. Numerous approaches 
in the literature aim at preventing triangles flipping problems. However, a crucial 
issue when considering 3D parametrization techniques concerns the minimization 
of several distortion measures. The distortions can be defined as the degree of 
deformation, in terms of angles, areas and lengths between the original 3D shape 
model and the resulted parameterized mesh. In this context, we can distinguish 
three categories of distortion measures, which correspond to conformal, equiareal 
and isometric mappings.  

After a complete evaluation of the most powerful methods existing in the 
technical literature, we will propose and validate in this paper, a novel and nearly 
isometric parameterization technique for open 3D triangular meshes based on 
edge length ratio preservation.  

The rest of this paper is organized as follows: after a review of the planar 
mapping approaches, in Section III we introduce the proposed method. Section IV 
presents a comparative experimental evaluation, carried out on a subset of 3D 
objects selected from the Princeton and MPEG 7 database. Finally, Section V 
concludes our paper and opens perspective of future work. 

2. Previous work 

The first parameterization methods [1, 2, 3] proposed in the specialized 
literature were directed to planar mapping of meshes with disk-like topology. 
These approaches are based on the idea that a mesh connectivity can be compared 
with a system where edges are springs linking the model vertices. 

A generic technique to embed a 3D mesh with a boundary into a plane was 
proposed by Eck et al. in [4]. By generalizing the Tutte planar graph algorithm 
[5], the principle consists of minimizing the spring system energy (based on 
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partial derivatives) in the parametric domain. Here, the boundary vertices are 
considered fixed and their position is precomputed at the beginning. Because 
every point in the parameter domain is placed at the center of its neighbors, this 
method was denoted barycentric mapping. Although the mapping is bijective, the 
major drawback consists in not fulfilling the minimization requirements, causing 
high values of the distortion, because the method does not take into account the 
model’s geometry. 

Considering this, many attempts were elaborated in order to obtain the best 
shape preserving parameterization. The discrete harmonic mapping introduced by 
Pinkall and Polthier in [1] uses differential geometry to minimize the Dirichlet 
energy of a piecewise linear embedding. In theory, the technique is angle 
preserving, but due to the fixed boundary vertices near the frontier the distortion 
has high values in terms of both area and angles. To reduce as much as possible 
this drawback Debrun et al. [2] proposed to determine the boundary vertices 
position as a part of a minimization procedure (discrete conformal mapping). The 
process returns a better parameterization in terms of robustness. The price to pay 
is the increased computational complexity.  

Both harmonic and conformal mapping conserve the model shape, but not 
its original areas. Moreover, as it was demonstrated by Floater in [3] there are 
some cases for which the mapping is not bijective (negative weights) and the 
triangles overlap.  

Thereby, before using the discrete conformal mapping, it is necessary to 
verify if the mesh topology satisfies the Delaunay triangulation [6]. Kharevych et 
al. [7] demonstrate that if the mesh satisfies the Delaunay criterion, the 
parameterization obtained using the cotangent weights proposed in [2] will always 
be bijective. 

The mean value coordinates technique first introduced by Floater in [8] 
aims to preserve the model angles by developing a generalized barycentric 
coordinate system which expresses a vertex as a linear combination of its 
neighbors. With the new set of weights the resulting system guarantees a bijective 
mapping for any type of open 3D models. However, in practice this technique 
returns less satisfactory result than the classical harmonic mapping [1].        

The angle based flattening (ABF) algorithm proposed by Sheffer and 
Sturler [9] defines the parameterization in terms of angles distortion by satisfying 
a set of constraints. The resulted mapping guarantees a local bijectivity, but not a 
global one. Unfortunately, in practice the method proves to be time consuming. In 
addition, for meshes with a large number of vertices the system stability becomes 
a problem. 

An improved technique is presented in [10] called ABF++ that solves the 
above-mentioned limitation by simplifying the coordinates system that needs to be 
solved at each iteration into a linear form. 
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Another class of planar parameterization methods is based on the so-called 
discrete authalic map, also called equiareal mapping. Such techniques lead to an 
area preserving parameterization. However, in [11] Floater proved that equiareal 
mappings, unlike conformal ones, are not unique. For this reason, additional 
conditions/constraints should be imposed in order to obtain stable and 
computationally tractable solutions. Notably, numerous approaches propose to 
combine the angular distortion minimization techniques with area-preserving ones 
[2], [12], [13], [14], [15].  

As representative of such methods, let us cite the technique proposed by 
Desbrun et al. [2]. Authors introduce a mechanism assuring a trade-off between 
angle and area distortions in order to determine an optimal mapping of a 3D 
object into the parametric domain. The technique combines the conformal 
mapping with a metric that preserves the areas, resulting in a joined convex 
combination. However, the method measures deformations in the area distribution 
only locally within each one-ring. In this way, the approach accumulates a small 
error with each local deformation, causing an unbalanced global area distribution. 

The method proposed in this paper and described in the next section also 
belongs to this family of approaches. Our technique attempts to jointly minimize 
angle and area distortion based on edge length ratios.  

3. Planar parameterization based on edge length ratio preserving 

We will present further the general mathematical support necessary to 
establish the energy spring system. Next we will focus our attention on most 
encounter weights that influence the relaxation process, while in the final part we 
introduce our new set of weights determined based on the local geometry of the 
original model ensuring a robust parameterization. 

3.1. Spring system construction  

Firstly introduced by Tutte, the general spring energy can be 
mathematically formulated as follow: 
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where wi,j represent the spring constant defined for each edge {i, j}, (φi, φj) are the 
mesh vertex positions in the 3D space, while (uj, vj) are the corresponding 
coordinates in the parameter domain. The necessary condition for minimizing the 
energy E  is to require that the partial derivatives of E  with respect to ui and vi, to 
vanish for all interior vertices φi: 



Open 3D mesh parameterization based on edge ratio preservation                     173 

0)(2
2
1

0)(2
2
1

)(
,

)(
,

=−=
∂
∂

=−=
∂
∂

∑

∑

∈

∈

iNeighborsj
jiji

i

iNeighborsj
jiji

i

vvwE
v

uuwE
u                                 (2) 

 
If we analyze (2), we can see that every inner vertex can be expressed as a 

convex linear combination of its neighbors: 
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where with j,iλ  we denote the normalized spring weights  for an edge {i, j}: 
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It is easy to observe that: 
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In eq (3), if we consider N the total number of mesh vertices and n the 

number of inner vertices (i.e., non boundary points), then we can separate the 
interior and the boundary vertices in the sum in the following manner: 
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By writing the eq. (6) for all interior vertices, we obtain two linear systems 

of equations, expressed in the matrix form as follows: 
 

UBUA =⋅    and   VBVA =⋅                                              (7) 
where the unknown U=[u1,u2,...,un]T and V=[v1,v2,...,vn]T are columns vectors 
corresponding to coordinates in the parameter domain D ; Bu=[bu1,bu2,...,bun]T and 
Bv=[bv1,bv2,...,bvn]T are columns vectors with coefficients: 
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The existence and uniqueness of a solution for (7) is equivalent to the non-
singularity of the matrix A. If the weights are positive and the matrix is 
symmetric, then the obtained parameterization exists and it is guaranteed to be 
bijective. 

3.2. The boundary shape 

Various methods allow free boundaries and treat all vertices in the same 
way in order to obtain the boundary map and the mesh parameterization 
simultaneously. Obviously, due to the similarity between the 2D and 3D 
boundaries this technique drives to small distortions, but with increase 
computational cost. Also, the convexity of the boundary domain is a necessary 
condition in order to ensure that all the solution of (7) belongs to D. 

The fixed boundary approaches use a square, a rectangle or a circle as a 
parametric domain and state that in most cases for more complex applications 
(e.g., 3D morphing, texture mapping,...) it is necessary to specify a common space 
for all objects. For 3D morphing the source and the target models impose 
equivalent boundaries to establish a correspondence between vertices, while in the 
texture mapping field a rectangle border is necessary due to its similarity with a 
bitmap texture. Considering this, we have decided, to implement for our algorithm 
a fixed boundary (the unit circle) as a parametric domain without loose of 
generality to adapt the method for any type of free boundary.   

3.3. Choosing the weights  
Establishing the weights for the spring system described by eq. (7) is 

highly important and can significantly affect the parameterization quality in terms 
of angle and area distortion.  

The simplest way of setting the weights is by assigning the same constant 
value for all edges. Tutte compute straight line embeddings of planar graphs by 
choosing wi,j = 1. 

The discrete harmonic map introduced in [1] uses the weights specified in 
equation (10) to minimize the angle distortion without considering the area 
deformation: 
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where αij and βij are the opposite angles of the two triangles that share the same 
edge {i, j} (Fig. 1).  

The mean value coordinates proposed by Floater in [8] are defined as: 
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where γi,j and δi,j are the angles in the two triangles shared by the edge {i, j} as 
shown in Fig. 1. 

 

 
All the above presented methods return less satisfactory results when 

considering the area distortion criterion. In order to overcome this drawback we 
propose a new set of weights that minimize the areas deformation while 
maintaining a low angle distortion. The proposed technique can be applied to any 
type of 3D open models assuring a valid parameterization (bijective mapping) 
with a reduced computation cost.  

Each inner vertex of a mesh can be expressed as a linear combination of its 
neighbors. In our implementation the weight is computed as the ratio of the 
distance between the current vertex pi and an adjacent point pj reported to the total 
sum of lengths for all edges converging in pi (Fig. 2). 
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When using the above weights, eq. (3) can be rewritten: 
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Also, vi can be expressed in a similar way. As it can be observed, in this 
case the resulting system is symmetric and all elements from A matrix, excepting 
the main diagonal are positive, which guarantees the bijectivity of our 
parameterization. Further more the resulted matrix contains only a few non-zero 
elements, depending on the adjacent vertices. The above observations allow us to 
compute the spring system solution by using the conjugate gradient method that 
iteratively solves the sparse linear system. 

4. Experiments and results 

In order to evaluate the proposed parameterization algorithm we have 
considered a subset of objects from the Princeton Shape Benchmark which is 
freely available over the Internet (http://shape.cs.princeton.edu/benchmark/) and 
from the MPEG 7 3D model test set. The selected objects are open manifold 
triangular mesh models characterized by complex structure which include various 
types of concavities that allow us to demonstrate the performance of our improved 
planar mapping. 

In Fig. 3 we present some visual results obtained after applying all 
algorithms presented in Section III. At is can be observed, our method always 
returns valid embedding and is not influenced by the 3D shape complexity. As 
evaluation metrics we have considered the angle, area (surface) and length 
distortions (DA, DS and DL) as introduced in [16] and defined as follows: 
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where with α we have denoted the mesh angles, A represents the faces area, while 
l is the edge length. Indices M and S describe the original model, respectively the 
final parameterized mesh. Ideally, all the three types of distortions should be as 
low as possible. 
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Table 1 presents the distortions obtained by the proposed length ratio 
preserving method, together with those corresponding to the state of the art 
uniform [5], mean value [8] and harmonic mappings [1]. 

Table 1 
Comparative study concerning area, angles and length distortions 

Model No. 
vert 

Uniform 
parameterization 

Mean Value 
Coordinates Harmonic Mapping Length ratio 

preserving 
DS DA DL DS DA DL DS DA DL DS DA DL 

Cow 1023 13.169 0.2971 14.081 21.612 0.1061 16.948 167.85 0.0372 40.011 0.0793 0.2873 1.4023 

Chess 
horse 143 49.724 0.4837 67.425 46.319 0.1837 45.889 9.2294 0.2092 15.678 0.8001 0.6183 7.7745 

Lion 575 1.9455 0.2594 9.0229 10.758 0.1509 18.036 34.501 0.0718 29.822 0.0661 0.3035 1.5497 

Delphin 355 0.7951 0.3311 3.7552 409.06 7.9109 7.8851 Overlapping triangles 0.0331 0.3924 0.7878 

Cat 352 0.6124 0.1608 3.9942 0.7577 0.0523 3.9925 1.0424 0.0299 4.8072 0.0423 0.1850 0.8791 

Hand 300 0.2865 0.6496 5.9369 18579.1 0.5877 608.36 Overlapping triangles 0.0256 0.7732 1.7085 

Statue 458 0.0027 0.3703 0.2072 0.0032 0.2211 0.1692 0.0045 0.2462 0.2052 0.0015 0.2947 0.1004 

Face 1500 0.2638 0.2333 1.2939 0.04476 0.0308 0.3947 0.0831 0.0250 0.4948 0.0118 0.1704 0.3046 

Beethoven 1200 0.0031 0.2835 0.1793 0.0014 0.0834 0.0718 0.0013 0.0721 0.0651 0.0013 0.2196 0.0784 

Cat Head 135 0.1772 0.1593 2.2518 0.1046 0.0574 1.3526 0.0988 0.0436 1.3107 0.0272 0.1753 0.5672 

 
For each model and for each distortion criterion the best performances are 

marked with red. 
Concerning the Tutte method, although the resulting mapping is bijective, 

the numerical examples show that this technique does not preserve any shape 
properties of the mesh. One reason for this bad behavior is that the choice of 
weights does not take into account the geometry of the mesh, but solely its 
connectivity.  

The harmonic mapping preserves the model shape, but not its areas. In 
addition, for some models the associated weights take negative values which leads 
to non-bijectivity and thus non-valid parameterizations. 
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Fig. 3. Comparative visual evaluation of 3D mesh planar parameterization 
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In the case of mean value coordinates even though the resulted matrix 
loose the symmetric property, the resulted embedding is valid in all cases. 
However, the major drawback of this method is related to the computational 
complexity because in this situation it is impossible to use the fast conjugate 
gradient algorithm to solve the linear systems involved. 

The analysis of the results obviously shows that the proposed length ration 
method outperform the other approaches in the case of both aria (with a 78,5 % 
reduction) and length (with a 57% reduction) distortions.  

For the angle distortion, the best performances are achieved by the 
harmonic mapping technique. However, the harmonic mapping fails in the case of 
some models due to the negative weights in the energy spring system. Thus, our 
method offers the advantage of a larger applicability.  

6. Conclusions and perspectives 

In this paper we have proposed an enhanced 3D object planar 
parameterization method based on the mesh edges length ratio preservation. 

The experimental results were carried out on more then 25 models, some 
of them presented in Fig. 3. These are sufficient to demonstrate the superiority of 
our method compared with all of the state of the art algorithms by providing low 
distortions rates in terms of area and lengths especially for complex objects with 
reduction of more then 78,5% and 57% respectively. 

Our future work will concern the integration of our algorithm in a more 
general framework of mesh morphing applications by resolving the 
correspondence step between two topological different models. Furthermore, we 
plan to develop a new parameterization method applicable for closed genus-0 
manifold triangular mesh models by extending the method proposed in this paper. 
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