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ON 2-ABSORBING SUBMODULE ELEMENTS IN LE-MODULES AND

ITS GENERALIZATIONS
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In this paper, we introduce the concept of 2-absorbing submodule elements in an

le-module M as follows: a proper submodule element q in M is said to be 2-absorbing

for any r, s ∈ R and m ∈ M if rsm ≤ q, then either rs ∈ (q : e) or rm ≤ q or
sm ≤ q. Moreover, we define some generalizations of the new concept such as weakly

2-absorbing, n-absorbing, weakly n-absorbing, (n, k)-absorbing, weakly (n, k)-absorbing

submodule elements in le-modules. After presenting a main example for le-modules,
we study some counter examples for the generalizations. In addition to giving some

characterizations for the new concepts, we investigate the relationship between prime

(primary) submodule elements and them.
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1. Introduction

As a generalization of the commutative ideal theory, there are a great many publi-
cations addressing multiplicative lattices, see [2], [7], [12]. In 1970, the authors introduced
a new concept called lattice modules, see [9]. They defined a lattice module similar to a
module over a ring. A lattice module M over a multiplicative lattice L is a complete lattice
together a multiplication between elements of L and M, which satisfies similar properties of
a module over a ring, see [9]. If we desire to make it more concrete with an example, consider
L as the lattice of every ideals in a ring which M is the lattice of every submodules in any
module over the ring. In this case, M is a lattice module over L. Beside to Noetherian
lattice modules, there exist a large number of papers on lattice modules, see [1], [3], [8]-[9].
Furthermore, the concept of prime ideals, prime submodules, and prime elements have a
significant place in abstract algebra since they are used in understanding the structure of
rings, modules, lattices, and lattice modules, see [3], [6]-[8], [13]-[14].

In 2018, the authors introduced a new algebraic construction, called “le-module over a
commutative ring”, by the help of a different approach to the “abstract submodule theory”,
see [10]. In the paper, they had two main goals: First one was to make it achievable
to separate submodules from a typical subset in any module, thus they generalized the
properties of special kinds of submodules. The other one was to build a channel to study
the characteristics of rings more straight than the lattice module theory. To introduce the
concept of le-modules, the authors defined, in [5], an le-semigroup (M,+,≤, e) as a complete
lattice with the greatest element e, which is also a commutative monoid with the zero element
0M that holds the property m+ (

∨
i∈I
mi) =

∨
i∈I

(m+mi), for all m,mi ∈M, i ∈ I.
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Afterwards, they introduced the concept of le-modules as followings: Assume that (M,+,≤
, e) is an le-semigroup with 0M and R is a commutative ring. We say M is an le-module
over R if there exists a mapping R×M →M, which holds

(1) r(m1 +m2) = rm1 + rm2,
(2) (r1 + r2)m ≤ r1m+ r2m,
(3) (r1r2)m = r1(r2m),
(4) 1Rm = m and 0Rm = r0M = 0M ,
(5) For every r, r1, r2 ∈ R and m,m1,m2,mj ∈M , r(

∨
j∈4

mj) = (
∨
j∈4

rmj).

Note that from (5), we have (5)
′

: m1 ≤ m2 ⇒ rm1 ≤ rm2, for all r ∈ R and
m1,m2 ∈M .

An element n of an le-module M is said to be a submodule element if n+ n, rn ≤ n,
for all r ∈ R. We denote the set of all submodule elements of M by Sub(M). We set
(n : a) =

∨
{x ∈ M : ax ≤ n}, where a ∈ R and n ∈ Sub(M). It is easy to see that (n : a)

is in Sub(M) and also, n ≤ (n : a) and a(n : a) ≤ n. For all x ∈ M and a ∈ R, we know
x ≤ (n : a) necessary and sufficient condition ax ≤ n. For k ∈ Sub(M) and n ∈ M , the set
(k : n) = {a ∈ R : an ≤ k} is an ideal of R. For any two submodule elements of M such
that n ≤ k, we have (n : e) ⊆ (k : e). A submodule element n of M is called compact if for
a family of submodule elements {nλ}λ∈Λ if n ≤

∑
λ∈Λ

nλ implies n ≤ nλ1
+ nλ2

+ · · · + nλk

for some subset {λ1, λ2, . . . , λk} . Note that a sum of finite number of compact submodule
elements is a compact submodule element. We denote the set of all compact submodule
elements of M as M∗. Futhermore, if each n ∈ Sub(M) is a sum of compact submodule
elements in M, it is called a compactly generated le-module, or briefly CG-le-module. Also,
an le-module M is called a faithful le-module when (0M : e) = 0R. For more information,
we refer the reader to [5], [10], [11].

In Section 2, we introduce the concept of 2-absorbing and weakly 2-absorbing submod-
ule elements in an le-module M. One can easily see that the class of 2-absorbing submodule
elements is a subclass of weakly 2-absorbing submodule elements. However, we show every
weakly 2-absorbing submodule elements is not a 2-absorbing submodule element, see Exam-
ple 2.2. After proving some main properties of the new concepts, in Theorem 2.6 (resp., in
Theorem 2.7), we characterized 2-absorbing (resp., weakly 2-absorbing) submodule elements
of a CG-le-module M. In Section 3, for a positive integer n, we introduce the n-absorbing
(weakly n-absorbing) submodule elements in an le-module M and immediately conclude
the concept is a generalization of 2-absorbing (weakly 2-absorbing) submodule elements. In
Example 3.1, we show every weakly n-absorbing submodule elements is not an n-absorbing
submodule element. Also, we define the notion of ω(p), which analyzes in some sense how
far p is from being a prime submodule element for a submodule element p in M. In the
last section, for any two positive integers n and k such that k < n, we present the concept
of (n, k)-absorbing and weakly (n, k)-absorbing submodule elements in an le-module M. It
is easy to see that the class of weakly (n, k)-absorbing submodule elements contains the
class of (n, k)-absorbing submodule elements. On the other hand, the other containment
doesn’t hold, see Example 4.1. Moreover, the relation between the class of (n, k)-absorbing
(also, weakly (n, k)-absorbing) submodule elements and the other classes defined above is
invastigated, see Theorem 4.2, 4.3, 4.4. As final results, we characterize the (n, k)-absorbing
(resp., weakly (n, k)-absorbing) submodule elements in Theorem 4.5 (resp., Theorem 4.6).

2. 2 -absorbing and weakly 2 -absorbing submodule elements in le-modules

Throughout our study RM (briefly, M) represents an le-module M over R, where R
is a commutative ring with 1R.

Definition 2.1. Let p be a proper submodule element of M. Then
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(1) p is called a 2-absorbing submodule element for any a, b ∈ R and n ∈ M if
abn ≤ p, then ab ∈ (p : e) or an ≤ p or bn ≤ p.

(2) p is called a weakly 2-absorbing submodule element for any a, b ∈ R and n ∈M
if 0M 6= abn ≤ p, then ab ∈ (p : e) or an ≤ p or bn ≤ p.

Example 2.1. Let R be a ring and M = {S ⊆ R : 0 ∈ S}. Then (M,⊆) is a complete
lattice with the greatest element e = R. Now, define X + Y = {x + y : x ∈ X, y ∈ Y } and
rX = {rx : x ∈ X} for each r ∈ R; X,Y ∈M. Thus, (M,+,⊆, e) is an le-module with the
zero element 0M = {0}. Also, it is clear that N is an R-submodule of M if and only if N ∈
M is a submodule element of M. In particular, let R = Z5 and M = {S ⊆ R : 0 ∈ S} . The
complete lattice (M,⊆) with the following Hasse Diagram is an le-module according to above
addition and scalar multiplication, see Figure 1.

Figure 1. The Hasse Diagram of the Complete Lattice (Z5,⊆).

Remark 2.1. It is easiy to see that every 2-absorbing submodule element is a weakly 2-
absorbing submodule element. However, we can’t claim the converse, to see this, investigate
the following example:

Example 2.2. Let R = Z30 and M = {X ⊆ R : 0 ∈ X}. Now, consider n = {0}. Notice that
(n : e) = (0). It is a weakly 2-absorbing submodule element but not 2-absorbing submodule
element. Indeed, 2 · 3 · {0, 5} ≤ n, but 2 · 3 /∈ (n : e) and 2 · {0, 5} � n, 3 · {0, 5} � n.

Theorem 2.1. Let n be a proper submodule element of M. If n is a 2-absorbing submodule
element, (n : r) is a 2-absorbing submodule element for all r ∈ R.

Proof. Take a, b ∈ R and m ∈ M such that abm ≤ (n : r), that is, abrm ≤ n. As n
is a 2-absorbing submodule element, either ab ∈ (n : e) or arm ≤ n or brm ≤ n. Then
abe ≤ n ≤ (n : r), so ab ∈ ((n : r) : e). Consequently, ab ∈ ((n : r) : e) or am ≤ (n : r) or
bm ≤ (n : r), as needed. �



102 Emel Aslankarayigit Ugurlu

Theorem 2.2. Let n be a proper submodule element of M. If n is a 2-absorbing submodule
element, then (n : x) is a 2-absorbing ideal of R for all x ∈M.

Proof. Choose a, b, c ∈ R such that abc ∈ (n : x), i.e., abcx ≤ n. Since n is a 2-absorbing
submodule element, ab ∈ (n : e) or acx ≤ n or bcx ≤ n. Then abx ≤ abe ≤ n, so ab ∈ (n : x).
As a consequent, ab ∈ (n : x) or ac ∈ (n : x) or bc ∈ (n : x). �

Corollary 2.1. Let n be a proper submodule element of M . If n is a 2-absorbing submodule
element, then (n : e) is a 2-absorbing ideal of R.

Theorem 2.3. Let M be a faithful le-module and n be a proper submodule element of M.
If n is a weakly 2-absorbing submodule element, then (n : e) is a weakly 2-absorbing ideal of
R.

Proof. Take a, b, c ∈ R such that 0R 6= abc ∈ (n : e), that is, abce ≤ n. Now, we have two
cases: Case 1: Let 0M = abce. Then abc ∈ (0M : e) = 0R, which is a contradiction. Case
2: Let 0M 6= abce. As n is a weakly 2-absorbing submodule element, either ab ∈ (n : e) or
ace ≤ n or bce ≤ n. Consequently, ab ∈ (n : e) or ac ∈ (n : e) or bc ∈ (n : e), as required. �

Theorem 2.4. Let M be a CG-le-module and n be a proper submodule element of M. If
n is a weakly 2-absorbing submodule element such that (n : e)2n 6= 0M , n is a 2-absorbing
submodule element.

Proof. Suppose that (n : e)2n 6= 0M . Let choose r, s ∈ R and q ∈ M such that rsq ≤ n.
Then we have two cases: Case 1: Let 0M 6= rsq. Since n is a weakly 2-absorbing submodule
element, rs ∈ (n : e) or rq ≤ n or sq ≤ n. It is done. Case 2: Suppose rsq = 0M . By our
hypothesis (n : e)2n 6= 0M , there are a, b ∈ (n : e) and a compact submodule element h ∈M
such that h ≤ n and 0M 6= abh ≤ (n : e)2n. Then

0M 6= abh ≤ (r + a)(s+ b)(q + h) = (rs+ rb+ as+ ab)(q + h)

= (rs+ rb+ as+ ab)q + (rs+ rb+ as+ ab)h

≤ rsq + rbq + asq + abq + rsh+ rbh+ ash+ abh ≤ n+ n+ ...+ n = n

Thus, since n is a weakly 2-absorbing submodule element, (r + a)(s + b) ∈ (n : e) or
(r+ a)(q+ h) ≤ n or (s+ b)(q+ h) ≤ n. Since a, b ∈ (n : e), we have that either rs ∈ (n : e)
or rq ≤ n or sq ≤ n. �

Definition 2.2. A proper element n of M is called a nilpotent submodule element of M if
(n : e)kn = 0M for some positive integer k.

Corollary 2.2. Let M be a CG-le-module and n be a proper submodule element of M. If
n is a weakly 2-absorbing submodule element which not 2-absorbing, then n is a nilpotent
submodule element.

Proof. By Theorem 2.4, it must be (n : e)2n = 0M , thus it is done. �

Corollary 2.3. Let M be a CG-le-module and n be a proper submodule element of M. If n
is a weakly 2-absorbing submodule element but not 2-absorbing, then (n : e)kn = 0M , for all
k ≥ 2.

Proof. By Theorem 2.4, (n : e)2n = 0M . Also, we know (n : e)3 ⊆ (n : e)2. Then one
can easily see that (n : e)3n ≤ (n : e)2n = 0M , that is, (n : e)3n = 0M . By iteration,
(n : e)kn = 0M , for all k ≥ 2. �

Theorem 2.5. Suppose that M is a CG-le-module and {ni}i∈4 is a (ascending or descend-
ing) chain of submodule elements of M . Then
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(1) For every i ∈ 4, if ni is a 2-absorbing submodule element of M, then
∧
i∈4

ni is a

2-absorbing submodule element of M.
(2) For every i ∈ 4, if ni is a weakly 2-absorbing submodule element of M, then

∧
i∈4

ni is

a weakly 2-absorbing submodule element of M.

Proof. (1): If {ni}i∈4 is a ascending chain,
∧
i∈4

ni = n1, so it is done. Suppose that ... ≤

ni ≤ ... ≤ n2 ≤ n1 is an descending chain of 2-absorbing submodule elements of M. Now,
it is clear that

∧
i∈4

ni is proper since
∧
i∈4

ni 6= e. Take r, s ∈ R and n ∈ M , rsn ≤
∧
i∈4

ni.

Suppose rn �
∧
i∈4

ni and sn �
∧
i∈4

ni. Then there exist nk and nm such that rn � nk and

sn � nm. Without losing the generality, assume that nk ≤ nm. Then we have sn � nk.
Since nk is a 2-absorbing submodule element and rsn ≤ nk, we get rs ∈ (nk : e). Also, note
that for each ni ≤ nk, we have rn, sn � ni, which implies that rs ∈ (ni : e). Since for each
nk ≤ ni, we have (nk : e) ⊆ (ni : e), so rs ∈ (ni : e). Thus rs ∈

⋂
i∈4

(ni : e). By Proposition

2.2 in [5], we have
⋂
i∈4

(ni : e) = (
∧
i∈4

ni : e). Consequently,
∧
i∈4

ni is a 2-absorbing submodule

element of M.
(2): Similar to previous proof. �

Now, we give a characterization for the concept of 2-absorbing submodule elements
of M.

Theorem 2.6. Suppose that M is a CG-le-module and p is a proper submodule element in
M . The next items are equivalent:

(1) p is a 2-absorbing submodule element in M .
(2) For any a, b ∈ R and n ∈ M such that p ≤ n, if abn ≤ p, ab ∈ (p : e) or an ≤ p or

bn ≤ p.
(3) For any a, b ∈ R with ab /∈ (p : e), (p : a) = (p : ab) or (p : ab) = (p : b).
(4) For any a, b ∈ R, h ∈M∗, if abh ≤ p, ab ∈ (p : e) or ah ≤ p or bh ≤ p.

Proof. (1)⇒ (2) : It is clear. (2)⇒ (3) : Suppose that a, b ∈ R such that ab /∈ (p : e). Take
a submodule element k ∈ M such that k ≤ (p : ab). Then abk ≤ p. Consider u = k + p. It
is clear that ab(k + p) = abk + abp ≤ p. Thus, we have p ≤ u, abu ≤ p and ab /∈ (p : e). By
our hypothesis (2), we conclude au ≤ p or bu ≤ p. This means that ak ≤ p or bk ≤ p, that
is, k ≤ (p : a) or k ≤ (p : b). Then we say (p : ab) ≤ (p : a) or (p : ab) ≤ (p : b), since M is
a CG-le-module. On the other hand, it is clear that (p : a) ≤ (p : ab) and (p : b) ≤ (p : ab).
Consequently, (p : ab) = (p : a) or (p : ab) = (p : b).

(3) ⇒ (4) : Let a, b ∈ R, h ∈ M∗ such that abh ≤ p, that is, h ≤ (p : ab). Assume
that ab /∈ (p : e). By item (3), we get (p : ab) = (p : a) or (p : ab) = (p : b). This implies that
h ≤ (p : a) or h ≤ (p : b). Hence ah ≤ p or bh ≤ p, as desired.

(4) ⇒ (1) : Choose a, b ∈ R and n ∈ M , abn ≤ p but an � p and bn � p. Since M
is a CG-le-module, there are compact submodule elements h and h′ such that h ≤ n, ah �
p, h′ ≤ n, bh′ � p. Also, we know that h+h′ ∈M∗. Then we have ab(h+h′) = abh+ abh′ ≤
abn + abn ≤ p + p = p. Hence, by our assumption, it must be either ab ∈ (p : e) or
a(h+ h′) ≤ p or b(h+ h′) ≤ p. The second and third one imply a contradiction with ah � p
and bh′ � p, recpectively. As a conclusion, ab ∈ (p : e). �

Similar to Theorem 2.6, we can characterize the concept of weakly 2-absorbing sub-
module elements of M.

Theorem 2.7. Suppose that M is a CG-le-module and p is a proper submodule element in
M . Then the next items are equivalent:
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(1) p is a weakly 2-absorbing submodule element.
(2) For any a, b ∈ R and n ∈ M with p ≤ n, if 0M 6= abn ≤ p, ab ∈ (p : e) or an ≤ p or

bn ≤ p.
(3) For any a, b ∈ R with ab /∈ (p : e), (p : ab) = (0M : ab) or (p : ab) = (p : a) or

(p : ab) = (p : b).
(4) For any elements a, b ∈ R, h ∈M∗, if 0M 6= abh ≤ p, ab ∈ (p : e) or ah ≤ p or bh ≤ p.

Proof. (1) ⇒ (2) : Obvious. (2) ⇒ (3) : Let a, b ∈ R and n ∈ M such that p ≤ n and
0M 6= abn ≤ p. Assume ab /∈ (p : e). Take a submodule element k ∈M such that k ≤ (p : ab).
Then abk ≤ p. Now, we have two cases: Case 1: If 0M = abk, then k ≤ (0M : ab). Also, we
know that (0M : ab) ≤ (p : ab). Thus (p : ab) = (0M : ab). Case 2: If 0M 6= abk, then we
have 0M 6= ab(k+p) = abk+abp ≤ p. Consider u = k+p. Thus we have p ≤ u, 0M 6= abu ≤ p
and ab /∈ (p : e). By our hypothesis (2), we conclude au ≤ p or bu ≤ p. This means that
ak ≤ p or bk ≤ p, that is, k ≤ (p : a) or k ≤ (p : b). Then we say (p : ab) ≤ (p : a) or
(p : ab) ≤ (p : b). On the other hand, it is clear that (p : a) ≤ (p : ab) and (p : b) ≤ (p : ab).
Consequently, (p : ab) = (p : a) or (p : ab) = (p : b). (3) ⇒ (4) : Similar to (3) ⇒ (4)
in previous theorem. (4) ⇒ (1) : Take a, b ∈ R and n ∈ M , 0M 6= abn ≤ p but an � p
and bn � p. As M is a CG-le-module, there is a compact submodule element h such that
h ≤ n, ah � p, and 0M 6= abh. Similarly, there is a compact submodule element h′ such
that h′ ≤ n, bh′ � p and 0M 6= abh′. Moreover, we know that h + h′ ∈ M∗. Then we get
0M 6= ab(h + h′) = abh + abh′ ≤ abn + abn ≤ p + p = p. Thus, by our assumption, either
ab ∈ (p : e) or a(h+ h′) ≤ p or b(h+ h′) ≤ p. Both of the last two options contradicts with
ah � p and bh′ � p, recpectively. As a result, ab ∈ (p : e). �

3. n-absorbing and weakly n-absorbing submodule elements in le-modules

In this section, we would like to generalize 2-absorbing (resp., weakly 2-absorbing)
submodule elements to n-absorbing (resp., weakly n-absorbing) submodule elements for a
positive integer n.

Definition 3.1. Let p be a proper submodule element of M. For a positive integer n,

(1) p is called an n-absorbing submodule element for every r1, r2, ..., rn ∈ R and
q ∈ M if r1r2...rnq ≤ p, either r1r2...rn ∈ (p : e) or r̂iq ≤ p for some i, where r̂i is
the element r1r2...ri−1ri+1...rn and 1 ≤ i ≤ n.

(2) p is called a weakly n-absorbing submodule element for every r1, r2, ..., rn ∈ R
and q ∈ M if 0M 6= r1r2...rnq ≤ p, either r1r2...rn ∈ (p : e) or r̂iq ≤ p for some i,
where r̂i is the element r1r2...ri−1ri+1...rn and 1 ≤ i ≤ n.

Remark 3.1. The concept of weakly n-absorbing submodule elements is a generalization of
n-absorbing submodule elements. However, every weakly n-absorbing submodule elements is
not an n-absorbing submodule element, see the next example:

Example 3.1. Let R = Z210 and M = {X ⊆ R : 0 ∈ X}. Now, consider n = {0}. It
is a weakly 3-absorbing submodule element but not 3-absorbing submodule element. Indeed,
2 · 3 · 7 · {0, 5} ≤ n, but 2 · 3 · 7 /∈ (n : e) = (0) and 2 · 3 · {0, 5} � n, 2 · 7 · {0, 5} � n,
3 · 7 · {0, 5} � n.

Theorem 3.1. Let n ∈ Z+ and p be a proper submodule element of M. If p is an n-absorbing
submodule element, then (p : e) is an n-absorbing ideal of R.

Proof. Take r1, r2, ..., rn, rn+1 ∈ R such that r1r2...rnrn+1 ∈ (p : e), that is, r1r2...rnrn+1e ≤
p. Let r̂i be the element r1r2...ri−1ri+1...rn and 1 ≤ i ≤ n. Assume that r̂i rn+1 /∈ (p : e)
for all i. Then r1r2...rn(rn+1e) ≤ p and r̂i (rn+1e) � p imply that r1r2...rn ∈ (p : e) because
p is an n-absorbing submodule element. Thus it is done. �
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Theorem 3.2. Let n,m ∈ Z+ such that n < m and p be a proper submodule element of M.
If p is an n-absorbing submodule element, then p is an m-absorbing submodule element of
M.

Proof. Choose r1, r2, ..., rn, ..., rm ∈ R and q ∈M such that r1r2...rn(rn+1...rmq) ≤ p. Then
since p is an n-absorbing submodule element, r1r2...rn ∈ (p : e) or r̂i(rn+1...rmq) ≤ p
for some i, where r̂i is the element r1r2...ri−1ri+1...rn and 1 ≤ i ≤ n. This means that
r1r2...rnrn+1...rm ∈ (p : e) or r̂i(rn+1...rm)q ≤ p. Thus p is an m-absorbing submodule
element of M. �

Recall that a proper submodule element q of an le-module M is called a prime sub-
module element for any r ∈ R and n ∈ M if rn ≤ q, then n ≤ q or r ∈ (q : e), see [5].
Moreover, it is proven that (n : e) is a prime ideal of R in Corollary 3.7 of [5].

Now, for an n-absorbing submodule element p of M, we would like to introduce a
new notion, denoted by ω(p), which analyzes in some sense how far p is from being a prime
submodule element.

Definition 3.2. Let n ∈ Z+ and p be an n-absorbing submodule element of M. Then
ω(p) :=min{n ∈ Z+ : p is an n-absorbing submodule element of M}, otherwise ω(p) := ∞.
Also, ω(e) := 0.

Remark 3.2. For any p ∈ Sub(M),

(1) p is prime ⇔ ω(p) = 1.
(2) ω(p) = 0 ⇔ p = e.

Note that a proper submodule element q of an le-module M is called a primary
submodule element for any r ∈ R and n ∈ M if rn ≤ q, then n ≤ q or rk ∈ (q : e) for
some k ∈ N, see [5]. Also, we know that if q is a primary submodule element of M , then
Rad(q) := Rad((q : e)) is a prime ideal of R, see Proposition 3.3 in [5]. In this case, if
Rad(q) = P, then we say q is a P -primary submodule element.

Now, we invastigate the relationship between the primary submodule elements and
the n-absorbing submodule elements of M.

Theorem 3.3. Let n ∈ Z+. If q is a P -primary submodule element of M such that Pne ≤ q,
then q is an n-absorbing submodule element of M, where Rad(q) = P is a prime ideal of R.
Furthermore ω(q) ≤ n.

Proof. Take r1, r2, ..., rn ∈ R and x ∈ M such that r1r2...rnx ≤ q and r̂ix � q for all
1 ≤ i ≤ n, where r̂i is the element r1r2...ri−1ri+1...rn. Consider ri(r̂ix) ≤ q. Then as r̂ix � q
and q is a P -primary submodule element, we get ri ∈ Rad(q) = Rad((q : e)) = P, for all
1 ≤ i ≤ n. This means that r1r2...rn ∈ Pn. Then, as Pne ≤ q, we say r1r2...rn ∈ (q : e).
Thus q is an n-absorbing submodule element of M. Finally, ω(q) ≤ n is obvious. �

As a final result for this section, we present the relationship between the primary
submodule elements and the 2-absorbing submodule elements of M.

Corollary 3.1. Let q be a P -primary submodule element of M, where the ideal Rad(q) = P
is prime. Then q is a 2-absorbing submodule element of M ⇔ P 2e ≤ q.

Proof. Suppose that q is a P -primary submodule element of M. (⇒:) Let q be a 2-absorbing.
By Corollary 2.1, (q : e) is a 2-absorbing ideal in R. By Theorem 2.4 in [4], [Rad((q : e))]2 ⊆
(q : e). As Rad(q) = Rad((q : e)) = P, we get P 2 ⊆ (q : e), that is, P 2e ≤ q. (⇐:) By
previous Thorem. �
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4. (n,k)-absorbing and weakly (n,k)-absorbing submodule elements in le-
modules

In this part of our study, we would like to generalize the concept of n-absorbing
(weakly n-absorbing) submodule elements to (n, k)-absorbing (weakly (n, k)-absorbing) sub-
module elements for any two positive integers n and k such that k < n.

Definition 4.1. Let p be a proper submodule element in M. Then for any two positive
integers n and k such that k < n,

(1) p is called an (n, k)-absorbing submodule element for all r1, r2, ..., rn ∈ R and
q ∈ M if r1r2...rnq ≤ p, then either there are k of the ri’s whose product is in (p : e)
or there are (k − 1) of the ri’s whose product with q is less than or equal to p.

(2) p is called a weakly (n, k)-absorbing submodule element for all r1, r2, ..., rn ∈ R
and q ∈M if 0M 6= r1r2...rnq ≤ p, then either there are k of the ri’s whose product is
in (p : e) or there are (k − 1) of the ri’s whose product with q is less than or equal to
p.

Remark 4.1. It is easy to see that the class of weakly (n, k)-absorbing submodule elements
contains the class of (n, k)-absorbing submodule elements. On the other hand, the converse
of the containment doesn’t hold, see the following example:

Example 4.1. Let R = Z2310 and M = {X ⊆ R : 0 ∈ X}. Now, consider n = {0}. It is
a weakly (4, 3)-absorbing submodule element but not (4, 3)-absorbing submodule element.
Firstly, note that (n : e) = (0). It is clear 2 · 3 · 7 · 11 · {0, 5} ≤ n. However, 2 · 3 · 7 /∈ (n :
e), 2 ·3 ·11 /∈ (n : e), 2 ·7 ·11 /∈ (n : e), 3 ·7 ·11 /∈ (n : e), and 2 ·3 · {0, 5} � n, 2 ·7 · {0, 5} � n,
2 · 11 · {0, 5} � n, 3 · 7 · {0, 5} � n, 3 · 11 · {0, 5} � n, 7 · 11 · {0, 5} � n.

In the next theorem, we examine the relationship between the concept of prime sub-
module elements and the concept of (2, 1)-absorbing submodule elements.

Theorem 4.1. Let n be a proper submodule element of M . If n is a prime submodule
element, then n is a (2, 1)-absorbing submodule element of M.

Proof. Let r1, r2 ∈ R and q ∈ M , r1r2q ≤ n. We will show that either r1 ∈ (n : e) or
r2 ∈ (n : e) or q ≤ n. Since n is prime, r1r2 ∈ (n : e) or q ≤ n. Also, by Corollary 3.7 in [5] ,
we know that (n : e) is prime. Thus, q ≤ n or r1 ∈ (n : e) or r2 ∈ (n : e). �

To obtain the relationship between weakly prime submodule elements and weakly
(2, 1)-absorbing submodule elements of an le-module, firstly we need the followings:

Definition 4.2. A proper submodule element q in M is called a weakly prime submodule
element for any a ∈ R and m ∈M if 0M 6= am ≤ q, then a ∈ (q : e) or m ≤ q.

Lemma 4.1. Let M be a faithful le-module and n be a proper submodule element of M . If
n is a weakly prime submodule element, then (n : e) is a weakly prime ideal of R.

Proof. Take a, b ∈ R such that 0R 6= ab ∈ (n : e), that is, abe ≤ n. Now, we have two cases:
Case 1: 0M = abe. Then ab ∈ (0M : e) = 0R, a contradiction. Case 2: 0M 6= abe. As
abe ≤ n and n is weakly prime, either a ∈ (n : e) or be ≤ n, that is, b ∈ (n : e). �

Theorem 4.2. Suppose that M is a faithful le-module and n is a proper submodule ele-
ment of M. Then if n is a weakly prime submodule element, n is a weakly (2, 1)-absorbing
submodule element of M.

Proof. Choose r1, r2 ∈ R and q ∈M , 0M 6= r1r2q ≤ n. We will show that either r1 ∈ (n : e)
or r2 ∈ (n : e) or q ≤ n. As n is weakly prime, either r1r2 ∈ (n : e) or q ≤ n. Moreover,
0R 6= r1r2, otherwise we get a contradiction with 0M 6= r1r2q. On the other hand, by
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Lemma 4.1, we know (n : e) is a weakly prime ideal. Thus, 0R 6= r1r2 ∈ (n : e) implies that
r1 ∈ (n : e) or r2 ∈ (n : e). Consequently, we obtain that r1 ∈ (n : e) or r2 ∈ (n : e) or
q ≤ n. �

In the next two theorems, we present the relationship between 2-absorbing (resp.,
weakly prime) submodule elements and (3, 2)-absorbing (resp., weakly (3, 2)-absorbing) sub-
module elements of an le-module.

Theorem 4.3. Let n be a proper submodule element of M . If n is a 2-absorbing submodule
element, then n is a (3, 2)-absorbing submodule element of M.

Proof. Let r1, r2, r3 ∈ R and q ∈ M , r1r2r3q ≤ n. Since n is a 2-absorbing submodule
element, r1r2 ∈ (n : e) or r1r3q ≤ n or r2r3q ≤ n. Again, using the concept of 2-absorbing
submodule elements, r1r2 ∈ (n : e) or r1r3 ∈ (n : e) or r2r3 ∈ (n : e) or r1q ≤ n or r2q ≤ n
or r3q ≤ n. Thus it is done. �

Theorem 4.4. Let n be a proper submodule element of M . If n is a weakly 2-absorbing
submodule element, then n is a weakly (3, 2)-absorbing submodule element of M.

Proof. Choose r1, r2, r3 ∈ R and q ∈M , 0M 6= r1r2r3q ≤ n. Since n is a weakly 2-absorbing
submodule element, r1r2 ∈ (n : e) or r1r3q ≤ n or r2r3q ≤ n. Also, it is clear that 0M 6= r1r3q
and 0M 6= r2r3q. Then again since n is a weakly 2-absorbing submodule elements, we have
either r1r2 ∈ (n : e) or r1r3 ∈ (n : e) or r2r3 ∈ (n : e) or r1q ≤ n or r2q ≤ n or r3q ≤ n. It is
done. �

As final results, we characterize (n, k)-absorbing and weakly (n, k)-absorbing submod-
ule elements in Theorem 4.5 and Theorem 4.6, respectively.

Theorem 4.5. Suppose that p is a proper submodule element in M . For arbitrary two
positive integers n and k such that k < n,

(1) If p is an (n, k)-absorbing submodule element, p is a (k + 1, k)-absorbing submodule
element.

(2) If p is an (n, k)-absorbing submodule element, then p is a (n, k′)-absorbing submodule
element, for any positive integer k′ > k.

Proof. (1): Suppose that p is an (n, k)-absorbing for any k < n. Then since k < k + 1, we
can consider k + 1 as n. Thus by our assumption, p is (k + 1, k)-absorbing.

(2): Let p be (n, k)-absorbing and k′ be a positive integer such that k′ > k. Choose
r1, r2, ..., rn ∈ R and q ∈ M , r1r2...rnq ≤ p. Then by our hypothesis, we have either
a1a2...ak ∈ (p : e) or b1b2...bk−1q ≤ p, where the ai’s and bi’s are some of the ri’s is
obtained on renaming. Let choose a among the ri’s but other than the ai’s. Thus, it is
clear that aa1a2...ak ∈ (p : e). Let choose b among the ri’s but other than the bi’s. Then
bb1b2...bk−1q ≤ p. As a consequence, continuing the same way, p is an (n, k′)-absorbing
submodule element, for every positive integer k′ > k. �

Theorem 4.6. Suppose that p is a proper submodule element in M . For arbitrary two
positive integers n and k such that k < n,

(1) If p is a weakly (n, k)-absorbing submodule element, p is a weakly (k+ 1, k)-absorbing
submodule element.

(2) If p is a weakly (n, k)-absorbing submodule element, p is a weakly (n, k′)-absorbing
submodule element, for any positive integer k′ > k.

Proof. Similar to the previous proof. �
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