

COMPARISON OF STANDARD AND (EXTENDED) *d*-HOMOLOGIES

M. Z. Kazemi Baneh^{*1} and S. N. Hosseini²

*In this article we compare the standard homology, *d*-homology and the extended *d*-homology functors with respect to a kernel transformation *d*. We also compare the homology and extended homology functors with respect to two kernel transformations.*

Keywords: abelian category, standard homology, (extended) *d*-homology, category of *R*-modules.

MSC2010: 18E10, 55N20.

1. Introduction and Preliminaries

The definition of the standard homology functor has been extended from the category of *R*-modules to abelian categories in [9]. In [5] we have defined the homology with respect to a kernel transformation *d*, also called the *d*-homology, and in [7] have defined extended *d*-homology in more general categories. In this section we have given the definition of *d*-homology, extended *d*-homology and some of the results obtained in [5]. In Section 2, we have compared the standard homology as given in [9] and the *d*-homology, by giving a natural transformation from the standard homology functor to the *d*-homology functor. Standard homology and extended *d*-homology have been compared in [4]. In Section 3, we have compared the *d*-homology and the extended *d*-homology, by giving a natural transformation from the extended *d*-homology functor to the *d*-homology functor. Then we have considered conditions under which this natural transformation is a natural isomorphism. Also we have shown, in an abelian category, the *d*-homology is the extended *d*-homology with respect to a particular kernel transformation *d*. Some other results are also given at the end of this section. In Sections 4 and 5, respectively we have compared the extended homology functors and homology functors with respect to two kernel transformations. Throughout the manuscript we let *R*-mod be the category of *R*-modules over a commutative ring with unity.

To this end, for a pointed category \mathcal{C} , following the notation of [1, 5, 7], we recall:

¹ Assistant Professor, Department of Mathematics, Faculty of Sciences, University of Kurdistan, Iran, E-mail: zaherkazemi@uok.ac.ir

² Professor, Department of Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Iran, E-mail: nhosseini@uok.ac.ir

(i) for $f : A \rightarrow B$, the maps $K_f \xrightarrow{k_f} A$, $B \xrightarrow{c_f} C_f$ and $P_f \xrightarrow[\pi_2]{\pi_1} A$ are respectively, the kernel, the cokernel and the kernel pair of f ; so $Equ(f, g) \xrightarrow{equ(f, g)} A$ denotes the equalizer and $B \xrightarrow{coe(f, g)} Coe(f, g)$ the coequalizer of a pair $A \xrightarrow[g]{f} B$.

(ii) [2, 5]. The image I_f of f is the coequalizer of the kernel pair of f . Furthermore $f = m_f \circ e_f$ in which $e_f = coe(\pi_1, \pi_2)$.

(iii) [5]. Given the diagram below in which the squares are commutative and the rows are coequalizers, i is the unique map making the right square commute. Furthermore, i is a regular epi.

$$\begin{array}{ccccc}
 & & f & & \\
 A & \xrightarrow[g]{\quad} & B & \xrightarrow{q} & C \\
 r \downarrow & & \parallel & & \downarrow i \\
 A' & \xrightarrow[f']{\quad} & B & \xrightarrow{q'} & C' \\
 & & g' & &
 \end{array}$$

For a pointed category \mathcal{C} with pullbacks and pushouts, let $\bar{\mathcal{C}}$ be the arrow category and $\hat{\mathcal{C}}$ be the pair-chain category of \mathcal{C} . Pair-chains are composable pairs, (f, g) , of morphisms of \mathcal{C} , such that $gf = 0$ and morphisms from (f, g) to (f', g') are triples (α, β, γ) making the following squares commutative:

$$\begin{array}{ccccc}
 A & \xrightarrow{f} & B & \xrightarrow{g} & C \\
 \alpha \downarrow & & \downarrow \beta & & \downarrow \gamma \\
 A' & \xrightarrow[f']{\quad} & B' & \xrightarrow{g'} & C'
 \end{array}$$

Let $K : \bar{\mathcal{C}} \rightarrow \mathcal{C}$ be the kernel functor and $I : \bar{\mathcal{C}} \rightarrow \mathcal{C}$ be the image functor see[5]. Define $\mathbf{K} =: K \circ pr_2 : \hat{\mathcal{C}} \rightarrow \mathcal{C}$ and $\mathbf{I} = I \circ pr_1 : \hat{\mathcal{C}} \rightarrow \mathcal{C}$.

(iv) The natural transformation $j : \mathbf{I} \rightarrow \mathbf{K} : \hat{\mathcal{C}} \rightarrow \mathcal{C}$ takes the object $(f, g) \in \hat{\mathcal{C}}$ to j_{fg} and the morphism $(\alpha, \beta, \gamma) : (f, g) \rightarrow (f', g')$ to the following commutative square.

$$\begin{array}{ccc}
 I_f & \xrightarrow{j_{fg}} & K_g \\
 I(\alpha, \beta) \downarrow & & \downarrow K(\beta, \gamma) \\
 I_{f'} & \xrightarrow{j_{f'g'}} & K_{g'}
 \end{array}$$

In a pointed regular (homological, semiabelian or abelian) category j_{fg} is monic. See [2, 5].

(v) The homology functor H^s that takes the object $(f, g) \in \hat{\mathcal{C}}$ to $H_{fg}^s = Coker(j_{fg})$ is called standard homology functor. See [2, 8, 9]

(vi) Let S be the squaring functor. A kernel transformation in a \mathcal{C} is a natural transformation $d : S \circ K \rightarrow K : \bar{\mathcal{C}} \rightarrow \mathcal{C}$ such that for all (f, g) in $\hat{\mathcal{C}}$, the pullback, $j_{fg}^* : R_{fg} \rightarrow K_{fg}^2$, of j_{fg} along d_g and the coequalizer of the pair

$j_1 = pr_1 \circ j_{fg}^*$ and $j_2 = pr_2 \circ j_{fg}^*$ exist, where pr_1 and pr_2 are the projection maps.

Let R be a commutative ring with unity. Any kernel transformation in $R\text{-mod}$ is of the form $d = rpr_1 + spr_2$, for some $r, s \in R$.

(vii) The d -homology functor $H^d : \hat{\mathcal{C}} \rightarrow \mathcal{C}$ takes $(f, g) \in \hat{\mathcal{C}}$ to $H_{fg}^d = \text{Coe}(j_1, j_2)$ and the morphism (α, β, γ) to $H^d(\alpha, \beta, \gamma)$. We have the following commutative diagram.

$$\begin{array}{ccc} K_g & \xrightarrow{q_1} & H_{fg}^d \\ K(\beta, \gamma) \downarrow & & \downarrow H^d(\alpha, \beta, \gamma) \\ K_{g'} & \xrightarrow[q'_1]{} & H_{f'g'}^d \end{array}$$

(viii) Let $m : A \rightarrow C$ and $j : B \rightarrow C$ be two maps in \mathcal{C} . Define $A +_C B$ also denoted by $A+B$ by the pushout of the pair (α, γ) where $B \xleftarrow{\gamma} P_{jm} \xrightarrow{\alpha} A$ is the pullback of (j, m) .

Let d be a natural transformation from $S \circ K$ to K , $(f, g) \in \hat{\mathcal{C}}$ and Δ be the diagonal map. we have the maps $m_{d_g \Delta_g} : I_{d_g \Delta_g} \rightarrow K_g$ (such that $m_{d_g \Delta_g} e_{d_g \Delta_g} = d_g \Delta_g$) and $j_{fg} : I_f \rightarrow K_g$. The sum $I_{d_g \Delta_g} + I_f$ is therefore obtained by the following diagrams:

$$\begin{array}{ccc} P_{jm} & \xrightarrow{\alpha} & I_{d_g \Delta_g} & \text{and} & P_{jm} & \xrightarrow{\alpha} & I_{d_g \Delta_g} \\ \gamma \downarrow & \text{pb} & \downarrow m_{d_g \Delta_g} & & \gamma \downarrow & \text{po} & \downarrow h \\ I_f & \xrightarrow[j_{fg}]{} & K_g & & I_f & \xrightarrow[i]{} & I_{d_g \Delta_g} + I_f \end{array}$$

Commutativity of the left diagram implies that there is a unique map $\beta : I_{d_g \Delta_g} + I_f \rightarrow K_g$ making the following diagram commute.

$$\begin{array}{ccc} P_{jm} & \xrightarrow{\alpha} & I_{d_g \Delta_g} \\ \gamma \downarrow & \text{po} & \downarrow h \\ I_f & \xrightarrow[i]{} & I_{d_g \Delta_g} + I_f \\ & \searrow j_{fg} & \swarrow \beta & \searrow m_{d_g \Delta_g} \\ & & K_g & \end{array}$$

With $\bar{H}_{fg}^d = C_\beta$, the cokernel of β , we have:

(ix) For each morphism $(\sigma, \delta, \zeta) : (f, g) \rightarrow (f', g')$ in $\hat{\mathcal{C}}$, there is a unique map $\bar{H}^d(\sigma, \delta, \zeta) : \bar{H}_{fg}^d \rightarrow \bar{H}_{f'g'}^d$, such that the following diagram commutes:

$$\begin{array}{ccc} K_g & \xrightarrow{c_\beta} & \bar{H}_{fg}^d \\ K(\delta, \zeta) \downarrow & & \downarrow \bar{H}^d(\sigma, \delta, \zeta) \\ K_{g'} & \xrightarrow[c_{\beta'}]{} & \bar{H}_{f'g'}^d \end{array}$$

The mapping $\bar{H}^d : \hat{\mathcal{C}} \rightarrow \mathcal{C}$ that takes the object $(f, g) \in \hat{\mathcal{C}}$ to \bar{H}_{fg}^d and the morphism (α, β, γ) to $\bar{H}^d(\alpha, \beta, \gamma)$ is a functor.

The functor $\bar{H}^d : \hat{\mathcal{C}} \rightarrow \mathcal{C}$ is called the extended d -homology or the extended homology functor with respect to the kernel transformation d .

2. Standard homology versus d -homology

In this section, unless stated otherwise, we assume \mathcal{C} is a pointed category with pullbacks, cokernels and coequalizer of kernel pairs, and we investigate the relation between the standard homology and the d -homology.

For two morphisms $f : C \rightarrow A$ and $g : C \rightarrow B$ there is a unique morphism $\langle f, g \rangle : C \rightarrow A \times B$ such that $pr_1 \circ \langle f, g \rangle = f$ and $pr_2 \circ \langle f, g \rangle = g$.

Theorem 2.1. [6]. *Let d be a kernel transformation in \mathcal{C} . There is a pointwise regular epi natural transformation $p : H^s \rightarrow H^d : \hat{\mathcal{C}} \rightarrow \mathcal{C}$.*

Proof. Since $j \circ d_h \circ \langle 1, 0 \rangle = d_g \circ \langle j, 0 \rangle$ for $h : I_f \rightarrow 0$ and R_{fg} is a pullback of the pair (j_{fg}, d_g) , there are unique maps ψ and p_{fg}^ψ such that $j^* \circ \psi = \langle j, 0 \rangle$ and the following diagram commutes.

$$\begin{array}{ccccc} I_f & \xrightarrow{j} & K_g & \xrightarrow{c_j} & H_{fg}^s \\ \downarrow \psi & \text{---} & \parallel & & \downarrow p_{fg}^\psi \\ R_{fg} & \xrightarrow{j_1} & K_g & \xrightarrow{q} & H_{fg}^d \\ & \xrightarrow{j_2} & & & \end{array}$$

Furthermore by (iii) of 1, p_{fg} is regular epic. Simillarly there are unique maps ϕ and p_{fg}^ϕ such that $j_2 \circ \phi = j$ and $j_1 \circ \phi = 0$. Since $P_{fg}^\psi \circ c_j = q = p_{fg}^\phi \circ c_j$, $p_{fg}^\psi = p_{fg}^\phi$ and we denote it by p_{fg} . \square

Lemma 2.1. *If for $(f, g) \in \hat{\mathcal{C}}$, $\psi : I_f \rightarrow R_{fg}$ or $\phi : I_f \rightarrow R_{fg}$ is epic, then $H_{fg}^s \cong H_{fg}^d$.*

Proof. $H_{fg}^d = \text{Coe}(j_1, j_2) \cong \text{Coe}(j_1 \circ \psi, j_2 \circ \psi) = \text{Coker}(j) = H_{fg}^s$. \square

Theorem 2.2. [5]. *In an abelian category \mathcal{C} if $d = pr_1 - pr_2$, then $H^d = H^s$.*

3. d -homology versus Extended d -homology

In this section we assume \mathcal{C} is a pointed category with pullback and pushout and for a given natural transformation $d : S \circ K \rightarrow K$ we find relations between the d -homology H^d and the extended d -homology \bar{H}^d .

We know there are natural transformations $p : H^s \rightarrow H^d$ and $u : H^s \rightarrow \bar{H}^d$ which are pointwise regular epic. Furthermore for $(f, g) \in \hat{\mathcal{C}}$ there are $\psi : I_f \rightarrow R_{fg}$ and $i : I_f \rightarrow I_f + I_{d_g \Delta_g}$ such that $\beta \circ i = j$ and $j_1 \circ \psi = j$. Then we have:

Lemma 3.1. *If i is epic, then there is an epi $n_{fg} : \bar{H}_{fg}^d \rightarrow H_{fg}^d$.*

Proof. By Lemma 3.2 u_{fg} in [4] is an isomorphism. Define $n_{fg} = p_{fg} \circ u_{fg}^{-1}$. \square

Theorem 3.1. *If for all $(f, g) \in \hat{\mathcal{C}}$, i is epic, then there is a pointwise regular epi natural transformation $n : \bar{H}^d \rightarrow H^d$.*

Proof. By hypothesis u is a natural isomorphism. Define $n = p \circ u^{-1}$. p is a regular epi, so is n . \square

To the end of this section we assume \mathcal{C} is an abelian category.

For $(f, g) \in \hat{\mathcal{C}}$, let j^* be the pullback of j along d_g and q be the coequalizer $(pr_1 j^*, pr_2 j^*)$. Then $q = \text{coker}(pr_1 j^* - pr_2 j^*) = \text{coker}(\delta j^*)$ in which $\delta = pr_1 - pr_2$. Factoring δj^* as $\delta j^* = me$, since e is epic, $q = \text{coker}(me) = \text{coker}(m)$.

Lemma 3.2. *Let $(f, g) \in \hat{\mathcal{C}}$. $qd_g \Delta_g = 0$ if and only if $d_g \Delta_g$ factors through m , i.e. there is $\alpha : K_g \rightarrow I_{\delta j^*}$ such that $d_g \Delta_g = m\alpha$.*

Proof. Since m is monic, $m = \ker(\text{coker}(m)) = \ker(q)$. The result then follows. \square

Note: In the proof of theorem 2.1 there exists a unique map ψ , such that $j^* \psi = \langle j, 0 \rangle$. Furthermore $j = \delta \langle j, 0 \rangle = \delta j^* \psi$ so that $qj = q\delta j^* \psi = 0$.

Lemma 3.3. *Let $(f, g) \in \hat{\mathcal{C}}$. With the map $\beta : I_{d_g \Delta_g} + I_f \rightarrow K_g$ and $\delta j^* = me$, $q\beta = 0$ if and only if $d_g \Delta_g$ factors through m .*

Proof. Suppose $q\beta = 0$. Since $\beta h = m_{d_g \Delta_g}$ and $m_{d_g \Delta_g} e_{d_g \Delta_g} = d_g \Delta_g$, $qd_g \Delta_g = qm_{d_g \Delta_g} e_{d_g \Delta_g} = q\beta h e_{d_g \Delta_g} = 0$. By the above lemma $d_g \Delta_g$ factors through m .

Conversely suppose $d_g \Delta_g$ factors through m , so by the above lemma $qd_g \Delta_g = 0$. So $qm_{d_g \Delta_g} e_{d_g \Delta_g} = 0$. Since $e_{d_g \Delta_g}$ is epic, $qm_{d_g \Delta_g} = 0$. Since $m_{d_g \Delta_g} = \beta h$, $q\beta h = 0$. On the other hand since $qj = 0$ and $j = \beta i$, $q\beta i = 0$. The pushoutness of $I_{d_g \Delta_g} + I_f$ implies $q\beta = 0$. \square

Proposition 3.1. *Let $(f, g) \in \hat{\mathcal{C}}$. If $d_g \Delta_g$ factors through m , then there is an epi $n_{fg} : \bar{H}_{fg}^d \rightarrow H_{fg}^d$. Furthermore $H_{fg}^d = C_{k_{n_{fg}}}$.*

Proof. By the above theorem $q\beta = 0$, so there is a unique map $n_{fg} : \bar{H}_{fg}^d \rightarrow H_{fg}^d$, such that $n_{fg} c_\beta = q$. Since q is epi, so is n_{fg} . The last assertion follows from the fact that C is an abelian category. \square

Theorem 3.2. *If for all $(f, g) \in \hat{\mathcal{C}}$, $d_g \Delta_g$ factors through m , then there is a pointwise regular epi natural transformation $n : \bar{H}^d \rightarrow H^d$.*

Proof. By the above proposition, there is a unique $n_{fg} : \bar{H}_{fg}^d \rightarrow H_{fg}^d$ such that $n_{fg} c_\beta = q$. To show $n = \{n_{fg}\}$ is a natural transformation, given $(\sigma, \delta, \zeta) : (f, g) \rightarrow (f', g')$ in $\hat{\mathcal{C}}$, by (vii) of 1,

$H^d(\sigma, \delta, \zeta)q = q'K(\delta, \zeta)$, and by (ix) of 1, $\bar{H}^d(\sigma, \delta, \zeta)c_\beta = c_{\beta'}K(\delta, \zeta)$. So:

$$H^d(\sigma, \delta, \zeta)n_{fg}c_\beta = H^d(\sigma, \delta, \zeta)q = q'K(\delta, \zeta) = n_{f'g'}c_{\beta'}k(\delta, \zeta) = n_{f'g'}\bar{H}^d(\sigma, \delta, \zeta)c_\beta$$

Since c_β is epic, the following diagram commutes.

$$\begin{array}{ccc} \bar{H}_{fg}^d & \xrightarrow{n_{fg}} & H_{fg}^d \\ \bar{H}^d(\sigma, \delta, \zeta) \downarrow & & \downarrow H^d(\sigma, \delta, \zeta) \\ \bar{H}_{f'g'}^d & \xrightarrow{n_{f'g'}} & H_{f'g'}^d \end{array}$$

and so $n : \bar{H}^d \rightarrow H^d : \hat{\mathcal{C}} \rightarrow \mathcal{C}$ is a natural transformation. \square

Corollary 3.1. *For $d = rpr_1 + spr_2$, with $r, s \in \mathbb{Z}$, there is a natural transformation $n : \bar{H}^d \rightarrow H^d$.*

Proof. Let $(f, g) \in \hat{\mathcal{C}}$. Since $d_g \langle s, -r \rangle = 0$, there is a unique morphism $\eta : K_g \rightarrow R_{fg}$ such that the following triangles commute.

$$\begin{array}{ccccc}
 K_g & \xrightarrow{\quad \eta \quad} & R_{fg} & \xrightarrow{d_g^*} & I_f \\
 \swarrow \langle s, -r \rangle & & \downarrow j^* & \text{pb} & \downarrow j \\
 & & K_g^2 & \xrightarrow{d_g} & K_g
 \end{array}$$

We have $q(r+s) = q\delta \langle s, -r \rangle = q\delta j^* \eta = 0\eta = 0$. But $d_g \Delta_g = r+s = m_{r+s} e_{r+s}$ and so $qm_{r+s} e_{r+s} = 0$. Since e_{r+s} is epic, $qm_{r+s} = 0$. But $m_{r+s} = m_{d_g \Delta_g} = \beta h$, hence $q\beta h = 0$. We know $q\beta i = qj = 0$ too. It follows that $q\beta = 0$. The result then follows from Lemma 3.3 and Theorem 3.2 \square

Let $d = rpr_1 + spr_2$ and $(f, g) \in \hat{\mathcal{C}}$. With d^* the pullback of d along j , we have:

$c_\beta d_g j^* = c_\beta j d_g^* = c_\beta \beta i d^* = 0 i d^* = 0$ and so $c_\beta rpr_1 j^* + c_\beta spr_2 j^* = 0$. On the other hand, $c_\beta(r+s) = c_\beta m_{r+s} e_{r+s} = c_\beta \beta h e_{r+s} = 0 h e_{r+s} = 0$ and so $c_\beta rpr_1 j^* + c_\beta spr_2 j^* = 0$. It follows that $c_\beta s \delta j^* = 0$. Since the square

$$\begin{array}{ccc}
 K_g & \xrightarrow{s} & K_g \\
 c_\beta \downarrow & & \downarrow c_\beta \\
 \bar{H}_{fg}^d & \xrightarrow{s} & \bar{H}_{fg}^d
 \end{array}$$

commutes, $s c_\beta \delta j^* = 0$. \square

Corollary 3.2. *Let $d = rpr_1 + spr_2$. If for all A , $s : A \rightarrow A$ is monic, then $n : \bar{H}^d \rightarrow H^d$ is an isomorphism.*

Proof. Let $(f, g) \in \hat{\mathcal{C}}$. Since s is monic, $c_\beta \delta j^* = 0$. Since q is a cokernel, there exists a unique map $n' : H^d \rightarrow \bar{H}^d$ such that $n'q = c_\beta$. It then follows that $n'n = 1$ and $nn' = 1$. Hence $n_{fg} : \bar{H}_{fg}^d \cong H_{fg}^d$ is an isomorphism. \square

Remark 3.1. *For $\mathcal{C} = R\text{-mod}$ Corollaries 3.1 and 3.2 can be generalized to the case $r, s \in R$. Also if for all R -module A , $s : A \rightarrow A$ by $s(a) = sa$ is monic, then $\bar{H}^d \cong H^d$.*

Example 3.1. *Let \mathcal{C} be the category of R -modules and $(f, g) \in \hat{\mathcal{C}}$. For $d = rpr_1 + pr_2$ or $d = pr_1 + rpr_2$ with $r \in R$ we have:*

$$H_{fg}^d = \bar{H}_{fg}^d = \frac{K_g}{(1+r)K_g + I_f}$$

4. Extended homologies with respect to Two Kernel Transformations

In this section we let \mathcal{C} be a pointed with pullbacks and pushouts and we investigate the relation between extended homologies with respect to two kernel transformations.

Theorem 4.1. *Let d and d' be two kernel transformations. If for $(f, g) \in \hat{\mathcal{C}}$, $m_{d_g \Delta_g}$ factors through $m_{d'_g \Delta_g}$, then there is a unique morphism $p_{fg} : \bar{H}_{fg}^d \rightarrow \bar{H}_{fg}^{d'}$ such that $p_{fg} c_{\beta_d} = c_{\beta_{d'}}$. In addition p_{fg} is regular epic.*

Proof. By hypothesis, there is $l : I_{d_g \Delta_g} \rightarrow I_{d'_g \Delta_g}$ such that $m'l = m$, where $m = m_{d_g \Delta_g}$ and $m' = m_{d'_g \Delta_g}$. So we have the following pullbacks:

$$\begin{array}{ccccc}
 & & \alpha & & \\
 & & \swarrow \text{///} & \searrow & \\
 P_{jm} & \xrightarrow{\mu} & P_{jm'} & \xrightarrow{\alpha'} & I_f \\
 \gamma \downarrow & & \gamma' \downarrow & & j \downarrow \\
 I_{d_g \Delta_g} & \xrightarrow{l} & I_{d'_g \Delta_g} & \xrightarrow{m'} & K_g \\
 & \text{///} \swarrow & & \nearrow m &
 \end{array}$$

Since in the diagram:

$$\begin{array}{ccccc}
 P_{jm} & \xrightarrow{\alpha} & I_f & & \\
 \downarrow \gamma & \searrow \mu & \downarrow & \searrow 1 & \\
 P_{jm'} & \xrightarrow{i} & I_f & \xrightarrow{\alpha'} & I_f \\
 \downarrow & & \downarrow & & \downarrow \\
 I_{d_g \Delta_g} & \xrightarrow{h} & I_f + I_{d_g \Delta_g} & \xrightarrow{i'} & I_f + I_{d_g \Delta_g} \\
 \downarrow l & & \downarrow & & \downarrow \\
 I_{d'_g \Delta_g} & \xrightarrow{h'} & I_f + I_{d'_g \Delta_g} & \xrightarrow{\nu} & I_f + I_{d'_g \Delta_g}
 \end{array}
 \quad (i)$$

the front and back squares are pushouts and the left and the top squares are commutative, there exists unique map ν such that the right and the bottom squares are commutative.

Since $\beta_d i = j = \beta_{d'} i' = \beta_{d'} \nu i$ and $\beta_d h = m = m'l = \beta_{d'} h' l = \beta_{d'} \nu h$, by pushoutness of the back square, $\beta_d = \beta_{d'} \nu$. Since $c_{\beta_{d'}} \beta_d = c_{\beta_{d'}} \beta_{d'} \nu = 0$, there is a unique map p_{fg} such that the following diagram commutes.

$$\begin{array}{ccccc}
 I_f + I_{d_g \Delta_g} & \xrightarrow{\beta_d} & K_g & \xrightarrow{c_{\beta_d}} & \bar{H}_{fg}^d \\
 \downarrow \nu & & \parallel & & \downarrow p_{fg} \\
 I_f + I_{d'_g \Delta_g} & \xrightarrow{\beta_{d'}} & K_g & \xrightarrow{c_{\beta_{d'}}} & \bar{H}_{fg}^{d'}
 \end{array}$$

By (iii) of 1 p_{fg} is regular epic. \square

We know $m : I \rightarrow \text{cod} : \hat{\mathcal{C}} \rightarrow \mathcal{C}$ is a natural transformation. \square

Theorem 4.2. *Let d and d' be two kernel transformations. If for all $g \in \hat{\mathcal{C}}$, $m_{d_g \Delta_g}$ factors through $m_{d'_g \Delta_g}$, then there is a pointwise regular epi natural transformation $p : \bar{H}^d \rightarrow \bar{H}^{d'}$.*

Proof. Let $(\sigma, \delta, \zeta) : (f, g) \rightarrow (f', g')$ be in $\hat{\mathcal{C}}$. By (ix) of 1, we have $\bar{H}^d(\sigma, \delta, \zeta)c_{\beta_d} = c_{\beta'_d}K(\delta, \zeta)$ and $\bar{H}^{d'}(\sigma, \delta, \zeta)c_{\beta_{d'}} = c_{\beta'_{d'}}K(\delta, \zeta)$. By Theorem 5.1, $p_{fg}c_{\beta_d} = c_{\beta_{d'}}$ and $p_{f'g'}c_{\beta'_{d'}} = c_{\beta'_{d'}}$. So $p_{f'g'}\bar{H}^d(\sigma, \delta, \zeta)c_{\beta_d} = \bar{H}^{d'}(\sigma, \delta, \zeta)p_{fg}c_{\beta_d}$. Since c_{β_d} is epic, the following square commutes.

$$\begin{array}{ccc} \bar{H}_{fg}^d & \xrightarrow{p_{fg}} & \bar{H}_{fg}^{d'} \\ \bar{H}^d(\sigma, \delta, \zeta) \downarrow & & \downarrow \bar{H}^{d'}(\sigma, \delta, \zeta) \\ \bar{H}_{f'g'}^{d'} & \xrightarrow{p_{f'g'}} & \bar{H}_{f'g'}^{d'} \end{array}$$

\square

Corollary 4.1. *Let d and d' be two kernel transformations. If for all $g \in \hat{\mathcal{C}}$, $m_{d_g \Delta_g}$ factors through $m_{d'_g \Delta_g}$ by $l : I_{d_g \Delta_g} \rightarrow I_{d'_g \Delta_g}$ and l is epic, then $p : \bar{H}^d \rightarrow \bar{H}^{d'}$ is a natural isomorphism.*

Proof. Let $(f, g) \in \hat{\mathcal{C}}$. Since l is epic and the front square in the diagram (i) of Theorem 5.1 is a pushout, the morphism ν obtained in that diagram is epic. It follows that $c_{\beta_{d'}} = \text{coker}(\beta_{d'}) = \text{coker}(\beta_{d'}\nu) = \text{coker}(\beta_d) = c_{\beta_d}$ and so $p_{fg} : \bar{H}_{fg}^d \cong \bar{H}_{fg}^{d'}$ is an isomorphism. \square

Example 4.1. *Let \mathcal{C} be an abelian category, $d = rpr_1 + spr_2$ and $d' = r'pr_1 + s'pr_2$ such that $r + s = r' + s'$. Then $\bar{H}^d \cong \bar{H}^{d'}$.*

Proof. Since $d\Delta = r + s = r' + s' = d'\Delta$, the result follows. \square

5. Homologies with respect to Two Kernel Transformations

In this section we let \mathcal{C} be a pointed regular category with coequalizers and we investigate the relation between homologies with respect to two kernel transformations.

Recall [2] for each morphism $f : A \rightarrow B$ in the category \mathcal{C} , there is a functor $f^{-1} : \text{Sub}(B) \rightarrow \text{Sub}(A)$ in which $f^{-1}(m) : f^{-1}(M) \rightarrow A$ for a subobject $m : M \rightarrow B$, is the pullback of m along f . Since $\mathbf{K} : \hat{\mathcal{C}} \rightarrow \mathcal{C}$ is a functor, we can rewrite the natural transformation $d : S \circ K \rightarrow K : \hat{\mathcal{C}} \rightarrow \mathcal{C}$ to $d : S \circ \mathbf{K} \rightarrow \mathbf{K} : \hat{\mathcal{C}} \rightarrow \mathcal{C}$. We know $d^{-1}(j_{fg}) = j_{fg}^* : d^{-1}(I_f) = R_{fg} \rightarrow K_g^2$ for $(f, g) \in \hat{\mathcal{C}}$. Then the following diagram is

a pullback in the category $Funct(\hat{\mathcal{C}}, \mathcal{C})$ of functors from $\hat{\mathcal{C}}$ to \mathcal{C} .

$$\begin{array}{ccc} d^{-1}(\mathbf{I}) & \xrightarrow{d^*} & \mathbf{I} \\ d^{-1}(j) \downarrow & & \downarrow j \\ S \circ \mathbf{K} & \xrightarrow{d} & \mathbf{K} \end{array}$$

Theorem 5.1. *Let d and d' be two kernel transformations and $(f, g) \in \hat{\mathcal{C}}$. If $j^* \leq j'^*$ i.e. $d^{-1}(j_{fg}) = j^*$ factors through $d'^{-1}(j_{fg}) = j'^*$, then there is a unique map $p_{fg} : H_{fg}^d \rightarrow H_{fg}^{d'}$ such that $p_{fg} \circ q = q'$. In addition p_{fg} is regular epic.*

Proof. By assumption there is a map ϕ such that $j'^* \circ \phi = j^*$. Then $j'_1 \circ \phi = j_1$ and $j'_2 \circ \phi = j_2$. Therefore there is a unique map $p_{fg} : H_{fg}^d \rightarrow H_{fg}^{d'}$ such that the following diagram commutes.

$$\begin{array}{ccccc} R_{fg} & \xrightarrow{j_1} & K_g & \xrightarrow{q} & H_{fg}^d \\ \phi \downarrow & \xrightarrow{j_2} & \parallel & & \downarrow p_{fg} \\ R'_{fg} & \xrightarrow{j'_1} & K_g & \xrightarrow{q'} & H_{fg}^{d'} \\ & \xrightarrow{j'_2} & & & \end{array}$$

□

Theorem 5.2. *Let d and d' be two kernel transformations. If $d^{-1}(j) \leq d'^{-1}(j)$, then there is a pointwise regular epi natural transformation $p : H^d \rightarrow H^{d'}$.*

Proof. Let $(\sigma, \delta, \zeta) : (f, g) \rightarrow (f', g')$ be in $\hat{\mathcal{C}}$. By (vii) of 1, we have $H^d(\sigma, \delta, \zeta)q_{fg} = q_{f'g'}K(\delta, \zeta)$ and $H^{d'}(\sigma, \delta, \zeta)q'_{fg} = q'_{f'g'}K(\delta, \zeta)$. By the above theorem, $p_{fg}q_{fg} = q'_{fg}$ and $p_{f'g'}q_{f'g'} = q'_{f'g'}$. So $H^{d'}(\sigma, \delta, \zeta)p_{fg}q_{fg} = p_{f'g'}H^d(\sigma, \delta, \zeta)q_{fg}$. Since q_{fg} is epic, the following square commutes.

$$\begin{array}{ccc} H_{fg}^d & \xrightarrow{p_{fg}} & H_{fg}^{d'} \\ H^d(\sigma, \delta, \zeta) \downarrow & & \downarrow H^{d'}(\sigma, \delta, \zeta) \\ H_{f'g'}^d & \xrightarrow{p_{f'g'}} & H_{f'g'}^{d'} \end{array}$$

□

Corollary 5.1. *Let d and d' be two kernel transformations. If $d^{-1} \leq d'^{-1}$, then there is a pointwise regular epi natural transformation $p : H^d \rightarrow H^{d'}$.*

Corollary 5.2. *Let \mathcal{C} be an abelian category and let k be an integer. If $d' = kd$, then there is a natural transformation $p : H^d \rightarrow H^{d'}$.*

Proof. Since for (f, g) in $\hat{\mathcal{C}}$, $kj_{fg} = j_{fg}k$, there is a unique ϕ such that the following diagram commutes.

$$\begin{array}{ccccc}
& & d_g^* & & \\
& R_{fg} & \xrightarrow{d_g^*} & I_f & \\
& \downarrow j_{fg}^* & \searrow \phi & \downarrow k & \\
& R'_{fg} & \xrightarrow{d'^*_g} & I_f & \\
& \downarrow & \downarrow j'_{fg}^* & \downarrow j_{fg} & \\
K_g^2 & \xrightarrow{d_g} & K_g & \xrightarrow{k} & K_g \\
\downarrow & \searrow & \downarrow & \searrow & \\
K_g^2 & \xrightarrow{d'_g} & K_g & &
\end{array}$$

So $j_{fg}^* \leq j'^*_{fg}$ and hence there is a unique map $p_{fg} : H_{fg}^d \rightarrow H_{fg}^{d'}$ which is regular epic. \square

Corollary 5.3. *Let $\mathcal{C} = R\text{-mod}$ and $k \in R$. If $d' = kd$, then there is a natural transformation $p : H^d \rightarrow H^{d'}$.*

6. Conclusions

The d -homology and the extended d -homology functors are introduced and studied in [5, 6, 4] and [7]. In order to further study and investigate the properties of these homology functors, here we have done a comparison of the standard homology, the d -homology and the extended d -homology functors.

REFERENCES

- [1] J. Adamek, H. Herrlich, G. E. Strecker, *Abstract and Concrete Categories*, Wiley, New York, 1990.
- [2] F. Borceux, D. Bourn, *MalCev, Protomodular, Homological and Semi-Abelian Categories*, Kluwer Academic Publishers, 2004.
- [3] P. Freyd, *Abelian Categories*, Harper and Row, 1964.
- [4] S.N. Hosseini, M.Z. Kazemi-Baneh, *Extended d-Homology*, Italian Journal of Pure and Applied Mathematics, N0. 38 (2017), pp 697-706.
- [5] S.N. Hosseini, M.Z. Kazemi Baneh, *Homology with respect to a Kernel Transformation*, Turk J of Math, 35 (2011)169-186.
- [6] M.Z. Kazemi-Baneh, *Homotopic Chain Maps Have Equal s-Homology and d-Homology*, International Journal of Mathematics and Mathematical Sciences, Volume 2016, 2016.
- [7] M.Z. Kazemi Baneh, S.N. Hosseini, *Exact Sequences of Extended d-Homology*, Algebraic Structures and Their Applications, Vol. 3 No. 1 (2017), pp 25-38. .
- [8] S. MacLane, *Categories for the Working Mathematician*, 2nd edition, Springer-Verlag, 1998.
- [9] M.S. Osborne, *Basic Homological Algebra*, Springer-Verlag, 2000.