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VEHICLE STABILITY STUDY ON CURVED TRAJECTORY 

 
Oana-Carmen NICULESCU-FAIDA1, Sergiu-Stelian ILIESCU2, Ioana 

FAGARASAN3, Adrian NICULESCU-FAIDA4 

Situaţia deplasării în curbă constituie un subiect de studiu intens din cauza 
riscului mai ridicat pe care acest tip de mişcare îl prezintă. Mişcarea în curbă este 
determinată strict de interacţiunea dintre calea de rulare şi pneurile autovehicului, 
mai exact de forţele care iau naştere în momentul în care conducătorul auto roteşte 
volanul. În această lucrare se prezintă un model matematic pe baza căruia se 
studiază influenţa diferiţilor parametrii (unghi bracare, viteză) asupra stabilităţii 
autovehiculului în curbă. Din studiu, reiese faptul că, la viteze mai mari de 80 km/h,  
unghiuri de bracare relativ mici pot destabiliza autovehiculul. 

A subject of comprehensive experimental study is the movement on a curved 
path, due to the higher danger in such a motion. Moving on a curved trajectory is 
strictly determined by the interaction between the rolling surface and the tyres of the 
vehicle. More precisely, by the forces occurring exactly the moment  the driver turns 
the steering wheel. This thesis attempts to show a mathematical model as the  basis 
for the study of the influence of the different input values (velocity, friction) on the 
stability of the vehicle. The study reveals the fact that at more than 80 km/h 
relatively small brackage angles can destabilize the vehicle. 

Keywords: stability, control, speed, brackage angle 

1. Introduction 

While moving in a curve, forces appear at the contact surfaces between 
each wheel and the road, and they maintain the vehicle on the track. Under these 
forces, the tyres are deformed and the velocity on each wheel is deviated from the 
wheel plane under a certain angle, depending on the lateral rigidity of the tyre and 
force magnitude. 

To consider the longitudinal forces with two degrees of freedom allows a 
precise description of the vehicle movement in the rolling plane, X-Y. A model 
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with three degrees of freedom can be described using the simplified representation 
for two wheels as well as for four wheels. 

The movement on a curved trajectory has been treated in numerous papers 
of the domain, among which [5] where a three freedom degrees model is 
considered, subjected to the wheel forces given by the “magic formula” of H.B. 
Pacejka, [8] from the same conference where a two freedom degrees model is 
studied and the tire model proposed by Dugoff modified by the authors. In the 
article [4] where a three freedom degrees model is presented on a self made tire 
model . In [7] the authors have studied the wheel dynamics on a curved path and 
in straight line and the result obtained is very usefull to establish the sideslip 
angles.  

The vehicle stability is studied in [6] using coefficients to correct the 
forces that act upon each wheel. 

In [2] a common bicycle model is made equivalent to a model in which 
instead of the four forces on each wheel there are considered two forces with a 
sliding point of application along the symmetry axes of the vehicle. 

Among the many articles it is worth mentioned [1] in which the authors 
define a way to control the sideslip of the vehicle starting from a two freedom 
degree model .This method is used together with the control of the spinning 
speed. 

Last but not least, article[3] presents a study of the vehicle stability using a 
nonlinear model with a pear of forces on each wheel but the same slip angle for 
the front and for the back wheels. 

The study model of an  autovehicle is made from a rectangular shape body 
wich imagines the autochasis with everything on it and four wheels. This model 
has four freedom degrees which means that allows four types of independent 
movements: two translatory movements along the longitudinal and transversal 
axes and two rotations around the vertical and longitudinal axes respectively.  

There are studied models at which the rotation around the longitudinal axe 
is neglected thus the model will contain only two wheels, one on the front and one 
on the rear, they being subjected to the resultant front and rear forces respectively. 
In this case, the vehicle body becomes a thin line which connects the two wheels. 
 This paper debates the movement on curved trajectory using a three degree 
of freedom autovehicle with two wheels, where the rotation around the vertical 
axe is taken into consideration, being an essential movement for the stability 
study. The three degree of freedom and four wheels vehicle models come closer to 
the reality but, in order to achieve the goal of the study, the more complicated 
mathematical calculations don’t justify the use of such a model confunted with 
precision gain. 
 The purpose of the paper is to identify the critical situations in wich the 
vehicle might find its self during the studied motion. 
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2. The mathematical model 

As in Fig.1 presented, in the three freedom degrees model the longitudinal 
forces were included on the front axis, Fxf respectively, Fxs, corresponding to the 
wheel forces Fx1 and Fx2, Fx3 and Fx4. The direction of the longitudinal forces 
corresponds to a traction moment, while by breaking the direction changes by 
180°. 

The case to be studied of acceleration curved motion when the power 
bridge is in front. 

 

Fig.1 The model of the vehicle with three freedom degrees used for the study of the longitudinal, 
tranverse and gyratory dynamics 

In the Fig.1 the following elements appear : 
C.G. – gravity center; 
E – gauge (the distance between the wheels of the axis); 

fl  – distance between C.G. and the front axis; 

sl  – distance between C.G. and the rear axis; 
m – mass of the vehicle; 
ψ  - angular rotation velocity; 
β  – deviation angle of the vehicle; 
δ  – the turning angle of the front wheels; 

xiF  şi yiF  are friction forces between tyres and the road; 

xiF  – longitudinal forces (forces in the wheel plane); 

yiF  – lateral forces oriented towards the curve center (perpendicular forces on the 
wheel). 
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V  - tangent acceleration; 
2

cp
Va
ρ

=  - center-oriented acceleration. 

Similar to the two freedom degree model, a linear model can be introduced 
also in the longitudinal dynamics, in the case of small direction and sliding angles, 
such that the sinus and the tangent can be approximated with the value of the 
angle in radian, and the lateral forces can be considered proportional to the sliding 
angle. If different nonlinear models of the tyre are used for the lateral and 
longitudinal forces, then the three freedom degree model is also a nonlinear one. 

To obtain the equations of the three freedom degree model the relations of 
forces and momentum dynamic equilibrium are used, on the x, y and z directions.  

The longitudinal and lateral accelerations are also used.  
Decomposition of the forces on the x axis: 

2

1 5 2 6 3 4* *cos * *sin x x x x x x xl
Vm V m F F F F F F Fβ β
ρ

− = + − − + + −                     (1) 

where: 1xF  – resistive force of the air on the x axis; 
*cosV β  - the tangent acceleration on the x axis; 
2

*sinV β
ρ

 - the center-oriented acceleration on the x axis. 

Assume 1xF  negligible because it is very small compared to the other 
forces. 

( ) ( ) ( )
2

1 5 2 6 3 4* *cos * *sin *cos *sin x x
Vm V m F F F F F Fβ β δ δ
ρ

− = + − + + +    (2) 

Decomposition of the forces on the y axis: 
2

1 5 2 6 3 4* *sin * *cos y y y y y y yl
Vm V m F F F F F F Fβ β
ρ

+ = + + + + + −                    (3) 

where: ylF  – resistive force of the air on the y axis; 

            *sinV β  - the tangent acceleration on the x axis; 

 
2

*cosV β
ρ

 - the centripet acceleration on the y axis.   

Assume ylF  negligible because it is very small compared to the other 
forces. 

( ) ( ) ( )
2

1 5 2 6 3 4* *sin * *cos *sin *cos y y
Vm V m F F F F F Fβ β β δ
ρ

+ = + + + + +   (4) 
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The equations of the moment against the z axis passing through the mass 
center of the vehicle: 

1 5 1 5 2 6 2

6 3 4 3 4

* * * * * * * *
2 2 2 2

* * * * * *
2 2

z x x f y f y x x f y

f y x x s y s y CG yl

E E E EJ F F l F l F F F l F

E El F F F l F l F l F

ψ = − + + − + +

+ + − − − −
             (5) 

 
or: 
 

( ) ( ) ( )

( ) ( ) ( )

1 5 1 5 2 6

2 6 3 4 3 4

* * *cos * *sin * *sin
2 2

* *cos * *
2

z f

f x x s y y

E EJ F F l F F F F

El F F F F l F F

ψ δ δ δ

δ

= − + + − −

+ + + − − +
             (6) 

where: ψ - angular acceleration; 
            Jz – the rotational inertia. 

 

Fig.2 The simplified model of the vehicle with three freedom degrees 

where: C.I.R. – Instantaneous Centre of Rotation;  
            fα  - the front sliding angle; 
            sα   the rear sliding angle; 
            fβ  – the deviation angle of the wheel; 
          1fF  – the sum of the front longitudinal forces; 
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           2fF  – the sum of the front lateral forces; 
           xsF  – the sum of the rear longitudinal forces; 
           ysF  – the sum of the rear lateral forces; 
           fV  – the front velocity of the wheel;  
           sV  – the rear velocity of the wheel.  

 
The resulting forces on the two directions, longitudinal and transversal, for 

the front and rear half respectively, reside from the following equations: 

1 5 1fF F F+ = ,          (7)          3 4x x xsF F F+ = ,    (9) 

2 6 2fF F F+ = ,         (8)          3 4y y ysF F F+ =     (10) 
The differences are negligible compared with the sums. 
Replacing the relations (7), (8), (9) in the relation (2) we obtain: 

2

1 2* *cos * *sin *cos *sinf f xs
Vm V m F F Fβ β δ δ
ρ

− = − +                                (11) 

Replacing the relations (7), (8), (10) in the relation (4) we obtain: 
2

1 2* *sin * *cos *sin *cosf f ys
Vm V m F F Fβ β δ δ
ρ

+ = + +                                (12) 

Replacing the relations (7), (9), (10) in the relation (6) we obtain: 
1 2* * *sin * *cos *z f f f f s ysJ l F l F l Fψ δ δ= + −                                                  (13) 

The perpendicular forces on the wheel are expressed in the following, 
according to the HRSI model: 

2

1 1 1* * *
1 4*

F c tg
H Hα α

λ
⎛ ⎞= −⎜ ⎟− ⎝ ⎠

 

where: 

λ  – the sliding of the wheel which can be expressed as: * *1V r r
V V
ω ωλ −

= = −  

where: 
V – velocity of the vehicle; 
ω – angular velocity of the wheel; 
r – the rolling radius of the wheel. 
cα – the transverse elasticity coefficient of the tyre (experimentally determined) ; 
α – the sliding angle of the wheel; 

2 2
1* * *

1 * 1 *r r

c cH tg
G G
λ αλ α

λ μ λ μ
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

where: 
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cλ – the longitudinal elasticity coefficient of the tyre (experimentally determined) ; 
μ – the friction coefficient between the tyre and the rolling path; 
Gr – the vertical charge of the wheel. 

The sliding angle of the wheel it is considered to be very 

small⇒ 2

1 1 1* * *
1 4*

tg F c
H Hαα α α

λ
⎛ ⎞⇒ = −⎜ ⎟− ⎝ ⎠

 

We denote 2

1 1 1* *
1 4*

c c
H Hα αλ

⎛ ⎞′ −⎜ ⎟− ⎝ ⎠
where ' *F cα α                 (14) 

2

2* *cos * *sin *sinf
Vm V m Fβ β δ
ρ

− = −                                                        (15) 

2

2* *sin * *cos *cosf ys
Vm V m F Fβ β δ
ρ

+ = +                                                  (16) 

2* * *cos *z f f s ysJ l F l Fψ δ= −                                                                          (17) 
In the case of circular motion *V rω=                                                  (18)  

where: 
V – tangent velocity; 
ω – angular velocity; 
r – the radius of the trajectory. 

Transforming the relation (18) for the studied case one can write: 
( )*V β ψ ρ= +                                                                                                    (19) 

By multiplying the relation (19), both left and right sides with V, we 
obtain 

( )* * *V V V β ψ ρ= +                                                                                         (20) 

( )* *VV V β ψ
ρ
= +                                                                                              (21) 

By replacing the relations (14) and (21) in the relation (16) and 
considering the turning angle small ( sinδ δ=  and cos 1δ = ) we obtain: 

( )* *sin * * *cos 2* * 2* *s f s sm V m V c cα αβ β ψ β α α′ ′+ + = +                        (22)                                   
Introducing the relation (14) into (17) relaţia (14) we will have: 

* 2* * * 2* * *z f f f s s sJ c l c lα αψ α α′ ′= −                                                             (23)  
where: 

.
*f

f

l
V
ψ

α δ β= − −                                         (24) 
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.
*s

s
l

V
ψα β= −                                     (25) 

The mathematical model of the motion of a vehicle on the curved 
trajectory is represented by the equations (22) and (23). Using these relations the 
stability of the vehicle in the curve can be studied. 

The present model considers as negligible any influence of the wind, that 
the turning angle of the front wheels is small (around 15°) and that the vehicle can 
be compared with a simplified model called the bycicle model, i.e. the moment of 
the forces parallel to the symmetry axis of the vehicle are neglected. 

Based on the mathematical model the representation of the system can be 
rewritten: 

* * * *
g h m

y C x d u i j n
y k l p

β
β

ψ δ
ψ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⇒ = +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                              (26) 

Identifying the coefficients and taking into consideration the relations (24) 
and (25) and the relation: 

*( )*cosy V β ψ β= +                                                           (27) 
The matrices C and d can be written as: 

. ' '' '

1 0
0 1

2* * *2* 2* *
*

s S f ff s

C

c l c lc c m V
m m V

α αα α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎡ ⎤−+ + ⎣ ⎦⎢ ⎥−⎢ ⎥⎣ ⎦

, 
'

0
0

2* f

d
c

m
α

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

In order to determine the stability of the vehicle in curves, the two 
parameters characterizing the movement of the vehicle in this situation are β  and 
ψ , expressed in: 

1 1

1 1

1 1 1 1

1 1 1 1

* *

* * * * **
* * * * * *

a b e
c d f

a b a b ee
c d f c d f

ββ
δ

ψψ

β ψ β ψ δδ
β ψ δ β ψ δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
+ + +⎡ ⎤ ⎡ ⎤⎡ ⎤

+ =⎢ ⎥ ⎢ ⎥⎢ ⎥+ + +⎣ ⎦⎣ ⎦ ⎣ ⎦

                                            (28)                                  

From the model equations and the relations (24) and (25) the following 
expressions can be written: 

' ' ' 2 ' 2 '2* c * c * 2* * * ) 2* *
* * *

*
s S f f f f s S f f

z z z

l l c l c l c l
J V J J

α α α α αψ β ψ δ
⎡ ⎤ ⎡ ⎤− − +⎣ ⎦ ⎣ ⎦= + +      (29) 
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' ' 2' ' '

2

2* * * ) *2* 2* * 2*
* * *

* * *
s S f ff s fc l c l m Vc c m V c

m V m V m V
α αα α αβ β ψ δ

⎡ ⎤− −− − − ⎣ ⎦= + +                                  (30) 

Identifying the coefficients the values can be computed 
1a , 1b , 1c , 1d , e and f .  

The coeficients k, l, p can be determined from the dynamic ecuations of 
the model: 

' '2* 2* *f sc c m V
k

m
α α+ +

= − ;                                                                             (34) 

' '2* * * )
*

s S f fc l c l
l

m V
α α⎡ ⎤−⎣ ⎦= ;                                                                             (35) 
'2* fc

p
m

α= .                                                                                                         (36) 

 In this paper is studied the case of movement on a curve with constant 
speed that implies  0V = . 

Knowing C and d matrices with the help of relation 

( ) 1( ) * * *H s C s I A b d−= − + , where 
e

b
f

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and  1 1

1 1

a b
A

c d
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 the transfer 

functions for each of the three items β , ψ  şi y  can be written: 

( )1 1 1
1 1 1 1

( ) 1( ) * * *
( ) ( )*( ) *
sH s e s d b f
s s a s d c b

β
δ

⎡ ⎤= = − +⎣ ⎦− − −
                         (37) 

( )2 1 1
1 1 1 1

( ) 1( ) * * *
( ) ( )*( ) *
sH s c e s a f
s s a s d c b

ψ
δ

⎡ ⎤= = + −⎣ ⎦− − −
                         (38) 

( ) ( ){ }
3

1 1 1 1

1 1 1 1

( ) 1( ) *
( ) ( )*( ) *

* * * * * *

y sH s
s s a s d c b

e k s d l c f k b l s a p

δ
= =

− − −

⎡ ⎤ ⎡ ⎤− + + + − +⎣ ⎦ ⎣ ⎦

                                       (39) 

 In the Fig. bellow the model of movement on curved trajectory is 
presented. 
 

H1(s)

H2(s)

H3(s)

β(s) vehicle deviation
       angle

y(s)transversal acceleration··

ψ(s) angular rotation
            speed
·

δ(s) wheel brackage
         angle

 
Fig. 3 The model of movement on curved trajectory 
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Assuming that the vehicle runs on a road without moisture or mud, it can 
be considered that 0λ = . From the (14) relation resides: 

* *
* *f f

s

c lH tg
m g l
α α

μ
=                                                       (40) 

respectively,  

* *
* *s s

f

c lH tg
m g l
α α

μ
=                                                       (41) 

where: 
  g  is the gravitational acceleration. 

Relations (27) and (28) can also be written : 
f

f

l
α δ β

ρ
= − −                                                                     (42) 

s
s

lα β
ρ

= −                                                (43) 

where ρ  is vehicle trajectory radius and it is given by the following relation : 
 

( ) ( )
2

22 2 2 2 2
2

1 1

2 s

l tg E tg l tg
l

tg

δ δ δ
ρ

δ

⎛ ⎞+ + − −⎜ ⎟= +⎜ ⎟⋅⎜ ⎟
⎝ ⎠

                               (44) 

From relations (41),(42),(43),(44) and (16) resides : 

'
2

1 1*
4*f

f f

c c
H Hα α

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
                                             (45) 

and 
 

                                                          (46) 
 

Table.1 
The  calculation parameter values for Opel Omega car 

Simbol cα  lf ls m Jz 

Valoare 80000 1,3 1,45 1450 1920 
Unitate N

rad
⎡ ⎤
⎢ ⎥⎣ ⎦

 
[m] [m] [kg] [Kg*m] 

 
The coeficient values a1, b1, e, c1, d1, f ,k, l and p can be calculated based 

on (39),(40),(41),(42),(32),(33) and (34) relations numericaly replacing the 

'
2

1 1*
4*s

s s

c c
H Hα α

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
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constants given in table.1. With the aide of Maple 7 programme the H1(s), H2(s) 
and H3(s) transfer function coefficients can be calculated. 

In the table.2 the real parts of the transfer functions poles are being 
calculated for five different speed and brackage angle values. 

       Table.2.  
The real parts of the transfer functions poles for different speed and brackage angle 

values 
 

 
 
 
 

The external stability criterium says that a system (A,b,cT)  is: 
- externaly stable, if and only if the transfer functions poles 

have Re 0ip ≤  and those poles wich have the real part equal to zero 
have to be simple. 

- strictly externaly stable, if and only if the transfer functions poles 
have Re 0ip < , this condition being equivalent to: ( )H s −⊂⎡ ⎤⎣ ⎦ CP  

Accordingly to the external stability criterium enounced above it resides 
the the vehicle is stable only for the 5-50, 5-60,5-80,5-100,5-120,10-50,10-60,10-
80,15-50,15-60,20-50 pear of  values. 

Stability limit

0

5
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50 60 80 100 120

vehicle speed V(km/h)
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ge
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de
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ee
s)

stable system

 unstable 

 
Fig. 4.The vehicle stability limit on a curved trajectory 

 

50 60 80 100 120 

5 -560.92 
-20.51 

-478.72 
-20.43 

-390.97 
-18.38 

-327.17 
-17.99 

-341.94 
-18.61 

10 -1.66 
-0.01 

-2.99 
-0.01 

878.95 
-13.99 

306.69 
-15.13 

88.32 
-15.38 

15 -2.26 
-0.01 

-2.35 
-0.01 

4.25 
-0.01 

1.45 
-0.01 

1.42 
0.02 

20 -4.02 
-0.01 

2.81 
-0.01 

2.75 
-0.01 

2.87 
0.01 

2.39 
0.01 

V(km/h) 

δ(o ) 
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The curve from the picture above represents the studied vehicle stability 
limit, in other words if the vehicle has a speed and a brackage angle so that the 
coresponding point (wich has theese coordinates) is under the curve, than the 
vehicle movement on that path is stable and if the coreponding point is placed 
above the curve that the movement is unstable. If this representation is 
implemented in the on-board computer memory the computer coud allert the 
driver to reduce the speed if the vehicle aproaches his stability limit when 
cornering that way being able to avoid in  time the critical situations of vehicle 
controll loss. 

 

4. Conclusions 

The conclusion that can be drawn from this study is that for speeds wich 
exced 80 km/h, relatively small brackage angles can destabilize the vehicle in his 
movement on a curved path. Also, for brackage angles greater than 15 the vehicle 
speed has to decrease under 60 km/h in order to mentain a stable course. If theese 
prety narrow limits are exceded, the vehicle may loose the ground contact to the 
inner wheels that leading to a powerfull draw-in tendency wich will destabilise 
even more the vehicle. 
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