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OPEN 3D MESH PARAMETERIZATION BASED ON EDGE
RATIO PRESERVATION

Bogdan MOCANU', Ruxandra TAPU?, Teodor PETRESCU?

In acest articol este implementat un nou algoritm de parametrizare pland.
Dupd o scurta prezentare a cercetarilor actuale in acest domeniu, este descrisd
noua noastra metoda de mapare baricentricd, bazata pe conservarea rapoartelor de
lungimi intre muchiile modelelor 3D. Rezultatele obfinute prin implementarea
algoritmului propus certificd superioritatea noii metode fatd de majoritatea
tehnicilor de parametrizare publicate pand in prezent in literatura de specialitate,
reducdand cu mai mult de 78% si 57% distorsiunile de arii si lungimi, mentindnd in
acelasi timp distorsiunile de unghiuri la valori reduse. In plus metoda noastrd
returneazd rezultate valide de parametrizare indiferent de complexitatea modelelor
3D.

In this paper we introduce a new 3D planar parameterization algorithm.
After presenting a brief overview of the state of the art, we introduce a new
barycentric mapping method, based on the edge length ratio preservation. Our
proposed approach demonstrate higher performances with respect to all main
techniques developed so far in this direction, reducing both area and length
distortions with more than 78% and 57% respectively, maintaining in the same time
a low value for the angular distortion. Moreover, our method ensures valid
embeddings for any arbitrary open 3D mesh, regardless its complexity.

Keywords: planar parameterization, barycentric coordinates, length ratio
preservation

1. Introduction

Tridimensional mesh parameterization represents an important step that
needs to be implemented in various applications such as: remeshing, recognition,
morphing.

From a mathematical point of view, a parameterization of a 3D mesh M is
defined as a homeomorphism f,4am:M—D which maps the 3D mesh M over an
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appropriate 2D domain D. The mesh M is defined as a set of vertices p; in IR
together with its connectivity, specified by:

- the set of triangles F'=F O’Q(pi,pj,py, eeerfm(PssPopu), and

- the set of edges E=E(ex(p up 1)).

The parametric domain D is selected in most of the cases depending on the
original model topology. For open triangular meshes, the most intuitive way to
obtain a parameterization is to map its vertices in a planar domain. In the case of
closed 3D objects, a spherical domain (e.g., the unit sphere) is more appropriate.

As a homeomorphism the mapping is bijective, thus 7, is continuous

param
and piecewise linear. Thus, the parameterization is uniquely defined by specifying
the parameter points ¢; = f,aam(p;) for each vertex pi(x; y; z;) € V. The bijection is
required because each triangle of the mesh need to have an appropriate image in
the parameter domain. In other words, the faces must not overlap. In practice,
there are some circumstances when the obtained function is not continuous or
bijective and this will lead to an invalid parameterization. Numerous approaches
in the literature aim at preventing triangles flipping problems. However, a crucial
issue when considering 3D parametrization techniques concerns the minimization
of several distortion measures. The distortions can be defined as the degree of
deformation, in terms of angles, areas and lengths between the original 3D shape
model and the resulted parameterized mesh. In this context, we can distinguish
three categories of distortion measures, which correspond to conformal, equiareal
and isometric mappings.

After a complete evaluation of the most powerful methods existing in the
technical literature, we will propose and validate in this paper, a novel and nearly
isometric parameterization technique for open 3D triangular meshes based on
edge length ratio preservation.

The rest of this paper is organized as follows: after a review of the planar
mapping approaches, in Section III we introduce the proposed method. Section IV
presents a comparative experimental evaluation, carried out on a subset of 3D
objects selected from the Princeton and MPEG 7 database. Finally, Section V
concludes our paper and opens perspective of future work.

2. Previous work

The first parameterization methods [1, 2, 3] proposed in the specialized
literature were directed to planar mapping of meshes with disk-like topology.
These approaches are based on the idea that a mesh connectivity can be compared
with a system where edges are springs linking the model vertices.

A generic technique to embed a 3D mesh with a boundary into a plane was
proposed by Eck et al. in [4]. By generalizing the Tutte planar graph algorithm
[5], the principle consists of minimizing the spring system energy (based on
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partial derivatives) in the parametric domain. Here, the boundary vertices are
considered fixed and their position is precomputed at the beginning. Because
every point in the parameter domain is placed at the center of its neighbors, this
method was denoted barycentric mapping. Although the mapping is bijective, the
major drawback consists in not fulfilling the minimization requirements, causing
high values of the distortion, because the method does not take into account the
model’s geometry.

Considering this, many attempts were elaborated in order to obtain the best
shape preserving parameterization. The discrete harmonic mapping introduced by
Pinkall and Polthier in [1] uses differential geometry to minimize the Dirichlet
energy of a piecewise linear embedding. In theory, the technique is angle
preserving, but due to the fixed boundary vertices near the frontier the distortion
has high values in terms of both area and angles. To reduce as much as possible
this drawback Debrun et al. [2] proposed to determine the boundary vertices
position as a part of a minimization procedure (discrete conformal mapping). The
process returns a better parameterization in terms of robustness. The price to pay
is the increased computational complexity.

Both harmonic and conformal mapping conserve the model shape, but not
its original areas. Moreover, as it was demonstrated by Floater in [3] there are
some cases for which the mapping is not bijective (negative weights) and the
triangles overlap.

Thereby, before using the discrete conformal mapping, it is necessary to
verify if the mesh topology satisfies the Delaunay triangulation [6]. Kharevych et
al. [7] demonstrate that if the mesh satisfies the Delaunay criterion, the
parameterization obtained using the cotangent weights proposed in [2] will always
be bijective.

The mean value coordinates technique first introduced by Floater in [8]
aims to preserve the model angles by developing a generalized barycentric
coordinate system which expresses a vertex as a linear combination of its
neighbors. With the new set of weights the resulting system guarantees a bijective
mapping for any type of open 3D models. However, in practice this technique
returns less satisfactory result than the classical harmonic mapping [1].

The angle based flattening (ABF) algorithm proposed by Sheffer and
Sturler [9] defines the parameterization in terms of angles distortion by satisfying
a set of constraints. The resulted mapping guarantees a local bijectivity, but not a
global one. Unfortunately, in practice the method proves to be time consuming. In
addition, for meshes with a large number of vertices the system stability becomes
a problem.

An improved technique is presented in [10] called ABF++ that solves the
above-mentioned limitation by simplifying the coordinates system that needs to be
solved at each iteration into a linear form.
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Another class of planar parameterization methods is based on the so-called
discrete authalic map, also called equiareal mapping. Such techniques lead to an
area preserving parameterization. However, in [11] Floater proved that equiareal
mappings, unlike conformal ones, are not unique. For this reason, additional
conditions/constraints should be imposed in order to obtain stable and
computationally tractable solutions. Notably, numerous approaches propose to
combine the angular distortion minimization techniques with area-preserving ones
(2], [12], [13], [14], [15].

As representative of such methods, let us cite the technique proposed by
Desbrun et al. [2]. Authors introduce a mechanism assuring a trade-off between
angle and area distortions in order to determine an optimal mapping of a 3D
object into the parametric domain. The technique combines the conformal
mapping with a metric that preserves the areas, resulting in a joined convex
combination. However, the method measures deformations in the area distribution
only locally within each one-ring. In this way, the approach accumulates a small
error with each local deformation, causing an unbalanced global area distribution.

The method proposed in this paper and described in the next section also
belongs to this family of approaches. Our technique attempts to jointly minimize
angle and area distortion based on edge length ratios.

3. Planar parameterization based on edge length ratio preserving

We will present further the general mathematical support necessary to
establish the energy spring system. Next we will focus our attention on most
encounter weights that influence the relaxation process, while in the final part we
introduce our new set of weights determined based on the local geometry of the
original model ensuring a robust parameterization.

3.1. Spring system construction

Firstly introduced by Tutte, the general spring energy can be
mathematically formulated as follow:

1 21 2 2
E== Y wlloi—o;l =3 Dowi (i —u )+ =v;)) (1)
{i,jyeEdges {i,j}eEdges

where w;; represent the spring constant defined for each edge {i, j!, (¢; ¢;) are the
mesh vertex positions in the 3D space, while (u;, v;) are the corresponding
coordinates in the parameter domain. The necessary condition for minimizing the
energy E is to require that the partial derivatives of E with respect to u; and v;, to
vanish for all interior vertices ¢;:
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ﬂ - l 22 /(“ =0
jeNeighbors(i) (2)
0 1
L E=— 2w =0
aVl' 2 z /(v

jeNeighbors (l)

If we analyze (2), we can see that every inner vertex can be expressed as a
convex linear combination of its neighbors:

ZWI"]'(MZ'—M]')ZO:MZ'Z Z/ll] ]

jeNeighbors(i) jeNeighbors(i) (3)
ZWZ"J'(VZ'—V‘]‘):ODVZ'Z 2/1[] ]
JjeNeighbors(i) jeNeighbors(i)

where with 4; j we denote the normalized spring weights for an edge {7, j}:

Aij=wiil D Wik )
ke Neigbors(i)
It is easy to observe that:
Z/ll',j = 1 (5)
j€Neighbors(i)

In eq (3), if we consider N the total number of mesh vertices and n the
number of inner vertices (i.e., non boundary points), then we can separate the
interior and the boundary vertices in the sum in the following manner:

Ui = > iUy = > A
jeNeighbors(i) jeNeighbors(i)
jgl’l j>n (6)

Vi~ 2’1,// Zﬂ“lll

jeNeighbors(i) jeNeighbors(i)
Jj<n j>n

By writing the eq. (6) for all interior vertices, we obtain two linear systems
of equations, expressed in the matrix form as follows:

A-U=By and AV = BV (7)

,,,,,,,,,,

By=[b,1,b,>.._by,]" are columns vectors with coefficients:
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b= 2 Ay ad b= 3 A, ®)
JjeNeighbors(i) jeNeighbors(i)
j>n j>n

A=(a; ;) jer. n - 18 @ nxn matrix with elements:

1 ifi=j
aj ;j =4-4;j ifi#jand je Neighbors(i) )
0 otherwise

The existence and uniqueness of a solution for (7) is equivalent to the non-
singularity of the matrix A. If the weights are positive and the matrix is
symmetric, then the obtained parameterization exists and it is guaranteed to be
bijective.

3.2. The boundary shape

Various methods allow free boundaries and treat all vertices in the same
way in order to obtain the boundary map and the mesh parameterization
simultaneously. Obviously, due to the similarity between the 2D and 3D
boundaries this technique drives to small distortions, but with increase
computational cost. Also, the convexity of the boundary domain is a necessary
condition in order to ensure that all the solution of (7) belongs to D.

The fixed boundary approaches use a square, a rectangle or a circle as a
parametric domain and state that in most cases for more complex applications
(e.g., 3D morphing, texture mapping,...) it is necessary to specify a common space
for all objects. For 3D morphing the source and the target models impose
equivalent boundaries to establish a correspondence between vertices, while in the
texture mapping field a rectangle border is necessary due to its similarity with a
bitmap texture. Considering this, we have decided, to implement for our algorithm
a fixed boundary (the unit circle) as a parametric domain without loose of
generality to adapt the method for any type of free boundary.

3.3. Choosing the weights

Establishing the weights for the spring system described by eq. (7) is
highly important and can significantly affect the parameterization quality in terms
of angle and area distortion.

The simplest way of setting the weights is by assigning the same constant
value for all edges. Tutte compute straight line embeddings of planar graphs by
choosing w;; = 1.

The discrete harmonic map introduced in [1] uses the weights specified in
equation (10) to minimize the angle distortion without considering the area
deformation:
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Wi,j zcotaij +Cotﬂl-/- (10)
where a;; and f; are the opposite angles of the two triangles that share the same

edge {7, j! (Fig. 1).
The mean value coordinates proposed by Floater in [8] are defined as:

ij 9ij
tan(y’j + ’])
__ 2 2 (11)

Wl"—
T ei—e;

where y;; and J;; are the angles in the two triangles shared by the edge {i, j} as
shown in Fig. 1.

p . P:n
Fig. 1. Angles used for weights computation  Fig. 2. The one ring neighbors of vertex p; and
the associated lengths

All the above presented methods return less satisfactory results when
considering the area distortion criterion. In order to overcome this drawback we
propose a new set of weights that minimize the areas deformation while
maintaining a low angle distortion. The proposed technique can be applied to any
type of 3D open models assuring a valid parameterization (bijective mapping)
with a reduced computation cost.

Each inner vertex of a mesh can be expressed as a linear combination of its
neighbors. In our implementation the weight is computed as the ratio of the
distance between the current vertex p; and an adjacent point p; reported to the total
sum of lengths for all edges converging in p; (Fig. 2).

l;;
ij
Wi =
2l
jeNeighbors(i)
When using the above weights, eq. (3) can be rewritten:

(12)
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Z ll JET
je Neighb
; _MZO:—L{I- le/ + 21171u1=0 (13)
z ij jeNeighbors(i)  jeNeighbors (i)
jeNeighbors (i)

Also, v; can be expressed in a similar way. As it can be observed, in this
case the resulting system is symmetric and all elements from 4 matrix, excepting
the main diagonal are positive, which guarantees the bijectivity of our
parameterization. Further more the resulted matrix contains only a few non-zero
elements, depending on the adjacent vertices. The above observations allow us to
compute the spring system solution by using the conjugate gradient method that
iteratively solves the sparse linear system.

4. Experiments and results

In order to evaluate the proposed parameterization algorithm we have
considered a subset of objects from the Princeton Shape Benchmark which is
freely available over the Internet (http://shape.cs.princeton.edu/benchmark/) and
from the MPEG 7 3D model test set. The selected objects are open manifold
triangular mesh models characterized by complex structure which include various
types of concavities that allow us to demonstrate the performance of our improved
planar mapping.

In Fig. 3 we present some visual results obtained after applying all
algorithms presented in Section III. At is can be observed, our method always
returns valid embedding and is not influenced by the 3D shape complexity. As
evaluation metrics we have considered the angle, area (surface) and length
distortions (D4, Ds and Dy) as introduced in [16] and defined as follows:

Z(%M Sazs) (14)
N oAy Ais ?
Dg =Y (—=——-—) (15)

0 Arm Ars

N lij m lij s
Z > ( T 7 (16)
i=1 je Neighbors(i) z i,M z i,S
j€Neighbors(i)  jeNeighbors(i)
where with o we have denoted the mesh angles, 4 represents the faces area, while
[ is the edge length. Indices M and S describe the original model, respectively the
final parameterized mesh. Ideally, all the three types of distortions should be as
low as possible.
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Table 1 presents the distortions obtained by the proposed length ratio
preserving method, together with those corresponding to the state of the art
uniform [5], mean value [8] and harmonic mappings [1].

Table 1

Comparative study concerning area, angles and length distortions
No Unifor_m ) Mean _Value Harmonic Mapping Length r_atio
Model ver;( parameterization Coordinates preserving
Ds Da D, Ds Da D. Ds Da D. Ds Da Dp

Cow 1023]13.169|0.2971 | 14.081 | 21.612 | 0.1061 | 16.948 | 167.85|0.0372|40.011 | 0.0793 | 0.2873 | 1.4023

Chess

horse 143 (49.724 1 0.4837 | 67.425| 46.319 | 0.1837|45.889(9.22940.2092 | 15.678 | 0.8001 | 0.6183 | 7.7745

Lion 575 [ 1.945510.2594|9.0229 | 10.758 | 0.1509 | 18.036 | 34.501 | 0.0718 | 29.822 | 0.0661 | 0.3035 | 1.5497

Delphin | 355 [0.7951|0.3311|3.7552 | 409.06 |7.9109|7.8851 | Overlapping triangles | 0.0331 | 0.3924|0.7878

Cat 352 0.6124 | 0.1608 | 3.9942 | 0.7577 |0.0523 [ 3.9925 | 1.0424 | 0.0299 | 4.8072 | 0.0423 | 0.1850 | 0.8791

Hand 300 | 0.2865|0.6496 | 5.9369 | 18579.1 | 0.5877 | 608.36 | Overlapping triangles | 0.0256|0.7732 | 1.7085

Statue | 458 |0.0027|0.3703 {0.2072 | 0.0032 | 0.2271)0.1692 | 0.0045 | 0.2462 | 0.2052 | 0.0015 | 0.2947 | 0.1004

Face 1500 0.2638 | 0.2333 | 1.2939 | 0.04476 | 0.0308 | 0.3947 [ 0.0831 | 0.0250 | 0.4948 | 0.0118 | 0.1704 | 0.3046

Beethoven | 1200 | 0.0031 | 0.2835{0.1793 | 0.0014 | 0.0834 | 0.0718 | 0.0013 | 0.0721 | 0.0651 | 0.0013|0.2196 | 0.0784

Cat Head | 135 |0.1772|0.1593 |2.2518 | 0.1046 | 0.0574 | 1.3526 | 0.0988 | 0.0436 | 1.3107 [ 0.0272|0.1753 | 0.5672

For each model and for each distortion criterion the best performances are
marked with red.

Concerning the Tutte method, although the resulting mapping is bijective,
the numerical examples show that this technique does not preserve any shape
properties of the mesh. One reason for this bad behavior is that the choice of
weights does not take into account the geometry of the mesh, but solely its
connectivity.

The harmonic mapping preserves the model shape, but not its areas. In
addition, for some models the associated weights take negative values which leads
to non-bijectivity and thus non-valid parameterizations.
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Fig. 3. Comparative visual evaluation of 3D mesh planar parameterization
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In the case of mean value coordinates even though the resulted matrix
loose the symmetric property, the resulted embedding is valid in all cases.
However, the major drawback of this method is related to the computational
complexity because in this situation it is impossible to use the fast conjugate
gradient algorithm to solve the linear systems involved.

The analysis of the results obviously shows that the proposed length ration
method outperform the other approaches in the case of both aria (with a 78,5 %
reduction) and length (with a 57% reduction) distortions.

For the angle distortion, the best performances are achieved by the
harmonic mapping technique. However, the harmonic mapping fails in the case of
some models due to the negative weights in the energy spring system. Thus, our
method offers the advantage of a larger applicability.

6. Conclusions and perspectives

In this paper we have proposed an enhanced 3D object planar
parameterization method based on the mesh edges length ratio preservation.

The experimental results were carried out on more then 25 models, some
of them presented in Fig. 3. These are sufficient to demonstrate the superiority of
our method compared with all of the state of the art algorithms by providing low
distortions rates in terms of area and lengths especially for complex objects with
reduction of more then 78,5% and 57% respectively.

Our future work will concern the integration of our algorithm in a more
general framework of mesh morphing applications by resolving the
correspondence step between two topological different models. Furthermore, we
plan to develop a new parameterization method applicable for closed genus-0
manifold triangular mesh models by extending the method proposed in this paper.
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