U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 4, 2011 ISSN 1454-234x

AGSYSLIB - A SOFTWARE TOOL FOR AGENT-BASED
PROBLEM SOLVING

Serban IORDACHE', Florica MOLDOVEANU?

Algoritmii bazati pe agenti au capacitatea de a se adapta la medii dinamice
§i complexe si sunt utilizati adesea pentru a rezolva probleme practice de mare
dificultate. Existd insa o serie de dificultati legate de proiectarea, implementarea §i
ajustarea parametrilor acestor algoritmi. In prezentul articol ne propunem si
identificam aceste dificultati si sda aratam cum pot fi ele depayite folosind AgSysLib,
o biblioteca sofiware pe care am creat-o in acest scop.

Agent-based algorithms are able to adapt to complex, dynamic environments
and are frequently used to tackle difficult real-world problems. There are, however,
a number of difficulties encountered in designing, implementing and tuning agent-
based algorithms. In this paper, we identify these issues and we present AgSysLib, a
software tool that we have developed in order to overcome them.

Keywords: agent-based problem solving, heuristics, stochastic algorithms,
parameter tuning

1. Introduction

Many complex phenomena that arise in physical and biological systems
can be naturally described using agent-based models [1][2][3][4]. These models
are able to capture the complex behavior that emerges from the interactions
between agents governed by simple rules. It is tempting to use agent-based
approaches not only to describe existing phenomena, but also to solve complex
problems that cannot be tackled with conventional techniques. Consequently, in
recent years, there has been a growing interest in designing algorithms that take
advantage of the emergent behavior exhibited by systems composed by interacting
agents [5].

While conceiving a new agent-based algorithm, one can benefit from the
various software libraries and frameworks available nowadays for agent-based
modeling and simulation (ABMS) [6]. However, ABMS software is not able to
assist in all aspects related to the design, implementation and tuning of agent-
based algorithms. The aim of this paper is to identify the difficulties encountered
during these activities and to discuss how a software tool can help in overcoming

! Eng., SCOOP Software GmbH, Cologne, Germany, e-mail: siordache@acm.org
2 Prof., Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest,
Romania, e-mail: fm@cs.pub.ro

4 Serban Iordache, Florica Moldoveanu

them. We illustrate our ideas by presenting AgSysLib, a Java tool that we have
developed in order to facilitate the tasks associated with agent-based problem
solving.

The main difficulty in designing agent-based algorithms is to find the set
of rules that produce the desired emergent behavior. At present, there is no
generally accepted methodology for designing agent-based algorithms. Some of
these algorithms are nature inspired. They adopt mechanisms found in biological
systems such as colonies of ants [7] and bees [8], flocks of birds [9] or immune
systems [10]. When no inspiration is found in nature, the task of finding an
appropriate set of rules for the agents becomes more difficult, because the
emergent behavior is often surprising and counterintuitive. Therefore, the design
of an agent-based algorithm is frequently a trial-and-error process that could
benefit from the help provided by a software tool.

While ABMS offers mainly qualitative insights, agent-based problem
solving is concerned with producing high performance results in terms of both
solution quality and running time. Turning a proof-of-concept simulation into a
state-of-the-art implementation for solving a real-world problem is a very tedious
task, for which ABMS software does not typically provide support. Since
currently no tools are offering assistance with this task, we have developed
AgSysLib in order to help algorithm designers and engineers in implementing
agent-based solutions for complex problems.

2. The AgSysLib framework and library

AgSysLib is both a framework and a library. It is implemented in Java and
it is available as an open source project at http://agsyslib.sourceforge.net/.
AgSysLib offers an API (Application Programming Interface) that should be
implemented by any agent-based algorithm and it provides a set of utility classes
that help performing various tasks associated with agent-based problem solving.

AgSysLib features a component-based architecture, which permits to build
algorithms in a modular way and facilitates the experimentation and analysis of
different variants of an algorithm. A new variant of an algorithm can be obtained
by simply replacing a particular component of a base implementation with another
component. AgSysLib also allows executing batches of runs, in order to apply
repeatedly an algorithm to the same problem, to different problems, or using
different parameter values.

Configuration

Agent-based problem solving is typically a trial-and-error process
requiring experimentation at various levels. One type of experiments involves
assessing different variants of an algorithm. Frequently, switching to a new

AgSysLib — A software tool for agent-based problem solving 5

algorithm variant is achieved by commenting out portions of the original code and
replacing them with new code, or by using flags in various parts of the program in
order to activate the portions of code corresponding to the given algorithm
variant. Such a practice clutters the source code, making it hard to read and to
maintain. A component-based architecture allows a clear separation of the
portions of code specific to each algorithm variant, but it usually still requires
some changes in the original code, in order to specify which component should be
used. AgSysLib allows specifying all components of an agent-based system in a
configuration file. This way, no code changes or additional flags are needed in
order to switch between different algorithm variants.

Another type of experiments involves comparing the results obtained by a
given algorithm with different sets of parameters or even with different formulas.
If parameter values or algorithm formulas are hard-coded into the program, this
leads again to code cluttering. Therefore, AgSysLib provides a large set of utility
functions for reading various types of values and lists of values, as well as
mathematical formulas from a configuration file. Moreover, AgSysLib allows
providing lists of values for parameters and executing batches of runs for each
combination of these parameter values. Finally, it is possible to specify in the
configuration file that the value of a parameter should be computed based on a
given formula using the values of other parameters.

AgSysLib does not use an interpreter to evaluate formulas, because this
would have a negative impact on the performance of an algorithm. Instead, it
generates on-the-fly a Java class for each formula and creates an instance of it.
The dynamically generated class contains a method that accepts as arguments the
variables present in the given formula and returns the value corresponding to its
evaluation. The on-the-fly class generation takes place only once, at program start.
This way, the evaluation of a formula is performed as fast as if it would have been
hard-coded in the algorithm code. In a series of experiments aimed to assess the
performance of the implementation of our formula evaluator, we have determined
that the time needed to evaluate a formula using a Groovy interpreter is in average
about 15 times longer than that needed by our evaluator.

The AgSysLib API

The framework controls the execution of all operations required to evolve
an agent-based system implemented in AgSysLib. This way, the user is no longer
concerned with general aspects regarding the working of an application. Instead,
he can concentrate on the details of his particular problem. To this end, the user
has to implement some of the interfaces specified by the AgSysLib API. For many
of these interfaces, AgSysLib offers default implementations or abstract classes
that can be easily instantiated, extended and customized.

6 Serban Iordache, Florica Moldoveanu

The particular API implementations used by a certain application can be
specified in a configuration file. Instances of the classes declared in this file are
created through Java reflection. Since this operation is done only once, at program
start, it has no impact on the performance of the application.

There are two high-level interfaces that must be implemented by any
AgSysLib application: Initializer and AgentSystemEvolution. The Initializer
interface has a single, parameterless method, called getNextAgentSystem, which
is called before starting a new run in a batch, in order to retrieve the agent-based
system for the new run. The AgentSystemEvolution interface declares methods
that should implement the actions performed at the beginning and end of each run
in a batch, and at the beginning, at the end and during each step in a run. It also
declares a method that should implement the termination condition of a run. For
both interfaces, AgSysLib offers abstract methods implementing the base
functionality usually needed by any concrete implementation.

During experimentation with an agent-based algorithm, it is frequently
necessary to inspect the evolution of various quantities handled by the application,
or aggregate values of them, in order to gain insight about the behavior emerging
in the system. Similar information is required during tuning and debugging
activities. The statements needed to output this information usually clutter the
source code. Moreover, they may affect the performance of the algorithm,
although they are usually no longer needed in the final application. The AgSysLib
API introduces evolution listeners in order to allow keeping these statements
separated from the main source code, while also permitting the quick activation or
deactivation of these portions of code.

The evolution listeners active during the execution of an application can
be specified in a configuration file. This way, there is no need to make changes in
the application code in order to add or remove a listener.

Evolution listeners are typically used to watch and monitor the evolution
of an agent-based system. They provide methods that can be triggered by the
following events:

- the start of the processing for a batch of runs

- the end of the processing for a batch of runs

- the start of the processing for a run in a batch

- the end of the processing for a run in a batch

- the start of an evolution step in a run

- the end of an evolution step in a run

- the end of the operations performed by an agent during a step.

The remote control console
Agent-based applications are usually very adaptive, thus being the best
choice for solving real-world problems in complex, dynamic environments.

AgSysLib — A software tool for agent-based problem solving 7

However, detecting flaws in such applications is more difficult, because in many
cases, even a buggy implementation is able to solve the problem, although not as
efficient as possible. In addition, when designing a new agent-based heuristic, one
does not know in advance how efficient an implementation could be, therefore
bugs that only affect the algorithm performance may remain unnoticed, since the
developer has only limited knowledge about what to expect from the algorithm.
Because many agent-based algorithms are stochastic, reproducing an unusual
behavior may also prove difficult.

Investigating problems related to agent-based applications often requires a
detailed analysis of the dynamic of the internal program state. AgSysLib offers a
GUI component that allows connecting via RMI (Remote Method Invocation) to a
running application and interrogating, watching or changing its internal state. This
GUI component, shown in Fig. 1, is called the remote control console. Since it can
establish a connection not only at program start-up, but at any moment, the remote
control console can be also used to investigate unexpected behavior appearing in a
program not actually under debugging.

r b |

| £| Cantrol Frame = | B |

|c0untLogger |'|| Unregister Script | | Step || Run || Pause || Terminate Job |

Register Script

Double.MAX VALUE

system.particles.each { particle ->

def minEnergy
def maxEnergy

[»

if (particle.energy < minEnergy) { Abort Evaluation
minEnergy = particle.energy

if (particle.energy > maxEnergy) { Open Script
maxEnergy = particle.energy
} Save Script

println "step S$system.tickCount: count = $system.normalEnergyCount”;
[println "minEnerqgy: SminEnergy, maxEnergy: SmaxEnergy";

[4]

] Il | [+]

[] Append

~!| Refresh Controls
a D —

Fig. 1. The remote control console

: coun 98
minEnergy: 50.00000000000003, maxEnergy: 237.0604062081471¢

Access to the internal state of a program is provided by means of scripts
written in the Groovy programming language. Therefore, it is possible to make

8 Serban Iordache, Florica Moldoveanu

complex queries on the internal program state or to make multiple state changes,
such as altering in some way the state of each agent, by using only a few lines of
code. The scripts can be also registered, in order to be executed at the end of each
step. In addition, the results of internal state queries can be used to set complex
conditional breakpoints.

After introducing the script code in the upper text area and pressing the
“Evaluate” button, the results are displayed in the lower text area of the console.
Scripts can be also saved to and loaded from a file. The script can be changed in
order to log the output into a file and register it for execution. By pressing the
“Run” button, the information queried by the string is written to the log file at the
end of each step.

Tuning

As mentioned before, AgSysLib allows specifying lists of values in the
configuration files, in order to run an algorithm with all possible combinations of
these parameter values. Comparing the aggregate results obtained for each batch
of runs, it is possible to select the best performing combination of parameter
values. This basic form of parameter tuning can be used for simple problems or in
the first stages of experimentation with a new algorithm. However, in order to
obtain high-quality solutions, a more elaborated tuning procedure should be
applied. One such tuning procedure offered by AgSysLib is based on genetic
algorithms and it uses the JGAP library (http://jgap.sourceforge.net/).
Additionally, AgSysLib enables an easy integration with specialized software
packages for automatic parameter configuration such as ParamILS [11], F-Race
[12] or SPOT [13].

Integration with ABMS software packages

Currently available ABMS software packages offer many features that are
also useful for agent-based problem solving. AgSysLib does not try to provide yet
another implementation of these features. Instead, it is concerned with those
aspects of designing, implementing and tuning of agent-based algorithms that are
not covered by ABMS software. However, in order to give users the possibility to
still benefit from features available in ABMS software, AgSysLib can act as a
wrapper for such libraries. This way, AgSysLib can transform an ABMS package
into a tool able to assist in agent-based problem solving.

A plethora of ABMS packages has been developed in the last years,
differing in their purposes and capabilities. In a recent survey, Allan [14]
discusses 31 of the most commonly used toolkits for agent-based modeling and
simulation, while in another survey, Nikolai and Madey [15] consider 53 such
toolkits. AgSysLib is able to wrap around many of these packages, but in its
default configuration, it integrates the MASON library. MASON (Multi-Agent

AgSysLib — A software tool for agent-based problem solving 9

Simulator of Neighborhoods) [16] is a discrete-event multi-agent simulation
environment implemented in Java, allowing models with a large number of agents
to be executed fast a large number of times. Some of its main features include:

e checkpointing — simulations can be serialized to disk. A serialized
simulation can be later recovered with or without visualization, and it
can be migrated on a different platform.

e model / view decoupling — models are completely independent of their
visualizations. Different types of visualizations can be defined for the
same model and they can be dynamically added and removed.

e media — various 2D and 3D visualizations, charts and graphs are
available, with the possibility to save them as snapshots (in PNG
format) or as Quicktime movies.

e duplicability — MASON simulations are able to produce identical
results across different platforms.

e high quality random number generator — many agent-based algorithm
are stochastic and they need a robust random number generator in
order to produce valid results. MASON provides an efficient
implementation of the Mersenne Twister random number generator.

3. Conclusions

In this paper, we have identified a number of issues involved in the
process of solving a real-world problem using agent-based techniques and we
have introduced AgSysLib, a software tool developed by us in order to overcome
these issues. AgSysLib is both a framework and a library and it facilitates many
tasks related with agent-based problem solving. It can act as a wrapper around
existing ABMS software packages, thus seamless integrating their capabilities.

AgSysLib has been already used in the development of new agent-based
heuristics. Examples include open source packages like SwarmTSP, which
implements consulting-guided search algorithms for the traveling salesman
problem [17], or SwarmQAP, which implements consulting-guided search
algorithms for the quadratic assignment problem [18]. The state-of-the-art
performance obtained by these algorithms shows that AgSysLib is a valuable tool
for all people involved in agent-based problem solving.

REFERENCES

[1] 4 Troisi, V Wong, and M A Ratner, " An agent-based approach for modeling molecular self-
organization.," Proc. National Academy of Sciences, vol. 102, no. 2, pp. 255-260, 2005.

[2] Leigh Tesfatsion, "Agent-Based Computational Economics: Growing Economies From the
Bottom Up," Artificial Life, vol. 8, no. 1, pp. 55-82, 2002.

10 Serban Iordache, Florica Moldoveanu

[3] Joshua M Epstein, " Agent-based computational models and generative social science,"
Complexity, vol. 4, no. 5, pp. 41-60, May 1999.

[4] Lars-Erik Cederman, "Endogenizing geopolitical boundaries with agent-based modeling,"
Proceedings of The National Academy of Sciences, vol. 99, no. suppl. 3, pp. 7296-7303,
2002.

[5] Susan Stepney, Fiona A Polack, and Heather R Turner, "Engineering Emergence," in
Proceedings of the 11th IEEE International Conference on Engineering of Complex
Computer Systems, 2006, pp. 89-97.

[6] C M Macal and M J North, " Agent-based Modeling and Simulation," in Winter Simulation
Conference, Austin, TX, USA, 2009, pp. 86-98.

[7]1 M. Dorigo and T. Stiitzle, Ant Colony Optimization.: The MIT Press, 2004.

[8] Dervis Karaboga and Bahriye Akay, "A survey: algorithms simulating bee swarm
intelligence," Artif. Intell. Rev., vol. 31, pp. 61-85, 2009.

[9] Riccardo Poli, James Kennedy, and Tim Blackwell, "Particle swarm optimization," Swarm
Intelligence, vol. 1, no. 1, pp. 33-57, 2007.

[10] Leandro N. de Castro and Jonathan Timmis, Artificial Inmune Systems: A New
Computational Intelligence Approach.: Springer-Verlag London, 2002.

[11] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stiitzle, "ParamILS: an
automatic algorithm configuration framework," J. Artif. Int. Res., vol. 36, pp. 267-306, 2009.

[12] Mauro Birattari, Thomas Stiitzle, Luis Paquete, and Klaus Varrentrapp, "A Racing
Algorithm for Configuring Metaheuristics," , 2002, pp. 11-18.

[13] Thomas Bartz-Beielstein, Christian Lasarczyk, and Mike Preuss, "The Sequential Parameter
Optimization Toolbox," in Experimental Methods for the Analysis of Optimization
Algorithms, Thomas Bartz-Beielstein et al., Eds. Berlin, Heidelberg, New York: Springer,
2010, pp. 337-360.

[14] R.J. Allan, "Survey of Agent Based Modelling and Simulation Tools," Science and
Technology Facilities Council, Daresbury Laboratory, Warrington, Technical Report DL-TR-
2010-007, 2010.

[15] Cynthia Nikolai and Gregory Madey, "Tools of the Trade: A Survey of Various Agent Based
Modeling Platforms," Journal of Artificial Societies and Social Simulation, vol. 12, no. 2,
2009.

[16] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G.C. Balan, "MASON: A Multiagent
Simulation Environment," Simulation, vol. 81, no. 7, pp. 517-527, 2005.

[17] Serban lordache, "Consultant-Guided Search Algorithms with Local Search for the Traveling
Salesman Problem," in 11th International Conference Parallel Problem Solving from Nature -
PPSN XI. LNCS, vol. 6239, Krakow, Poland, 2010, pp. 81-90.

[18] Serban lordache, "Consultant-Guided Search Algorithms for the Quadratic Assignment
Problem," in Hybrid Metaheuristics - 7th International Workshop, HM 2010. LNCS, vol.
6373, Vienna, Austria, 2010, pp. 148-159.

