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GENETIC ALGORITHMS PERFORMANCES ASSESSMENT
FOR OPTIMAL LOCATION AND SIZING OF DISTRIBUTED
GENERATION

loana PISICA', Petru POSTOLACHE?

Lucrarea abordeaza problema amplasarii optime a surselor de generare
distribuita in retelele electrice de distributie cu ajutorul algoritmilor genetici. Se
studiaza influenta valorilor parametrilor interni ai algoritmilor genetici asupra
performantelor acestora. Rezultatele releva o puternica legatura dintre aceste valori
si rezultatele obtinute, subliniind necesitatea acordarii parametrilor inaintea
utilizarii algoritmilor genetici.

The paper addresses the problem of optimal allocation of distributed
generation sources in an electrical distribution network. The proposed solution
method is based on genetic algorithms and the study is centered on the influence of
genetic algorithms’ parameters upon their performances. The results show that
different parameter set-ups lead to different solutions and that a process of
parameter tuning is necessary before using the genetic algorithms.

Keywords: distributed generation, genetic algorithms, selection methods, roulette
wheel selection, crossover fraction.

1. Introduction

Distributed power generation (DG) refers to small generating units
installed near load centers, avoiding the need to expand the network in order for it
to cover new load areas or to support the increased energy transfers that would be
necessary for satisfying the demand.

The challenge of identifying the optimal locations and sizes of DG has
generated research interests all over the world and many efforts have been made
in this direction.

Studies have indicated that inappropriate locations and sizes of DG may
lead to higher system losses than the ones in the existing network [1].

Numerous papers have been written on this subject, referring to either
“optimal capacity allocation” [2], “DG placement” [3] or even ‘“capacity
evaluation” [4].
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The literature suggests a wide variety of objectives and constraints, but
two main approaches emerge: finding optimal locations for defined DG capacity
and finding optimal capacity at defined locations.

Of all benefits and objectives of DG implementation, the idea of
implementing DG for loss reduction needs special attention. This is why many
studies have been performed on this matter, the following presentation being by
no means exhaustive.

A very detailed study on the influence of DG location and size upon
system losses is given in [5]. It is shown that, as the size of DG in increased at a
particular bus, the losses are reduced, eventually reaching a minimum. If,
however, the size is further increased, the losses start to increase as well and may
become larger than the ones in the initial network. A conclusion that rises from
this study is that DG size should only reach a capacity that can be consumed
within the distribution substation boundary. This can be explained by the fact that
the distribution system was initially designed for predicted power flows, and the
new ones cannot be supported by the small-sized conductors. The need to prepare
a methodology which is able to optimally designate DG allocation and sizing
within a distribution network arises from the above-stated considerations.

Adaptations of genetic algorithms have been studied in papers like [6-9],
with the objective of minimizing system losses and maintaining acceptable
voltage levels.

An analytical approach is used in [6] to decide the appropriate DG
location, based on losses and sensitivity analysis. Afterwards, a genetic algorithm
(GA) is used to compute the optimal DG size to be installed at that location. The
objective is to minimize the active power losses and the methodology is tested on
the IEEE 69-bus network. Studies are performed for one and two distinct
connection points for DG units, showing that smaller capacities lead to less power
losses.

The approach presented in [7] also aims at minimizing the active power
losses, but uses GAs to simultaneously search for both location and size of DG.
The algorithm is run for different loading conditions (peak, medium and low), for
a 10-bus, 33-bus and 75-bus system, concluding that losses vary with system
loads.

A recent study [10] proposes a new approach, based on particle swarm
optimization (PSO), considering an objective function consisting of voltage
profile improvement index and line loss reduction index. Thus, the solution given
by the PSO algorithm increases the maximum loadability of the system. The
network used for testing was a 30-bus IEEE system.

This paper continues the work in [11, 12, 13] by perfecting GAs to optimize
the allocation and sizing of DG. The objective is to minimize the active power
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losses, while certifying acceptable loading conditions and voltage profiles through
the network.

2. Problem formulation

Consider a distribution network, given by its impedance (depending on the
characteristics of the conductor material and lengths), topology and the connected
loads.

The objective of this study is to reduce active power losses by connecting
a DG unit of optimal size, in an optimal location, keeping the voltage and
branches loading within acceptable limits. This can be formulated as an
optimization problem with the objective function depending on two integer
variables: location and size of DG unit. This objective function can be written as:
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The minimization must take place without violating the operational constraints:

e Power flow balance equations. The balance of active and reactive powers
must be satisfied in each node:
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where the Ppg; and Qp; represent the active and reactive power at bus
e Power flow limits. The apparent power that is transmitted through a
branch / must not exceed a limit value, S, , which represents the thermal limit of
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the line or transformer in steady-state operation:
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¢ Bus voltages. For several reasons (stability, power quality, etc.), the bus

voltages must be maintained around the nominal value:

Ui min < Uinom < Ui max * (4)

In practice, the accepted deviations can reach up to 10% of the nominal
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values.

e DG size

PDG < PDG max Q)
The optimization problem described by the objective function and
constraints detailed in this section represents the mathematical model for the
optimal location and sizing of a DG unit in a distribution network, minimizing
power losses and investment costs.

3. Genetic algorithms

It has been shown in [12] that the location and size of DG have great
importance upon the operating conditions of a distribution power network and that
genetic algorithms are a suitable method for solving this allocation problem. This
study addresses the problems emerging when using GAs, with emphasis on the
dependence between the internal parameters of GAs and their performances.

Genetic Algorithms are a way of solving problems by emulating the
mechanism of evolution as found in natural processes. They use the same
principles of selection, recombination and mutation to evolve a set of solutions
toward a “best” one.

Because of the intrinsic parallelism of GAs, they can explore the search
space in multiple directions at the same time. This is why they are suited for
nonlinear problems of high complexity and dimensionality, for which the
objective function (transposed into a fitness measure) have a complex look
(discontinuous, noisy, time-dependent, with many local optima). GAs avoid
getting trapped into local optima because they use populations of candidate
solutions and therefore there are always multiple comparison values, unlike, for
example, hill-climbing or gradient-based methods [14].

Before using any of the GA models, the problem must be represented in a
suitable format that allows the application of genetic operators. GA-s work by
optimizing a single entity, the fitness function. Hence, the objective function and
the constraints of the problem at hand must be transformed into some measure of
fitness.

Encodings. The first feature that should be defined is the type of
representation to be used, so that an individual represents one and only one of the
candidate solutions. A candidate solution (or chromosome) designed in this paper
for the problem of finding the optimal location and size of one DG unit is a two-
component vector (Fig. 1). The first component represents the location, the node
in which the DG should be connected, and can take values from 1 to the number
of buses in the network. The second component represents the DG size and can
take values from 0 to 2000 kW. A population of possible solutions will be evolved
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from one generation to another, in order to obtain an optimum setup, i.e. a very
well fitted individual.
| Position(node number) | Size (max. 2 MW) |

Fig 1. Chromosome encoding for one DG unit to be allocated

Fitness Function. This function is responsible for measuring the quality of
chromosomes and it is closely related to the objective function. The objective
function for this paper is computed using equation (1). The constraints of this
particular problem do not explicitly contain the variables (the genes in this case)
and therefore the effect of the constraints must be included in the value of the
fitness function. The constraints are checked separately and the violations are
handled using a penalty function approach. The overall fitness function designed
during this study is:
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where the first two terms are the ones in the objective function and the following
are penalty functions. The element bal/; is a factor equal to O if the power balance

constraint at bus 7 is not violated and 1 otherwise. The sum of these violations
represents the total number of buses in the network that do not follow constraint
(2) and it is multiplied by a penalty factor meant to increase the fitness function
up to an unacceptable figure, therefore making the solution unfeasible. The
second and third sums in the fitness function represent the total number of
violations of constraints (3) and (4) respectively and they are also multiplied by
penalty factors. The last three sums in this fitness function are a measure of
unfeasibility for each candidate solution x. The penalty factors used in this study
were set to 10000.

The constraint expressed in equation (5) is satisfied each run, as the limits
for each individual are set within the main GA routine: the first component
(location) varies between 0 and the number of buses and the second component
(size) varies accordingly to eq. (5).

Selection Methods. The selection methods specify how the genetic
algorithm chooses parents for the next generation. In this study, two selection
methods were tested. The first method was Roulette Wheel Selection, which
chooses parents by simulating a roulette wheel with different sized slots,
proportional to the individuals’ fitness. The second method tested was
Tournament Selection. Each parent is chosen as the best individual from a random
selection of k individuals, where £k is a preset number — tournament sizes of 2, 4
and 6 were tested here.
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Crossover Mechanism. The crossover mechanism is responsible for the
way in which the genetic material is mixed between individuals. The one-point
crossover exchanges the genetic information found after a random position in the
two selected parents.

The crossover is applied in each successive generation with a certain
probability, known as the crossover fraction or rate. A large crossover rate
decreases the population diversity, but in this problem a higher exchange of
genetic material is needed.

Mutation Mechanisms. This mechanism is very important from the genetic
diversity point of view, and it prevents landing a local, sub-optimal solution. The
mutation rate is highly connected with the crossover fraction. The mutation
mechanism used in this study implies generating a random gene number and
flipping the bit found at that position.

Stopping Criteria. Other important decision variables are the stopping
criteria. Some of the most widely used stopping criteria are:

- the maximum number of generations that the GA will compute: after
computing this preset number of generations, the GA stops and the best result
until then is considered to be optimal;

- time limit: specifying the maximum number of seconds the algorithm will run,
this criterion stops the GA after a predefined computational time;

- fitness limit: the algorithm stops when encounters a fitness value smaller than
a preset target value;

- stall generations: the GA terminates when no improvements in the best fitness
values take place for a predefined number of generations. This can be regarded as
a stagnation in the evolution process.

- stall time: acts the same as the stall generations criterion, but the predefined
parameter is the computational time.

For example, if the computational time for each generation is high (due to
a large number of individuals or the nature of the problem — like in the case of DG
placement, where power flows are computed for each individual in each
generation) and the stall time limit is set to a low value, the algorithm will not get
the chance to explore the whole space, as the GA will terminate even before few
generations will be computed. If the maximum number of generations is set to a
small number and the population size is also small, then the algorithm will not be
able to compute all the generations needed in order to find the optimal solution, as
it will stop after completing the specified number of generations. The same
argument is also applicable for the time limit criterion. The most accurate way to
stop the GA is after finding a fitness value lower than the targeted one, but there
are some problems for which the solution is not known a priori, so a fitness target
is impossible to be set. On the other hand, the algorithm may never land a solution
with the fitness lower than the targeted one, making the criterion unfeasible. The
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GA stops when any of the stopping criteria is met, on a first come first served
basis.

4. Case study

In order to assess the performances of the proposed GA setups in solving
the DG allocation and sizing problem, the IEEE 69-bus distribution test system
has been considered. The system has 68 sections with a total load of 3800 kW and
2690 kVAr (Fig. 2). The network data can be found in [15]. The total active
power losses are equal to 225kW and total reactive power losses are equal to
102.2 kVAr.

36 37 38 39 40 41 42 43 44 45 46
I

> — > | i—r -

S/S
1 2 3] 4 5 6 7 10 11112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
I el T e e Y T T Y O Y IO
T RT T FPRRPPR PRI PRI PRRT I PR
68 69
5|3 5|4 :'\|5 56 57 Slﬂ :'\I‘) ﬁlﬂ 6|1 f)l'_? {il.‘a 6'4 ﬁIS
Y Bl Bl bk
EIR 2[9 3|0 _’sll 3[2 3|3 3|4 3|5
T T T 565k

Fig. 2. 69-bus radial distribution network

As it was shown above, the process of solving the DG allocation problem
with genetic algorithms implies a number of parameters that have to be specified.
The population size is a discrete parameter that sets the number of individuals that
the GA evolves in each generation. It comes naturally that a small number of
individuals in a population may result in a premature convergence, may not
provide enough covering of the search space and so the algorithm would become
unreliable. On the other hand, using a very large number of individuals means that
a very large number of possible solutions have to be assessed, and so the
computational time increases drastically. The crossover rate and mutation rate are
continuous variables, defined over the interval [0, 1]. If the mutation rate becomes
too high, then the search becomes a random one; if the crossover rate becomes too
high, the search can get trapped within local minima. A balance between these
two values has to be found, in order to improve the algorithm’s performances. The
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selection method is a discrete parameter, referring to different methods, like
tournament or roulette wheel, mentioned above. This variable is also accompanied
by the parameters concerning the selection method. As an example, the
tournament selection also implies the tournament size. The crossover mechanism
can be viewed in a similar way.

Accordingly to the above remarks, a GA could be fully specified by a set
of bounded parameters, which influence its performances [16].

Finding the optimal values for each of the parameters in the above-
described set becomes a problem within a problem. The parameters are dependent
on one another. If an algorithm gives good results with a set-up, for example
roulette wheel selection, crossover rate of 0.85, single-point crossover method and
a population size of 40, changing just one of the parameters (for example a value
of 20 for population size) can make the algorithm perform poorly.

It must be specified that the number of tuning methods are virtually
infinite and the following study is an empirical approach, with the sole intention
of showing the importance of choosing the proper values for these parameters,
highlighting their influence upon the performances of GAs. For simplicity
reasons, only the case of one DG unit is addressed.

Selection mechanism

Because GAs are based on random numbers, one cannot be sure that a
single run would be sufficient to obtain the optimal solution. Therefore, to
overcome this problem, the algorithm was run 10 times for tournament selection
with tournament sizes of 2, 4 and 6, and 10 times for roulette wheel selection. Fig.
3 shows the empirical cumulative distribution function after each set of 10 runs.
All simulations were performed with a population size of 50 individuals and a
crossover rate of 0.7.

We can conclude that the roulette wheel selection leads to smaller amounts
of power losses.

Population size

In order to set the best value for the population size, the algorithm was run
10 times for each population size between 20 and 80, with an increment of 10.
The empirical cumulative distribution functions (CDF) for all cases are plotted in
Fig. 4.a. As it can be seen, the minimum losses values are obtained for 80
individuals in each generation. However, looking at the computational time, Fig.
4.b, it increases with the population size, as more fitness functions have to be
computed each generation. A balance has to be found between these two aspects.
Fig. 4.b shows that a population size of 80 would lead to unacceptable
computational time. As Fig. 4.a shows similar results for population sizes of 50,
60 and 70, taking into consideration the corresponding computational time, a
value of 50 for this parameter can be considered as suitable.
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Fig.4. CDF for losses (a) and computational time (») for different population sizes

Crossover fraction

Having set the population size set to 50, we can analyze the crossover rate
and its importance upon the performance of the algorithm. This parameter
specifies the percentage of individuals that enter the mating pool in order to
exchange genetic material. They will produce crossover children. The algorithm
was run 20 times for each crossover fraction between 0 and 1, with an increment
of 0.1. Fig. 5 plots the minimum fitness value obtained during the 20 runs for each
crossover rate against the respective crossover rate value.
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Fig. 5. Crossover fraction importance upon the performance of the GA
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The plot shows that the crossover rate for the DG allocation problem for
the 69-bus network should be around 0.7. A higher crossover fraction implies
better genetic information exchange between parents, guiding the search, but a
lower one increases diversity within the generations and provides the algorithm a
better chance of finding the optimal solution by better covering the search space.
A fraction of 1 means that all children, other than elite individuals, are crossover
children, while a crossover fraction of 0 means that all children are obtained from
mutation. The tests show that neither of these extremes is an efficient strategy for
optimizing a function. The results of a run for a crossover rate of 1 are presented
in Fig. 6, showing both the evolution of the mean and best fitness values at each
generation and the average distance between individuals. The average distance
shows how the search space is explored by the individuals. A small distance
means less exploring. If the crossover rate is set to 1, then all the individuals in the
next generations are obtained by crossover, except the elite ones, meaning that no
mutation takes place whatsoever.

The algorithm gets trapped in the same best solution, as no diversity
mechanisms occur. The search is over-guided and the initial solution guides the
algorithm throughout the run without allowing it to explore the search space.

The only genetic material is the one of the individuals from the first
generation, randomly generated. The algorithm recombines this material and no
new genes are created, because no mutation takes place. The average distance
between the individuals becomes zero, as they are all identical. The algorithm
runs until the stall generations parameter value is reached.

Fig. 7 shows the plot for a run with a crossover rate of 0, meaning that the
individuals in each generation are exclusively created by mutation.

In this case, the random changes that the algorithm applies only slightly
improve the fitness value of the best individual from the first generation. The
upper plot shows some improvement in the mean fitness value in some of the
generations, but no crossover takes place and so the method more likely becomes
a random search. The best fitness plot from Fig. 7 demonstrates that the algorithm
does not converge.

The above interpretation concerning GA parameters shows the strong link
between the parameters and the performances of GAs. The operations described
above can, however, take place in any other random order, each case resulting in
different outputs. The tuning of parameters in GAs is still an open topic,
especially because dynamic methods have to be applied due to the strong
interconnections between these parameters.
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5. Conclusions

The studies highlight the importance of properly choosing the parameters’
values when using genetic algorithms for the problem of optimal DG location and
sizing. The objective function is related to the active power losses within the
network, and the fitness function incorporates the operational constraints by using
penalty functions.

Two selection mechanisms are tested: roulette wheel and tournament of
different sizes, and the results show that each set-up leads to different values. The
cumulative distribution function is used to emphasize the most suited mechanism,
which, in this case, resulted to be the roulette wheel.

The population size was another parameter that has been varied, and the
results show, taking into consideration both power losses and computational time,
that a balance has to be found between them, thus resulting in an optimal
population size of 50 individuals for this problem.

The crossover fraction is responsible for the genetic material exchanging
intensity and it represents another important parameter of GAs. The algorithm was
run for different crossover fractions and the most suited value resulted around 0.7.
Two extreme cases were also tested, for a crossover rate of 0 and 1. For the
crossover rate set to 0, all offspring are created via mutation, and thus the search
becomes random rather than directed. For a crossover rate of 1, the genetic
material is exchanged intensively and after a few generations all individuals start
to be alike, thus leading to a stagnation of evolution.

The performance of GAs depends on their parameters, which are
interrelated, and a tuning procedure must take place before taking the results as
granted. A robust tuning method should look for all parameters in the same time,
in order to obtain an optimal set-up.
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