

ON 2-ABSORBING SUBMODULE ELEMENTS IN LE-MODULES AND ITS GENERALIZATIONS

Emel Aslankarayigit Ugurlu¹

In this paper, we introduce the concept of 2-absorbing submodule elements in an le-module M as follows: a proper submodule element q in M is said to be 2-absorbing for any $r, s \in R$ and $m \in M$ if $rsm \leq q$, then either $rs \in (q : e)$ or $rm \leq q$ or $sm \leq q$. Moreover, we define some generalizations of the new concept such as weakly 2-absorbing, n -absorbing, weakly n -absorbing, (n, k) -absorbing, weakly (n, k) -absorbing submodule elements in le-modules. After presenting a main example for le-modules, we study some counter examples for the generalizations. In addition to giving some characterizations for the new concepts, we investigate the relationship between prime (primary) submodule elements and them.

Keywords: complete lattices, le-modules, submodule elements, 2-absorbing (weakly 2-absorbing) submodule elements

MSC2020: 13A15, 16D60, 06F25.

1. Introduction

As a generalization of the commutative ideal theory, there are a great many publications addressing multiplicative lattices, see [2], [7], [12]. In 1970, the authors introduced a new concept called lattice modules, see [9]. They defined a lattice module similar to a module over a ring. A lattice module M over a multiplicative lattice L is a complete lattice together a multiplication between elements of L and M , which satisfies similar properties of a module over a ring, see [9]. If we desire to make it more concrete with an example, consider L as the lattice of every ideals in a ring which M is the lattice of every submodules in any module over the ring. In this case, M is a lattice module over L . Beside to Noetherian lattice modules, there exist a large number of papers on lattice modules, see [1], [3], [8]-[9]. Furthermore, the concept of prime ideals, prime submodules, and prime elements have a significant place in abstract algebra since they are used in understanding the structure of rings, modules, lattices, and lattice modules, see [3], [6]-[8], [13]-[14].

In 2018, the authors introduced a new algebraic construction, called “le-module over a commutative ring”, by the help of a different approach to the “abstract submodule theory”, see [10]. In the paper, they had two main goals: First one was to make it achievable to separate submodules from a typical subset in any module, thus they generalized the properties of special kinds of submodules. The other one was to build a channel to study the characteristics of rings more straight than the lattice module theory. To introduce the concept of le-modules, the authors defined, in [5], an le-semigroup $(M, +, \leq, e)$ as a complete lattice with the greatest element e , which is also a commutative monoid with the zero element 0_M that holds the property $m + (\bigvee_{i \in I} m_i) = \bigvee_{i \in I} (m + m_i)$, for all $m, m_i \in M, i \in I$.

¹Department of Mathematics, Marmara University, 34722, Istanbul, Turkey., e-mail: emel.aslankarayigit@marmara.edu.tr

Afterwards, they introduced the concept of le-modules as followings: Assume that $(M, +, \leq, e)$ is an le-semigroup with 0_M and R is a commutative ring. We say M is an le-module over R if there exists a mapping $R \times M \rightarrow M$, which holds

- (1) $r(m_1 + m_2) = rm_1 + rm_2$,
- (2) $(r_1 + r_2)m \leq r_1m + r_2m$,
- (3) $(r_1r_2)m = r_1(r_2m)$,
- (4) $1_Rm = m$ and $0_Rm = 0_M = 0_M$,
- (5) For every $r, r_1, r_2 \in R$ and $m, m_1, m_2, m_j \in M$, $r(\bigvee_{j \in \Delta} m_j) = (\bigvee_{j \in \Delta} rm_j)$.

Note that from (5), we have $(5)': m_1 \leq m_2 \Rightarrow rm_1 \leq rm_2$, for all $r \in R$ and $m_1, m_2 \in M$.

An element n of an le-module M is said to be a *submodule element* if $n + n, rn \leq n$, for all $r \in R$. We denote the set of all submodule elements of M by $Sub(M)$. We set $(n : a) = \bigvee\{x \in M : ax \leq n\}$, where $a \in R$ and $n \in Sub(M)$. It is easy to see that $(n : a)$ is in $Sub(M)$ and also, $n \leq (n : a)$ and $a(n : a) \leq n$. For all $x \in M$ and $a \in R$, we know $x \leq (n : a)$ necessary and sufficient condition $ax \leq n$. For $k \in Sub(M)$ and $n \in M$, the set $(k : n) = \{a \in R : an \leq k\}$ is an ideal of R . For any two submodule elements of M such that $n \leq k$, we have $(n : e) \subseteq (k : e)$. A submodule element n of M is called compact if for a family of submodule elements $\{n_\lambda\}_{\lambda \in \Lambda}$ if $n \leq \sum_{\lambda \in \Lambda} n_\lambda$ implies $n \leq n_{\lambda_1} + n_{\lambda_2} + \dots + n_{\lambda_k}$

for some subset $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$. Note that a sum of finite number of compact submodule elements is a compact submodule element. We denote the set of all compact submodule elements of M as M_* . Furthermore, if each $n \in Sub(M)$ is a sum of compact submodule elements in M , it is called a compactly generated le-module, or briefly *CG-le-module*. Also, an le-module M is called a faithful le-module when $(0_M : e) = 0_R$. For more information, we refer the reader to [5], [10], [11].

In Section 2, we introduce the concept of 2-absorbing and weakly 2-absorbing submodule elements in an le-module M . One can easily see that the class of 2-absorbing submodule elements is a subclass of weakly 2-absorbing submodule elements. However, we show every weakly 2-absorbing submodule elements is not a 2-absorbing submodule element, see Example 2.2. After proving some main properties of the new concepts, in Theorem 2.6 (resp., in Theorem 2.7), we characterized 2-absorbing (resp., weakly 2-absorbing) submodule elements of a *CG-le-module* M . In Section 3, for a positive integer n , we introduce the n -absorbing (weakly n -absorbing) submodule elements in an le-module M and immediately conclude the concept is a generalization of 2-absorbing (weakly 2-absorbing) submodule elements. In Example 3.1, we show every weakly n -absorbing submodule elements is not an n -absorbing submodule element. Also, we define the notion of $\omega(p)$, which analyzes in some sense how far p is from being a prime submodule element for a submodule element p in M . In the last section, for any two positive integers n and k such that $k < n$, we present the concept of (n, k) -absorbing and weakly (n, k) -absorbing submodule elements in an le-module M . It is easy to see that the class of weakly (n, k) -absorbing submodule elements contains the class of (n, k) -absorbing submodule elements. On the other hand, the other containment doesn't hold, see Example 4.1. Moreover, the relation between the class of (n, k) -absorbing (also, weakly (n, k) -absorbing) submodule elements and the other classes defined above is investigated, see Theorem 4.2, 4.3, 4.4. As final results, we characterize the (n, k) -absorbing (resp., weakly (n, k) -absorbing) submodule elements in Theorem 4.5 (resp., Theorem 4.6).

2. 2-absorbing and weakly 2-absorbing submodule elements in le-modules

Throughout our study $R M$ (briefly, M) represents an le-module M over R , where R is a commutative ring with 1_R .

Definition 2.1. Let p be a proper submodule element of M . Then

- (1) p is called a **2-absorbing submodule element** for any $a, b \in R$ and $n \in M$ if $abn \leq p$, then $ab \in (p : e)$ or $an \leq p$ or $bn \leq p$.
- (2) p is called a **weakly 2-absorbing submodule element** for any $a, b \in R$ and $n \in M$ if $0_M \neq abn \leq p$, then $ab \in (p : e)$ or $an \leq p$ or $bn \leq p$.

Example 2.1. Let R be a ring and $M = \{S \subseteq R : 0 \in S\}$. Then (M, \subseteq) is a complete lattice with the greatest element $e = R$. Now, define $X + Y = \{x + y : x \in X, y \in Y\}$ and $rX = \{rx : x \in X\}$ for each $r \in R$; $X, Y \in M$. Thus, $(M, +, \subseteq, e)$ is an le-module with the zero element $0_M = \{0\}$. Also, it is clear that N is an R -submodule of M if and only if $N \in M$ is a submodule element of M . In particular, let $R = \mathbb{Z}_5$ and $M = \{S \subseteq R : 0 \in S\}$. The complete lattice (M, \subseteq) with the following Hasse Diagram is an le-module according to above addition and scalar multiplication, see Figure 1.

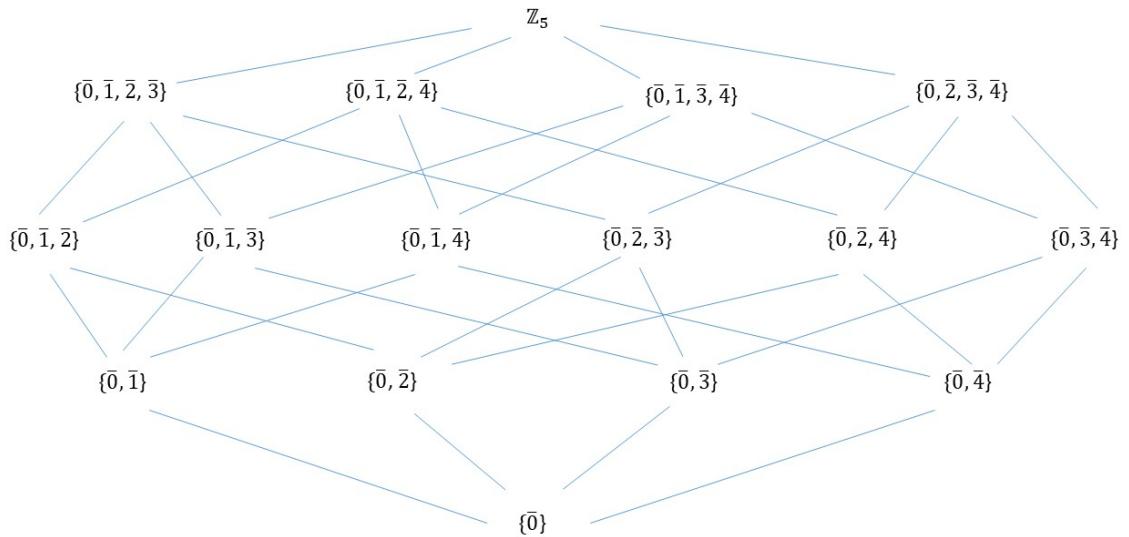


FIGURE 1. The Hasse Diagram of the Complete Lattice $(\mathbb{Z}_5, \subseteq)$.

Remark 2.1. It is easily to see that every 2-absorbing submodule element is a weakly 2-absorbing submodule element. However, we can't claim the converse, to see this, investigate the following example:

Example 2.2. Let $R = \mathbb{Z}_{30}$ and $M = \{X \subseteq R : \bar{0} \in X\}$. Now, consider $n = \{\bar{0}\}$. Notice that $(n : e) = (\bar{0})$. It is a weakly 2-absorbing submodule element but not 2-absorbing submodule element. Indeed, $\bar{2} \cdot \bar{3} \cdot \{\bar{0}, \bar{5}\} \leq n$, but $\bar{2} \cdot \bar{3} \notin (n : e)$ and $\bar{2} \cdot \{\bar{0}, \bar{5}\} \notin n$, $\bar{3} \cdot \{\bar{0}, \bar{5}\} \notin n$.

Theorem 2.1. Let n be a proper submodule element of M . If n is a 2-absorbing submodule element, $(n : r)$ is a 2-absorbing submodule element for all $r \in R$.

Proof. Take $a, b \in R$ and $m \in M$ such that $abm \leq (n : r)$, that is, $abrm \leq n$. As n is a 2-absorbing submodule element, either $ab \in (n : e)$ or $arm \leq n$ or $brm \leq n$. Then $abe \leq n \leq (n : r)$, so $ab \in ((n : r) : e)$. Consequently, $ab \in ((n : r) : e)$ or $am \leq (n : r)$ or $bm \leq (n : r)$, as needed. \square

Theorem 2.2. *Let n be a proper submodule element of M . If n is a 2-absorbing submodule element, then $(n : x)$ is a 2-absorbing ideal of R for all $x \in M$.*

Proof. Choose $a, b, c \in R$ such that $abc \in (n : x)$, i.e., $abcx \leq n$. Since n is a 2-absorbing submodule element, $ab \in (n : e)$ or $acx \leq n$ or $bcx \leq n$. Then $abx \leq abe \leq n$, so $ab \in (n : x)$. As a consequent, $ab \in (n : x)$ or $ac \in (n : x)$ or $bc \in (n : x)$. \square

Corollary 2.1. *Let n be a proper submodule element of M . If n is a 2-absorbing submodule element, then $(n : e)$ is a 2-absorbing ideal of R .*

Theorem 2.3. *Let M be a faithful le-module and n be a proper submodule element of M . If n is a weakly 2-absorbing submodule element, then $(n : e)$ is a weakly 2-absorbing ideal of R .*

Proof. Take $a, b, c \in R$ such that $0_R \neq abc \in (n : e)$, that is, $abce \leq n$. Now, we have two cases: **Case 1:** Let $0_M = abce$. Then $abc \in (0_M : e) = 0_R$, which is a contradiction. **Case 2:** Let $0_M \neq abce$. As n is a weakly 2-absorbing submodule element, either $ab \in (n : e)$ or $ace \leq n$ or $bce \leq n$. Consequently, $ab \in (n : e)$ or $ac \in (n : e)$ or $bc \in (n : e)$, as required. \square

Theorem 2.4. *Let M be a CG-le-module and n be a proper submodule element of M . If n is a weakly 2-absorbing submodule element such that $(n : e)^2n \neq 0_M$, n is a 2-absorbing submodule element.*

Proof. Suppose that $(n : e)^2n \neq 0_M$. Let choose $r, s \in R$ and $q \in M$ such that $rsq \leq n$. Then we have two cases: **Case 1:** Let $0_M \neq rsq$. Since n is a weakly 2-absorbing submodule element, $rs \in (n : e)$ or $rq \leq n$ or $sq \leq n$. It is done. **Case 2:** Suppose $rsq = 0_M$. By our hypothesis $(n : e)^2n \neq 0_M$, there are $a, b \in (n : e)$ and a compact submodule element $h \in M$ such that $h \leq n$ and $0_M \neq abh \leq (n : e)^2n$. Then

$$\begin{aligned} 0_M \neq abh &\leq (r + a)(s + b)(q + h) = (rs + rb + as + ab)(q + h) \\ &= (rs + rb + as + ab)q + (rs + rb + as + ab)h \\ &\leq rsq + rbq + asq + abq + rsh + rbh + ash + abh \leq n + n + \dots + n = n \end{aligned}$$

Thus, since n is a weakly 2-absorbing submodule element, $(r + a)(s + b) \in (n : e)$ or $(r + a)(q + h) \leq n$ or $(s + b)(q + h) \leq n$. Since $a, b \in (n : e)$, we have that either $rs \in (n : e)$ or $rq \leq n$ or $sq \leq n$. \square

Definition 2.2. *A proper element n of M is called a nilpotent submodule element of M if $(n : e)^k n = 0_M$ for some positive integer k .*

Corollary 2.2. *Let M be a CG-le-module and n be a proper submodule element of M . If n is a weakly 2-absorbing submodule element which not 2-absorbing, then n is a nilpotent submodule element.*

Proof. By Theorem 2.4, it must be $(n : e)^2n = 0_M$, thus it is done. \square

Corollary 2.3. *Let M be a CG-le-module and n be a proper submodule element of M . If n is a weakly 2-absorbing submodule element but not 2-absorbing, then $(n : e)^k n = 0_M$, for all $k \geq 2$.*

Proof. By Theorem 2.4, $(n : e)^2n = 0_M$. Also, we know $(n : e)^3 \subseteq (n : e)^2$. Then one can easily see that $(n : e)^3n \leq (n : e)^2n = 0_M$, that is, $(n : e)^3n = 0_M$. By iteration, $(n : e)^k n = 0_M$, for all $k \geq 2$. \square

Theorem 2.5. *Suppose that M is a CG-le-module and $\{n_i\}_{i \in \Delta}$ is a (ascending or descending) chain of submodule elements of M . Then*

(1) For every $i \in \Delta$, if n_i is a 2-absorbing submodule element of M , then $\bigwedge_{i \in \Delta} n_i$ is a 2-absorbing submodule element of M .

(2) For every $i \in \Delta$, if n_i is a weakly 2-absorbing submodule element of M , then $\bigwedge_{i \in \Delta} n_i$ is a weakly 2-absorbing submodule element of M .

Proof. (1): If $\{n_i\}_{i \in \Delta}$ is a ascending chain, $\bigwedge_{i \in \Delta} n_i = n_1$, so it is done. Suppose that $\dots \leq n_i \leq \dots \leq n_2 \leq n_1$ is an descending chain of 2-absorbing submodule elements of M . Now, it is clear that $\bigwedge_{i \in \Delta} n_i$ is proper since $\bigwedge_{i \in \Delta} n_i \neq e$. Take $r, s \in R$ and $n \in M$, $rsn \leq \bigwedge_{i \in \Delta} n_i$. Suppose $rn \not\leq \bigwedge_{i \in \Delta} n_i$ and $sn \not\leq \bigwedge_{i \in \Delta} n_i$. Then there exist n_k and n_m such that $rn \not\leq n_k$ and $sn \not\leq n_m$. Without losing the generality, assume that $n_k \leq n_m$. Then we have $sn \not\leq n_k$. Since n_k is a 2-absorbing submodule element and $rsn \leq n_k$, we get $rs \in (n_k : e)$. Also, note that for each $n_i \leq n_k$, we have $rn, sn \not\leq n_i$, which implies that $rs \in (n_i : e)$. Since for each $n_k \leq n_i$, we have $(n_k : e) \subseteq (n_i : e)$, so $rs \in (n_i : e)$. Thus $rs \in \bigcap_{i \in \Delta} (n_i : e)$. By Proposition 2.2 in [5], we have $\bigcap_{i \in \Delta} (n_i : e) = (\bigwedge_{i \in \Delta} n_i : e)$. Consequently, $\bigwedge_{i \in \Delta} n_i$ is a 2-absorbing submodule element of M .

(2): Similar to previous proof. □

Now, we give a characterization for the concept of 2-absorbing submodule elements of M .

Theorem 2.6. Suppose that M is a CG-le-module and p is a proper submodule element in M . The next items are equivalent:

- (1) p is a 2-absorbing submodule element in M .
- (2) For any $a, b \in R$ and $n \in M$ such that $p \leq n$, if $abn \leq p$, $ab \in (p : e)$ or $an \leq p$ or $bn \leq p$.
- (3) For any $a, b \in R$ with $ab \notin (p : e)$, $(p : a) = (p : ab)$ or $(p : ab) = (p : b)$.
- (4) For any $a, b \in R$, $h \in M_*$, if $abh \leq p$, $ab \in (p : e)$ or $ah \leq p$ or $bh \leq p$.

Proof. (1) \Rightarrow (2) : It is clear. (2) \Rightarrow (3) : Suppose that $a, b \in R$ such that $ab \notin (p : e)$. Take a submodule element $k \in M$ such that $k \leq (p : ab)$. Then $abk \leq p$. Consider $u = k + p$. It is clear that $ab(k + p) = abk + abp \leq p$. Thus, we have $p \leq u$, $abu \leq p$ and $ab \notin (p : e)$. By our hypothesis (2), we conclude $au \leq p$ or $bu \leq p$. This means that $ak \leq p$ or $bk \leq p$, that is, $k \leq (p : a)$ or $k \leq (p : b)$. Then we say $(p : ab) \leq (p : a)$ or $(p : ab) \leq (p : b)$, since M is a CG-le-module. On the other hand, it is clear that $(p : a) \leq (p : ab)$ and $(p : b) \leq (p : ab)$. Consequently, $(p : ab) = (p : a)$ or $(p : ab) = (p : b)$.

(3) \Rightarrow (4) : Let $a, b \in R$, $h \in M_*$ such that $abh \leq p$, that is, $h \leq (p : ab)$. Assume that $ab \notin (p : e)$. By item (3), we get $(p : ab) = (p : a)$ or $(p : ab) = (p : b)$. This implies that $h \leq (p : a)$ or $h \leq (p : b)$. Hence $ah \leq p$ or $bh \leq p$, as desired.

(4) \Rightarrow (1) : Choose $a, b \in R$ and $n \in M$, $abn \leq p$ but $an \not\leq p$ and $bn \not\leq p$. Since M is a CG-le-module, there are compact submodule elements h and h' such that $h \leq n, ah \not\leq p, h' \leq n, bh' \not\leq p$. Also, we know that $h + h' \in M_*$. Then we have $ab(h + h') = abh + abh' \leq abn + abn \leq p + p = p$. Hence, by our assumption, it must be either $ab \in (p : e)$ or $a(h + h') \leq p$ or $b(h + h') \leq p$. The second and third one imply a contradiction with $ah \not\leq p$ and $bh' \not\leq p$, respectively. As a conclusion, $ab \in (p : e)$. □

Similar to Theorem 2.6, we can characterize the concept of weakly 2-absorbing submodule elements of M .

Theorem 2.7. Suppose that M is a CG-le-module and p is a proper submodule element in M . Then the next items are equivalent:

- (1) p is a weakly 2-absorbing submodule element.
- (2) For any $a, b \in R$ and $n \in M$ with $p \leq n$, if $0_M \neq abn \leq p$, $ab \in (p : e)$ or $an \leq p$ or $bn \leq p$.
- (3) For any $a, b \in R$ with $ab \notin (p : e)$, $(p : ab) = (0_M : ab)$ or $(p : ab) = (p : a)$ or $(p : ab) = (p : b)$.
- (4) For any elements $a, b \in R$, $h \in M_*$, if $0_M \neq abh \leq p$, $ab \in (p : e)$ or $ah \leq p$ or $bh \leq p$.

Proof. (1) \Rightarrow (2) : Obvious. (2) \Rightarrow (3) : Let $a, b \in R$ and $n \in M$ such that $p \leq n$ and $0_M \neq abn \leq p$. Assume $ab \notin (p : e)$. Take a submodule element $k \in M$ such that $k \leq (p : ab)$. Then $abk \leq p$. Now, we have two cases: **Case 1:** If $0_M = abk$, then $k \leq (0_M : ab)$. Also, we know that $(0_M : ab) \leq (p : ab)$. Thus $(p : ab) = (0_M : ab)$. **Case 2:** If $0_M \neq abk$, then we have $0_M \neq ab(k+p) = abk + abp \leq p$. Consider $u = k+p$. Thus we have $p \leq u$, $0_M \neq abu \leq p$ and $ab \notin (p : e)$. By our hypothesis (2), we conclude $au \leq p$ or $bu \leq p$. This means that $ak \leq p$ or $bk \leq p$, that is, $k \leq (p : a)$ or $k \leq (p : b)$. Then we say $(p : ab) \leq (p : a)$ or $(p : ab) \leq (p : b)$. On the other hand, it is clear that $(p : a) \leq (p : ab)$ and $(p : b) \leq (p : ab)$. Consequently, $(p : ab) = (p : a)$ or $(p : ab) = (p : b)$. (3) \Rightarrow (4) : Similar to (3) \Rightarrow (4) in previous theorem. (4) \Rightarrow (1) : Take $a, b \in R$ and $n \in M$, $0_M \neq abn \leq p$ but $an \notin p$ and $bn \notin p$. As M is a CG -le-module, there is a compact submodule element h such that $h \leq n, ah \notin p$, and $0_M \neq abh$. Similarly, there is a compact submodule element h' such that $h' \leq n, bh' \notin p$ and $0_M \neq abh'$. Moreover, we know that $h + h' \in M_*$. Then we get $0_M \neq ab(h + h') = abh + abh' \leq abn + abn \leq p + p = p$. Thus, by our assumption, either $ab \in (p : e)$ or $a(h + h') \leq p$ or $b(h + h') \leq p$. Both of the last two options contradicts with $ah \notin p$ and $bh' \notin p$, respectively. As a result, $ab \in (p : e)$. \square

3. n -absorbing and weakly n -absorbing submodule elements in le-modules

In this section, we would like to generalize 2-absorbing (resp., weakly 2-absorbing) submodule elements to n -absorbing (resp., weakly n -absorbing) submodule elements for a positive integer n .

Definition 3.1. Let p be a proper submodule element of M . For a positive integer n ,

- (1) p is called an **n -absorbing submodule element** for every $r_1, r_2, \dots, r_n \in R$ and $q \in M$ if $r_1r_2\dots r_nq \leq p$, either $r_1r_2\dots r_n \in (p : e)$ or $\widehat{r}_iq \leq p$ for some i , where \widehat{r}_i is the element $r_1r_2\dots r_{i-1}r_{i+1}\dots r_n$ and $1 \leq i \leq n$.
- (2) p is called a **weakly n -absorbing submodule element** for every $r_1, r_2, \dots, r_n \in R$ and $q \in M$ if $0_M \neq r_1r_2\dots r_nq \leq p$, either $r_1r_2\dots r_n \in (p : e)$ or $\widehat{r}_iq \leq p$ for some i , where \widehat{r}_i is the element $r_1r_2\dots r_{i-1}r_{i+1}\dots r_n$ and $1 \leq i \leq n$.

Remark 3.1. The concept of weakly n -absorbing submodule elements is a generalization of n -absorbing submodule elements. However, every weakly n -absorbing submodule elements is not an n -absorbing submodule element, see the next example:

Example 3.1. Let $R = \mathbb{Z}_{210}$ and $M = \{X \subseteq R : \bar{0} \in X\}$. Now, consider $n = \{\bar{0}\}$. It is a weakly 3-absorbing submodule element but not 3-absorbing submodule element. Indeed, $\bar{2} \cdot \bar{3} \cdot \bar{7} \cdot \{\bar{0}, \bar{5}\} \leq n$, but $\bar{2} \cdot \bar{3} \cdot \bar{7} \notin (n : e) = \{\bar{0}\}$ and $\bar{2} \cdot \bar{3} \cdot \{\bar{0}, \bar{5}\} \notin n$, $\bar{2} \cdot \bar{7} \cdot \{\bar{0}, \bar{5}\} \notin n$, $\bar{3} \cdot \bar{7} \cdot \{\bar{0}, \bar{5}\} \notin n$.

Theorem 3.1. Let $n \in \mathbb{Z}^+$ and p be a proper submodule element of M . If p is an n -absorbing submodule element, then $(p : e)$ is an n -absorbing ideal of R .

Proof. Take $r_1, r_2, \dots, r_n, r_{n+1} \in R$ such that $r_1r_2\dots r_n r_{n+1} \in (p : e)$, that is, $r_1r_2\dots r_n r_{n+1}e \leq p$. Let \widehat{r}_i be the element $r_1r_2\dots r_{i-1}r_{i+1}\dots r_n$ and $1 \leq i \leq n$. Assume that $\widehat{r}_i r_{n+1} \notin (p : e)$ for all i . Then $r_1r_2\dots r_n(r_{n+1}e) \leq p$ and $\widehat{r}_i(r_{n+1}e) \notin p$ imply that $r_1r_2\dots r_n \in (p : e)$ because p is an n -absorbing submodule element. Thus it is done. \square

Theorem 3.2. *Let $n, m \in \mathbb{Z}^+$ such that $n < m$ and p be a proper submodule element of M . If p is an n -absorbing submodule element, then p is an m -absorbing submodule element of M .*

Proof. Choose $r_1, r_2, \dots, r_n, \dots, r_m \in R$ and $q \in M$ such that $r_1r_2\dots r_n(r_{n+1}\dots r_mq) \leq p$. Then since p is an n -absorbing submodule element, $r_1r_2\dots r_n \in (p : e)$ or $\widehat{r}_i(r_{n+1}\dots r_mq) \leq p$ for some i , where \widehat{r}_i is the element $r_1r_2\dots r_{i-1}r_{i+1}\dots r_n$ and $1 \leq i \leq n$. This means that $r_1r_2\dots r_n r_{n+1}\dots r_m \in (p : e)$ or $\widehat{r}_i(r_{n+1}\dots r_m)q \leq p$. Thus p is an m -absorbing submodule element of M . \square

Recall that a proper submodule element q of an le-module M is called a prime submodule element for any $r \in R$ and $n \in M$ if $rn \leq q$, then $n \leq q$ or $r \in (q : e)$, see [5]. Moreover, it is proven that $(n : e)$ is a prime ideal of R in Corollary 3.7 of [5].

Now, for an n -absorbing submodule element p of M , we would like to introduce a new notion, denoted by $\omega(p)$, which analyzes in some sense how far p is from being a prime submodule element.

Definition 3.2. *Let $n \in \mathbb{Z}^+$ and p be an n -absorbing submodule element of M . Then $\omega(p) := \min\{n \in \mathbb{Z}^+ : p \text{ is an } n\text{-absorbing submodule element of } M\}$, otherwise $\omega(p) := \infty$. Also, $\omega(e) := 0$.*

Remark 3.2. *For any $p \in \text{Sub}(M)$,*

- (1) p is prime $\Leftrightarrow \omega(p) = 1$.
- (2) $\omega(p) = 0 \Leftrightarrow p = e$.

Note that a proper submodule element q of an le-module M is called a primary submodule element for any $r \in R$ and $n \in M$ if $rn \leq q$, then $n \leq q$ or $r^k \in (q : e)$ for some $k \in \mathbb{N}$, see [5]. Also, we know that if q is a primary submodule element of M , then $\text{Rad}(q) := \text{Rad}((q : e))$ is a prime ideal of R , see Proposition 3.3 in [5]. In this case, if $\text{Rad}(q) = P$, then we say q is a P -primary submodule element.

Now, we investigate the relationship between the primary submodule elements and the n -absorbing submodule elements of M .

Theorem 3.3. *Let $n \in \mathbb{Z}^+$. If q is a P -primary submodule element of M such that $P^n e \leq q$, then q is an n -absorbing submodule element of M , where $\text{Rad}(q) = P$ is a prime ideal of R . Furthermore $\omega(q) \leq n$.*

Proof. Take $r_1, r_2, \dots, r_n \in R$ and $x \in M$ such that $r_1r_2\dots r_n x \leq q$ and $\widehat{r}_i x \not\leq q$ for all $1 \leq i \leq n$, where \widehat{r}_i is the element $r_1r_2\dots r_{i-1}r_{i+1}\dots r_n$. Consider $r_i(\widehat{r}_i x) \leq q$. Then as $\widehat{r}_i x \not\leq q$ and q is a P -primary submodule element, we get $r_i \in \text{Rad}(q) = \text{Rad}((q : e)) = P$, for all $1 \leq i \leq n$. This means that $r_1r_2\dots r_n \in P^n$. Then, as $P^n e \leq q$, we say $r_1r_2\dots r_n \in (q : e)$. Thus q is an n -absorbing submodule element of M . Finally, $\omega(q) \leq n$ is obvious. \square

As a final result for this section, we present the relationship between the primary submodule elements and the 2-absorbing submodule elements of M .

Corollary 3.1. *Let q be a P -primary submodule element of M , where the ideal $\text{Rad}(q) = P$ is prime. Then q is a 2-absorbing submodule element of $M \Leftrightarrow P^2 e \leq q$.*

Proof. Suppose that q is a P -primary submodule element of M . (\Rightarrow :) Let q be a 2-absorbing. By Corollary 2.1, $(q : e)$ is a 2-absorbing ideal in R . By Theorem 2.4 in [4], $[\text{Rad}((q : e))]^2 \subseteq (q : e)$. As $\text{Rad}(q) = \text{Rad}((q : e)) = P$, we get $P^2 \subseteq (q : e)$, that is, $P^2 e \leq q$. (\Leftarrow :) By previous Thorem. \square

4. (n,k) -absorbing and weakly (n,k) -absorbing submodule elements in le-modules

In this part of our study, we would like to generalize the concept of n -absorbing (weakly n -absorbing) submodule elements to (n, k) -absorbing (weakly (n, k) -absorbing) submodule elements for any two positive integers n and k such that $k < n$.

Definition 4.1. Let p be a proper submodule element in M . Then for any two positive integers n and k such that $k < n$,

- (1) p is called an **(n, k) -absorbing submodule element** for all $r_1, r_2, \dots, r_n \in R$ and $q \in M$ if $r_1 r_2 \dots r_n q \leq p$, then either there are k of the r_i 's whose product is in $(p : e)$ or there are $(k - 1)$ of the r_i 's whose product with q is less than or equal to p .
- (2) p is called a **weakly (n, k) -absorbing submodule element** for all $r_1, r_2, \dots, r_n \in R$ and $q \in M$ if $0_M \neq r_1 r_2 \dots r_n q \leq p$, then either there are k of the r_i 's whose product is in $(p : e)$ or there are $(k - 1)$ of the r_i 's whose product with q is less than or equal to p .

Remark 4.1. It is easy to see that the class of weakly (n, k) -absorbing submodule elements contains the class of (n, k) -absorbing submodule elements. On the other hand, the converse of the containment doesn't hold, see the following example:

Example 4.1. Let $R = \mathbb{Z}_{2310}$ and $M = \{X \subseteq R : \bar{0} \in X\}$. Now, consider $n = \{\bar{0}\}$. It is a weakly $(4, 3)$ -absorbing submodule element but not $(4, 3)$ -absorbing submodule element. Firstly, note that $(n : e) = \{\bar{0}\}$. It is clear $\bar{2} \cdot \bar{3} \cdot \bar{7} \cdot \bar{11} \cdot \{\bar{0}, \bar{5}\} \leq n$. However, $\bar{2} \cdot \bar{3} \cdot \bar{7} \notin (n : e)$, $\bar{2} \cdot \bar{3} \cdot \bar{11} \notin (n : e)$, $\bar{2} \cdot \bar{7} \cdot \bar{11} \notin (n : e)$, and $\bar{2} \cdot \bar{3} \cdot \{\bar{0}, \bar{5}\} \not\leq n$, $\bar{2} \cdot \bar{7} \cdot \{\bar{0}, \bar{5}\} \not\leq n$, $\bar{2} \cdot \bar{11} \cdot \{\bar{0}, \bar{5}\} \not\leq n$, $\bar{3} \cdot \bar{7} \cdot \{\bar{0}, \bar{5}\} \not\leq n$, $\bar{3} \cdot \bar{11} \cdot \{\bar{0}, \bar{5}\} \not\leq n$, $\bar{7} \cdot \bar{11} \cdot \{\bar{0}, \bar{5}\} \not\leq n$.

In the next theorem, we examine the relationship between the concept of prime submodule elements and the concept of $(2, 1)$ -absorbing submodule elements.

Theorem 4.1. Let n be a proper submodule element of M . If n is a prime submodule element, then n is a $(2, 1)$ -absorbing submodule element of M .

Proof. Let $r_1, r_2 \in R$ and $q \in M$, $r_1 r_2 q \leq n$. We will show that either $r_1 \in (n : e)$ or $r_2 \in (n : e)$ or $q \leq n$. Since n is prime, $r_1 r_2 \in (n : e)$ or $q \leq n$. Also, by Corollary 3.7 in [5], we know that $(n : e)$ is prime. Thus, $q \leq n$ or $r_1 \in (n : e)$ or $r_2 \in (n : e)$. \square

To obtain the relationship between weakly prime submodule elements and weakly $(2, 1)$ -absorbing submodule elements of an le-module, firstly we need the followings:

Definition 4.2. A proper submodule element q in M is called a **weakly prime submodule element** for any $a \in R$ and $m \in M$ if $0_M \neq am \leq q$, then $a \in (q : e)$ or $m \leq q$.

Lemma 4.1. Let M be a faithful le-module and n be a proper submodule element of M . If n is a weakly prime submodule element, then $(n : e)$ is a weakly prime ideal of R .

Proof. Take $a, b \in R$ such that $0_R \neq ab \in (n : e)$, that is, $abe \leq n$. Now, we have two cases:

Case 1: $0_M = abe$. Then $ab \in (0_M : e) = 0_R$, a contradiction. **Case 2:** $0_M \neq abe$. As $abe \leq n$ and n is weakly prime, either $a \in (n : e)$ or $be \leq n$, that is, $b \in (n : e)$. \square

Theorem 4.2. Suppose that M is a faithful le-module and n is a proper submodule element of M . Then if n is a weakly prime submodule element, n is a weakly $(2, 1)$ -absorbing submodule element of M .

Proof. Choose $r_1, r_2 \in R$ and $q \in M$, $0_M \neq r_1 r_2 q \leq n$. We will show that either $r_1 \in (n : e)$ or $r_2 \in (n : e)$ or $q \leq n$. As n is weakly prime, either $r_1 r_2 \in (n : e)$ or $q \leq n$. Moreover, $0_R \neq r_1 r_2$, otherwise we get a contradiction with $0_M \neq r_1 r_2 q$. On the other hand, by

Lemma 4.1, we know $(n : e)$ is a weakly prime ideal. Thus, $0_R \neq r_1r_2 \in (n : e)$ implies that $r_1 \in (n : e)$ or $r_2 \in (n : e)$. Consequently, we obtain that $r_1 \in (n : e)$ or $r_2 \in (n : e)$ or $q \leq n$. \square

In the next two theorems, we present the relationship between 2-absorbing (resp., weakly prime) submodule elements and $(3, 2)$ -absorbing (resp., weakly $(3, 2)$ -absorbing) submodule elements of an le-module.

Theorem 4.3. *Let n be a proper submodule element of M . If n is a 2-absorbing submodule element, then n is a $(3, 2)$ -absorbing submodule element of M .*

Proof. Let $r_1, r_2, r_3 \in R$ and $q \in M$, $r_1r_2r_3q \leq n$. Since n is a 2-absorbing submodule element, $r_1r_2 \in (n : e)$ or $r_1r_3q \leq n$ or $r_2r_3q \leq n$. Again, using the concept of 2-absorbing submodule elements, $r_1r_2 \in (n : e)$ or $r_1r_3 \in (n : e)$ or $r_2r_3 \in (n : e)$ or $r_1q \leq n$ or $r_2q \leq n$ or $r_3q \leq n$. Thus it is done. \square

Theorem 4.4. *Let n be a proper submodule element of M . If n is a weakly 2-absorbing submodule element, then n is a weakly $(3, 2)$ -absorbing submodule element of M .*

Proof. Choose $r_1, r_2, r_3 \in R$ and $q \in M$, $0_M \neq r_1r_2r_3q \leq n$. Since n is a weakly 2-absorbing submodule element, $r_1r_2 \in (n : e)$ or $r_1r_3q \leq n$ or $r_2r_3q \leq n$. Also, it is clear that $0_M \neq r_1r_3q$ and $0_M \neq r_2r_3q$. Then again since n is a weakly 2-absorbing submodule elements, we have either $r_1r_2 \in (n : e)$ or $r_1r_3 \in (n : e)$ or $r_2r_3 \in (n : e)$ or $r_1q \leq n$ or $r_2q \leq n$ or $r_3q \leq n$. It is done. \square

As final results, we characterize (n, k) -absorbing and weakly (n, k) -absorbing submodule elements in Theorem 4.5 and Theorem 4.6, respectively.

Theorem 4.5. *Suppose that p is a proper submodule element in M . For arbitrary two positive integers n and k such that $k < n$,*

- (1) *If p is an (n, k) -absorbing submodule element, p is a $(k + 1, k)$ -absorbing submodule element.*
- (2) *If p is an (n, k) -absorbing submodule element, then p is a (n, k') -absorbing submodule element, for any positive integer $k' > k$.*

Proof. (1): Suppose that p is an (n, k) -absorbing for any $k < n$. Then since $k < k + 1$, we can consider $k + 1$ as n . Thus by our assumption, p is $(k + 1, k)$ -absorbing.

(2): Let p be (n, k) -absorbing and k' be a positive integer such that $k' > k$. Choose $r_1, r_2, \dots, r_n \in R$ and $q \in M$, $r_1r_2\dots r_nq \leq p$. Then by our hypothesis, we have either $a_1a_2\dots a_k \in (p : e)$ or $b_1b_2\dots b_{k-1}q \leq p$, where the a_i 's and b_i 's are some of the r_i 's obtained on renaming. Let choose a among the r_i 's but other than the a_i 's. Thus, it is clear that $aa_1a_2\dots a_k \in (p : e)$. Let choose b among the r_i 's but other than the b_i 's. Then $bb_1b_2\dots b_{k-1}q \leq p$. As a consequence, continuing the same way, p is an (n, k') -absorbing submodule element, for every positive integer $k' > k$. \square

Theorem 4.6. *Suppose that p is a proper submodule element in M . For arbitrary two positive integers n and k such that $k < n$,*

- (1) *If p is a weakly (n, k) -absorbing submodule element, p is a weakly $(k + 1, k)$ -absorbing submodule element.*
- (2) *If p is a weakly (n, k) -absorbing submodule element, p is a weakly (n, k') -absorbing submodule element, for any positive integer $k' > k$.*

Proof. Similar to the previous proof. \square

REFERENCES

- [1] *Al-Khouja E. A.*, Maximal elements and prime elements in lattice modules, *Damascus Univ. J. of Basic Sciences*, 2003, **19**, 9–21.
- [2] *Anderson D. D.*, Multiplicative lattices, Dissertation, University of Chicago, 1974.
- [3] *Aslankarayigit Ugurlu E., Callialp F. and Tekir U.*, Prime, weakly prime and almost prime elements in multiplication lattice modules, *Open Mathematics*, 2016, **14**, 673-680.
- [4] *Badawi A.*, On 2-absorbing ideals of commutative rings, *Bulletin of the Australian Mathematical Society*, 2007, **75(3)**, 417-429.
- [5] *Bhuniya A. K. and Kumbhakar M.*, Uniqueness of primary decompositions in Laskerian le-modules, *Acta Math. Hunga*, 2019, **158 (1)**, 202-215.
- [6] *Bouba E. M., Mahdou N. and Tamekkante M.*, Duplication of a module along an ideal, *Acta Math. Hungar*, 2018, **154**, 29–42.
- [7] *Callialp F., Jayaram C. and Tekir U.*, Weakly Prime Elements in Multiplicative Lattices, *Communications in Algebra*, 2012, **40(8)**, 2825-2840.
- [8] *Callialp F., Tekir U. and Aslankarayigit E.*, On multiplication lattice modules, *Hacettepe Journal of Mathematics and Statistics*, 2014, **43(4)**, 571-578.
- [9] *Johnson E. W. and Johnson J. A.*, Lattice modules over principal element domains, *Comm. Algebra*, 2003, **31**, 3505–3518.
- [10] *Kumbhakar M. and Bhuniya A. K.*, On irreducible pseudo-prime spectrum of topological le-modules, *Quasigroups and Related Systems*, 2018, **2 (26)**, 251-262.
- [11] *Kumbhakar M. and Bhuniya A. K.*, On the prime spectrum of an le-module, *Journal of Algebra and Its Applications*, 2020; <https://doi.org/10.1142/S0219498821502200> (in press).
- [12] *Majcherek D. J.*, Multiplicative lattice versions of some results from Noetherian commutative rings, Dissertation, University of California, Riverside, 2014.
- [13] *Şengelen Sevim, E. and Koç, S.*, On n-Prime Ideals, *University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics*, 2018, **80(2)**, 179-190.
- [14] *Manjarekar C. S., Bingi A. V.*, Absorbing elements in lattice modules, *International Electronic Journal of Algebra*, 2016, **19(19)**, 58-76.