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ON 2-ABSORBING SUBMODULE ELEMENTS IN LE-MODULES AND
ITS GENERALIZATIONS

Emel Aslankarayigit Ugurlu®

In this paper, we introduce the concept of 2-absorbing submodule elements in an
le-module M as follows: a proper submodule element q in M is said to be 2-absorbing
for any r;s € R and m € M if rsm < q, then either rs € (¢ : €) or rm < q or
sm < q. Moreover, we define some generalizations of the new concept such as weakly
2-absorbing, n-absorbing, weakly n-absorbing, (n,k)-absorbing, weakly (n, k)-absorbing
submodule elements in le-modules. After presenting a main example for le-modules,
we study some counter erxamples for the generalizations. In addition to giving some
characterizations for the new concepts, we investigate the relationship between prime
(primary) submodule elements and them.

Keywords: complete lattices, le-modules, submodule elements, 2-absorbing (weakly 2-
absorbing) submodule elements

MSC2020: 13A15, 16D60, 06F25.

1. Introduction

As a generalization of the commutative ideal theory, there are a great many publi-
cations addressing multiplicative lattices, see [2], [7], [12]. In 1970, the authors introduced
a new concept called lattice modules, see [9]. They defined a lattice module similar to a
module over a ring. A lattice module M over a multiplicative lattice L is a complete lattice
together a multiplication between elements of L and M, which satisfies similar properties of
a module over a ring, see [9]. If we desire to make it more concrete with an example, consider
L as the lattice of every ideals in a ring which M is the lattice of every submodules in any
module over the ring. In this case, M is a lattice module over L. Beside to Noetherian
lattice modules, there exist a large number of papers on lattice modules, see [1], [3], [8]-[9].
Furthermore, the concept of prime ideals, prime submodules, and prime elements have a
significant place in abstract algebra since they are used in understanding the structure of
rings, modules, lattices, and lattice modules, see [3], [6]-[8], [13]-[14].

In 2018, the authors introduced a new algebraic construction, called “le-module over a
commutative ring”, by the help of a different approach to the “abstract submodule theory”,
see [10]. In the paper, they had two main goals: First one was to make it achievable
to separate submodules from a typical subset in any module, thus they generalized the
properties of special kinds of submodules. The other one was to build a channel to study
the characteristics of rings more straight than the lattice module theory. To introduce the
concept of le-modules, the authors defined, in [5], an le-semigroup (M, +, <, e) as a complete
lattice with the greatest element e, which is also a commutative monoid with the zero element

0ps that holds the property m + (\/ m;) = \/ (m +m;), for all m,m; € M,i € I.
iel iel
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Afterwards, they introduced the concept of le-modules as followings: Assume that (M, +, <
,€) is an le-semigroup with 0p; and R is a commutative ring. We say M is an le-module
over R if there exists a mapping R X M — M, which holds
1) r(m1 + m2) = rmy + rmao,
) (r1 +r)m < rym+ rom,
) (r1ire)m = 71 (ram),
) 1gm = m and Ogm = r0p; = Oy,
5) For every r,r1,72 € R and m,mq,mg,m; € M, r(\/ m;) = (' rm;).
JEA JjEA

Note that from (5), we have (5) : m; < my = rmy < rmy, for all r € R and
my,mo € M.

An element n of an le-module M is said to be a submodule element if n + n,rn <n,
for all » € R. We denote the set of all submodule elements of M by Sub(M). We set
(n:a)=V{zr € M :ar <n}, where a € R and n € Sub(M). It is easy to see that (n : a)
is in Sub(M) and also, n < (n : a) and a(n : a) < n. For all z € M and a € R, we know
x < (n : a) necessary and sufficient condition ax < n. For k € Sub(M) and n € M, the set
(k:n)={a € R:an <k} is an ideal of R. For any two submodule elements of M such
that n < k, we have (n:e) C (k: e). A submodule element n of M is called compact if for

a family of submodule elements {ny}ica if n < > ny implies n < ny, +ny, + -+ + ny,
AEA
for some subset {A1, Aa,..., Ax}. Note that a sum of finite number of compact submodule

elements is a compact submodule element. We denote the set of all compact submodule
elements of M as M,. Futhermore, if each n € Sub(M) is a sum of compact submodule
elements in M, it is called a compactly generated le-module, or briefly CG-le-module. Also,
an le-module M is called a faithful le-module when (05 : €) = Og. For more information,
we refer the reader to [5], [10], [11].

In Section 2, we introduce the concept of 2-absorbing and weakly 2-absorbing submod-
ule elements in an le-module M. One can easily see that the class of 2-absorbing submodule
elements is a subclass of weakly 2-absorbing submodule elements. However, we show every
weakly 2-absorbing submodule elements is not a 2-absorbing submodule element, see Exam-
ple 2.2. After proving some main properties of the new concepts, in Theorem 2.6 (resp., in
Theorem 2.7), we characterized 2-absorbing (resp., weakly 2-absorbing) submodule elements
of a CG-le-module M. In Section 3, for a positive integer n, we introduce the n-absorbing
(weakly n-absorbing) submodule elements in an le-module M and immediately conclude
the concept is a generalization of 2-absorbing (weakly 2-absorbing) submodule elements. In
Example 3.1, we show every weakly n-absorbing submodule elements is not an n-absorbing
submodule element. Also, we define the notion of w(p), which analyzes in some sense how
far p is from being a prime submodule element for a submodule element p in M. In the
last section, for any two positive integers n and k such that k < n, we present the concept
of (n, k)-absorbing and weakly (n, k)-absorbing submodule elements in an le-module M. It
is easy to see that the class of weakly (n,k)-absorbing submodule elements contains the
class of (n,k)-absorbing submodule elements. On the other hand, the other containment
doesn’t hold, see Example 4.1. Moreover, the relation between the class of (n, k)-absorbing
(also, weakly (n, k)-absorbing) submodule elements and the other classes defined above is
invastigated, see Theorem 4.2, 4.3, 4.4. As final results, we characterize the (n, k)-absorbing
(resp., weakly (n, k)-absorbing) submodule elements in Theorem 4.5 (resp., Theorem 4.6).

2. 2-absorbing and weakly 2-absorbing submodule elements in le-modules

Throughout our study grM (briefly, M) represents an le-module M over R, where R
is a commutative ring with 1p.

Definition 2.1. Let p be a proper submodule element of M. Then
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(1) p is called a 2-absorbing submodule element for any a,b € R and n € M if
abn < p, then ab € (p:e) or an <p or bn < p.

(2) p is called a weakly 2-absorbing submodule element for any a,b € R andn € M
if Ops # abn < p, thenab € (p:e) oran <p orbn < p.

Example 2.1. Let R be a ring and M = {S C R :0 € S}. Then (M,C) is a complete
lattice with the greatest element e = R. Now, define X +Y ={z+y:z € X,y € Y} and
rX ={rxz:x € X} for eachr € R; X,Y € M. Thus, (M,+,C,e) is an le-module with the
zero element 0y = {0}. Also, it is clear that N is an R-submodule of M if and only if N €
M is a submodule element of M. In particular, let R =Zs and M = {S C R:0€ S}. The
complete lattice (M, C) with the following Hasse Diagram is an le-module according to above
addition and scalar multiplication, see Figure 1.

Z5
©.123) .12 %) 0,139 ©.2.3, %)
©,1,2) ©,1,3) .1, (0,2,3) (0.2, %)
0.1} 0.2 {0.3} ©.%
{0}

FIGURE 1. The Hasse Diagram of the Complete Lattice (Zs, C).

Remark 2.1. It is easiy to see that every 2-absorbing submodule element is a weakly 2-
absorbing submodule element. However, we can’t claim the converse, to see this, investigate
the following example:

Example 2.2. Let R = Z3y and M = {X C R:0 € X}. Now, consider n = {0}. Notice that

(n:e) =(0). It is a weakly 2-absorbing submodule element but not 2-absorbing submodule
element. Indeed, 2-3-{0,5} <n, but2-3 ¢ (n:e) and 2-{0,5} £ n, 3-{0,5} £ n.

Theorem 2.1. Let n be a proper submodule element of M. If n is a 2-absorbing submodule
element, (n :r) is a 2-absorbing submodule element for all r € R.

Proof. Take a,b € R and m € M such that abm < (n : r), that is, abrm < n. As n
is a 2-absorbing submodule element, either ab € (n : e) or arm < n or brm < n. Then
abe <n < (n:r),soab e ((n:r):e). Consequently, ab € ((n:r):e)oram < (n:r)or
bm < (n:r), as needed. O

~
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Theorem 2.2. Let n be a proper submodule element of M. If n is a 2-absorbing submodule
element, then (n : x) is a 2-absorbing ideal of R for all x € M.

Proof. Choose a,b,c¢ € R such that abc € (n : z), i.e., abcx < n. Since n is a 2-absorbing
submodule element, ab € (n : e) or acx < n or bex < n. Then abzr < abe < n,soab € (n: x).
As a consequent, ab € (n:z) or ac € (n: z) or be € (n : x). O

Corollary 2.1. Let n be a proper submodule element of M. If n is a 2-absorbing submodule
element, then (n : e) is a 2-absorbing ideal of R.

Theorem 2.3. Let M be a faithful le-module and n be a proper submodule element of M.
If n is a weakly 2-absorbing submodule element, then (n : e) is a weakly 2-absorbing ideal of

R.

Proof. Take a,b,c € R such that Or # abc € (n : e), that is, abce < n. Now, we have two
cases: Case 1: Let 0py = abce. Then abe € (05 : €) = Og, which is a contradiction. Case
2: Let 0ps # abce. As n is a weakly 2-absorbing submodule element, either ab € (n : e) or
ace < n or bee < n. Consequently, ab € (n:e) orac € (n:e) or bc € (n: e), as required. O

Theorem 2.4. Let M be a CG-le-module and n be a proper submodule element of M. If
n is a weakly 2-absorbing submodule element such that (n : e)?n # Opr, n is a 2-absorbing
submodule element.

Proof. Suppose that (n : e)?n # 0j7. Let choose 7,5 € R and ¢ € M such that rsq < n.
Then we have two cases: Case 1: Let 0p; # rsq. Since n is a weakly 2-absorbing submodule
element, rs € (n: e) or r¢ < n or sq < n. It is done. Case 2: Suppose rsq = 0p;. By our
hypothesis (n : €)?n # 0y, there are a,b € (n : ) and a compact submodule element h € M
such that h < n and 0y # abh < (n : €)?n. Then

Op #abh < (r+a)(s+b)(g+h) = (rs+rb+as—+ab)(qg+ h)
=(rs+rb+as+ab)g+ (rs+rb+ as+ ab)h
<rsq-+rbq+ asq+ abq 4+ rsh + rbh + ash +abh <n+n+..+n=n
Thus, since n is a weakly 2-absorbing submodule element, (r + a)(s +b) € (n : €e) or

(r+a)(g+h)<nor(s+0b)(qg+h)<n.Since a,b € (n:e), we have that either rs € (n : €)
or rqg <n or sq <n. O

Definition 2.2. A proper element n of M is called a nilpotent submodule element of M if
(n: e)kn = 0y for some positive integer k.

Corollary 2.2. Let M be a CG-le-module and n be a proper submodule element of M. If
n is a weakly 2-absorbing submodule element which not 2-absorbing, then n is a nilpotent
submodule element.

Proof. By Theorem 2.4, it must be (n : €)?n = 0y, thus it is done. |

Corollary 2.3. Let M be a CG-le-module and n be a proper submodule element of M. If n
is a weakly 2-absorbing submodule element but not 2-absorbing, then (n : e)*n = 0y, for all
k>2.

Proof. By Theorem 2.4, (n : €)?n = 0. Also, we know (n : €)®> C (n : e)2. Then one
can easily see that (n : e)>n < (n : €)?n = 0y, that is, (n : €)®>n = 0y. By iteration,
(n:e)fn =0y, for all k > 2. O

Theorem 2.5. Suppose that M is a CG-le-module and {n;}ica is a (ascending or descend-
ing) chain of submodule elements of M. Then
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(1) For every i € A, if n; is a 2-absorbing submodule element of M, then A n; is a
€A
2-absorbing submodule element of M.
(2) For everyi € A, if n; is a weakly 2-absorbing submodule element of M, then N n; is
iEA
a weakly 2-absorbing submodule element of M.
Proof. (1): If {n;}icn is a ascending chain, A n; = ny, so it is done. Suppose that ... <
FISYAN
n; < ... < ng < nqp is an descending chain of 2-absorbing submodule elements of M. Now,
it is clear that A n; is proper since A n; # e. Take r,s € Rand n € M, rsn < A n;.

€A N €A
Suppose rn % A n; and sn £ A n;. Then there exist ny and n,, such that rn £ ns and
N €A

sn ﬁ nm. Without losing the generality, assume that ny < n,,. Then we have sn £ ny.
Since ny is a 2-absorbing submodule element and rsn < ng, we get rs € (ny : €). Also, note
that for each n; < ny, we have rn, sn f n;, which implies that rs € (n; : €). Since for each
ng < n;, we have (ng : e) C (n;: e),sors € (n; : e). Thus rs € () (n; : e). By Proposition
1EA
2.2 in [5], we have () (n;:e) = ( A\ n; : e). Consequently, A n; is a 2-absorbing submodule
€A i€A €A

element of M.

(2): Similar to previous proof. O

Now, we give a characterization for the concept of 2-absorbing submodule elements
of M.

Theorem 2.6. Suppose that M is a CG-le-module and p is a proper submodule element in
M. The next items are equivalent:

(1) p is a 2-absorbing submodule element in M.

(2) For any a,b € R and n € M such that p < n, if abn < p, ab € (p: e) oran < p or
bn < p.

(3) For any a,b€ R withab¢ (p:e), (p:a)=(p:ab) or (p:ab)=(p:b).

(4) For any a,b€ R, h € M., if abh <p, ab€ (p:e) or ah <p or bh < p.

Proof. (1) = (2) : Tt is clear. (2) = (3) : Suppose that a,b € R such that ab ¢ (p : e). Take
a submodule element k € M such that k& < (p : ab). Then abk < p. Consider u = k + p. It
is clear that ab(k + p) = abk + abp < p. Thus, we have p < u, abu < p and ab ¢ (p: ¢). By
our hypothesis (2), we conclude au < p or bu < p. This means that ak < p or bk < p, that
is, k< (p:a)ork < (p:b). Then we say (p:ab) < (p:a)or (p:ab) < (p:b), since M is
a CG-le-module. On the other hand, it is clear that (p:a) < (p: ab) and (p:b) < (p: ab).
Consequently, (p:ab) = (p:a)or (p:ab) = (p:b).

(3) = (4) : Let a,b € R, h € M, such that abh < p, that is, h < (p : ab). Assume
that ab ¢ (p : e). By item (3), we get (p:ab) = (p:a) or (p: ab) = (p:b). This implies that
h<(p:a)orh<(p:b). Hence ah < p or bh < p, as desired.

(4) = (1) : Choose a,b € R and n € M, abn < p but an £ p and bn £ p. Since M
is a CG-le-module, there are compact submodule elements h and h’ such that h < n,ah %
p, ' <n,bh/ £ p. Also, we know that h+ h’ € M,. Then we have ab(h+ h') = abh + abh’ <
abn + abn < p + p = p. Hence, by our assumption, it must be either ab € (p : e) or
a(h+1') <porb(h+h') <p. The second and third one imply a contradiction with ah £ p
and bh' £ p, recpectively. As a conclusion, ab € (p : e). O

Similar to Theorem 2.6, we can characterize the concept of weakly 2-absorbing sub-
module elements of M.

Theorem 2.7. Suppose that M is a CG-le-module and p is a proper submodule element in
M. Then the next items are equivalent:
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(1) p is a weakly 2-absorbing submodule element.
(2) For any a,b € R andn € M withp <n, if Opr # abn < p, ab € (p:e) oran <p or

bn < p.
(3) For any a,b € R with ab ¢ (p : e), (p : ab) = (Ops : ab) or (p : ab) = (p : a) or
(p:ab) = (p:b).

(4) For any elements a,b € R, h € M,, if Opr # abh < p, ab € (p:e) or ah < p orbh < p.

Proof. (1) = (2) : Obvious. (2) = (3) : Let a,b € R and n € M such that p < n and
Opr # abn < p. Assume ab ¢ (p : e). Take a submodule element k € M such that & < (p : ab).
Then abk < p. Now, we have two cases: Case 1: If 05, = abk, then k < (0ps : ab). Also, we
know that (0p7 : ab) < (p : ab). Thus (p : ab) = (0pr : ab). Case 2: If 0p; # abk, then we
have 0p; # ab(k+p) = abk+abp < p. Consider u = k+p. Thus we have p < u, 0pr # abu <p
and ab ¢ (p : e). By our hypothesis (2), we conclude au < p or bu < p. This means that
ak < por bk < p, that is, k < (p:a) or k < (p : b). Then we say (p : ab) < (p : a) or
(p:ab) < (p:b). On the other hand, it is clear that (p:a) < (p: ab) and (p: b) < (p: ab).
Consequently, (p : ab) = (p : a) or (p : ab) = (p : b). (3) = (4) : Similar to (3) = (4)
in previous theorem. (4) = (1) : Take a,b € R and n € M, Op # abn < p but an £ p
and bn £ p. As M is a CG-le-module, there is a compact submodule element h such that
h < n,ah £ p, and Op # abh. Similarly, there is a compact submodule element A’ such
that A’ < n,bh’ £ p and 0p; # abh/. Moreover, we know that h + k' € M,. Then we get
Onr # ab(h + h') = abh 4 abh’ < abn + abn < p 4+ p = p. Thus, by our assumption, either
ab€e (p:e)ora(h+h') <porbh+h') <p. Both of the last two options contradicts with
ah £ p and bh/ £ p, recpectively. As a result, ab € (p: e). O

3. n-absorbing and weakly n-absorbing submodule elements in le-modules

In this section, we would like to generalize 2-absorbing (resp., weakly 2-absorbing)
submodule elements to n-absorbing (resp., weakly n-absorbing) submodule elements for a
positive integer n.

Definition 3.1. Let p be a proper submodule element of M. For a positive integer n,

(1) p is called an n-absorbing submodule element for every ri,ra,..,r, € R and
q € M if rira..mpq < p, either riry..r, € (p:e) or riq < p for some i, where ; is
the element rire..7i_17i11..7 and 1 <7 < n.

(2) p is called a weakly n-absorbing submodule element for every ri,7a,...,7, € R
and ¢ € M if Opr # r1r9..rnq < p, either rire..1 € (p : €) or ;g < p for some i,
where T; is the element rire..7i—17i41...7 and 1 < i < n.

Remark 3.1. The concept of weakly n-absorbing submodule elements is a generalization of
n-absorbing submodule elements. However, every weakly n-absorbing submodule elements is
not an n-absorbing submodule element, see the next example:

Example 3.1. Let R = Zgjp and M = {X C R : 0 € X}. Now, consider n = {0}. It
is a weakly 3-absorbing submodule element but not 3-absorbing submodule element. Indeed,

2:3-7-{0,5} <n, but2-3-7¢ (n:¢e) = (0) and 2-3-{0,5} £ n, 2-7-{0,5} £ n,
3.7-{0,5} £ n.

Theorem 3.1. Letn € Z™ and p be a proper submodule element of M. If p is an n-absorbing
submodule element, then (p : e) is an n-absorbing ideal of R.

Proof. Take r1,72,...;Tn,nt1 € Rsuch that rire...r,rnr1 € (p:e), that is, rira..rprpie <
p. Let 7; be the element ry7ra...7_1741...7, and 1 < i < n. Assume that 7 r,41 € (p : €)
for all i. Then r179...75 (r41€) < p and 7 (rpq1e) % p imply that r7ro...7, € (p : €) because
p is an n-absorbing submodule element. Thus it is done. |
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Theorem 3.2. Let n,m € Z*+ such that n < m and p be a proper submodule element of M.
If p is an n-absorbing submodule element, then p is an m-absorbing submodule element of
M.

Proof. Choose 11,79, ...;Tn,...,Tm € R and ¢ € M such that r17a...7,(Tn41..-7mq) < p. Then
since p is an n-absorbing submodule element, rirs...r,, € (p : €) or 7 (rpt1--Tmq) < P
for some i, where 7; is the element ry75...r;_17;11...7, and 1 < ¢ < n. This means that
7172 Ty Trt1Tm € (p i €) or 7 (rpt1...7m)q < p. Thus p is an m-absorbing submodule
element of M. O

Recall that a proper submodule element ¢ of an le-module M is called a prime sub-
module element for any r € R and n € M if rn < ¢, then n < g or r € (q : e), see [5].
Moreover, it is proven that (n : e) is a prime ideal of R in Corollary 3.7 of [5].

Now, for an n-absorbing submodule element p of M, we would like to introduce a
new notion, denoted by w(p), which analyzes in some sense how far p is from being a prime
submodule element.

Definition 3.2. Let n € Z™ and p be an n-absorbing submodule element of M. Then
w(p) :=min{n € Z* : p is an n-absorbing submodule element of M}, otherwise w(p) := oc.
Also, w(e) := 0.

Remark 3.2. For any p € Sub(M),

(1) p is prime < w(p) = 1.
(2) wp)=0<p=e.

Note that a proper submodule element ¢ of an le-module M is called a primary
submodule element for any » € R and n € M if rn < ¢, then n < g or r* € (¢ : ¢) for
some k € N, see [5]. Also, we know that if ¢ is a primary submodule element of M, then
Rad(q) := Rad((q : e)) is a prime ideal of R, see Proposition 3.3 in [5]. In this case, if
Rad(q) = P, then we say ¢ is a P-primary submodule element.

Now, we invastigate the relationship between the primary submodule elements and
the n-absorbing submodule elements of M.

Theorem 3.3. Letn € Z%. If q is a P-primary submodule element of M such that P"e < g,
then q is an n-absorbing submodule element of M, where Rad(q) = P is a prime ideal of R.
Furthermore w(q) < n.

Proof. Take r1,72,....,7, € R and x € M such that rirs..r,z < ¢ and Tz j{ q for all
1 <i < n, where 7; is the element r175...r;_17;41...7,. Consider r;(7;z) < ¢q. Then as iz £ ¢
and ¢ is a P-primary submodule element, we get r; € Rad(q) = Rad((q : e)) = P, for all
1 < i < n. This means that r17y...r,, € P™. Then, as P"e < ¢, we say m172...1, € (q : €).
Thus ¢ is an n-absorbing submodule element of M. Finally, w(g) < n is obvious. (|

As a final result for this section, we present the relationship between the primary
submodule elements and the 2-absorbing submodule elements of M.

Corollary 3.1. Let g be a P-primary submodule element of M, where the ideal Rad(q) = P
is prime. Then q is a 2-absorbing submodule element of M < PZ%e < q.

Proof. Suppose that g is a P-primary submodule element of M. (=:) Let ¢ be a 2-absorbing.
By Corollary 2.1, (g : €) is a 2-absorbing ideal in R. By Theorem 2.4 in [4], [Rad((q : €))]? C
(¢ : e). As Rad(q) = Rad((q : €)) = P, we get P2 C (q : e), that is, P%e < ¢q. («:) By
previous Thorem. O
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4. (n,k)-absorbing and weakly (n,k)-absorbing submodule elements in le-
modules

In this part of our study, we would like to generalize the concept of n-absorbing
(weakly n-absorbing) submodule elements to (n, k)-absorbing (weakly (n, k)-absorbing) sub-
module elements for any two positive integers n and k such that k < n.

Definition 4.1. Let p be a proper submodule element in M. Then for any two positive
integers n and k such that k < n,

(1) p is called an (n, k)-absorbing submodule element for all r1,72,...,7, € R and
q € M if rirg..rng < p, then either there are k of the r;’s whose product is in (p : e)
or there are (k — 1) of the r;’s whose product with q is less than or equal to p.

(2) p is called a weakly (n, k)-absorbing submodule element for all r1,75,...,7, € R
and g € M if Op; # r172...70q < p, then either there are k of the r;’s whose product is
in (p:e) or there are (k — 1) of the r;’s whose product with q is less than or equal to
.

Remark 4.1. It is easy to see that the class of weakly (n, k)-absorbing submodule elements
contains the class of (n, k)-absorbing submodule elements. On the other hand, the converse
of the containment doesn’t hold, see the following example:

Example 4.1. Let R = Zaz19 and M = {X C R: 0 € X}. Now, consider n = {0}. It is
a weakly (4, 3)-absorbing submodule element but not (4, 3)-absorbing submodule element.
Firstly, note that (n : e) = (0). It is clear 2-3-7-11-{0,5} < n. However, 2-3-7 ¢ (n :
e),2:-3:-11¢ (n:e),2-7-11¢ (n:¢€),3-7-11 ¢ (n:e), and2-3-{0,5} £ n, 2-7-{0,5} £ n,
2-11-{0,5} £n,3-7-{0,5} £n,3-11-{0,5} £ n, 7-11-{0,5} £ n.

In the next theorem, we examine the relationship between the concept of prime sub-
module elements and the concept of (2, 1)-absorbing submodule elements.

Theorem 4.1. Let n be a proper submodule element of M. If n is a prime submodule
element, then n is a (2,1)-absorbing submodule element of M.

Proof. Let r1,75 € R and ¢ € M, riroq < n. We will show that either 1 € (n : e) or
r9 € (n:e) or ¢ < n. Since n is prime, r173 € (n: e) or ¢ < n. Also, by Corollary 3.7 in [5] ,
we know that (n : e) is prime. Thus, g <norri € (n:e)orrqs € (n:e). O

To obtain the relationship between weakly prime submodule elements and weakly
(2, 1)-absorbing submodule elements of an le-module, firstly we need the followings:

Definition 4.2. A proper submodule element q in M is called a weakly prime submodule
element for anya € R and m € M if Opr # am < g, then a € (q:¢e) orm < gq.

Lemma 4.1. Let M be a faithful le-module and n be a proper submodule element of M. If
n is a weakly prime submodule element, then (n : e) is a weakly prime ideal of R.

Proof. Take a,b € R such that Or # ab € (n : e), that is, abe < n. Now, we have two cases:
Case 1: 0y = abe. Then ab € (0ps : €) = Og, a contradiction. Case 2: 0p; # abe. As
abe < n and n is weakly prime, either a € (n: e) or be < n, that is, b € (n : e). ]

Theorem 4.2. Suppose that M is a faithful le-module and n is a proper submodule ele-
ment of M. Then if n is a weakly prime submodule element, n is a weakly (2,1)-absorbing
submodule element of M.

Proof. Choose r1,792 € R and g € M, Op; # r1r2qg < n. We will show that either r € (n: e)
orrg € (n:e)or g <n.As n is weakly prime, either r17o € (n : e) or ¢ < n. Moreover,
Ogr # rirg, otherwise we get a contradiction with 0p; # ryroq. On the other hand, by
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Lemma 4.1, we know (n : e) is a weakly prime ideal. Thus, Or # 172 € (n : €) implies that
r1 € (n:e)orry € (n: e). Consequently, we obtain that r; € (n:e) or ro € (n:e) or
q <n. (|

In the next two theorems, we present the relationship between 2-absorbing (resp.,
weakly prime) submodule elements and (3, 2)-absorbing (resp., weakly (3, 2)-absorbing) sub-
module elements of an le-module.

Theorem 4.3. Let n be a proper submodule element of M. If n is a 2-absorbing submodule
element, then n is a (3,2)-absorbing submodule element of M.

Proof. Let r1,r9,73 € R and ¢ € M, rirarsg < n. Since n is a 2-absorbing submodule
element, r179 € (n : e) or r17r3q < n or rorsq < n. Again, using the concept of 2-absorbing
submodule elements, 7172 € (n:e) or 113 € (n:e) or rorg € (n:e) or rig <norreqg<n
or r3q < n. Thus it is done. O

Theorem 4.4. Let n be a proper submodule element of M. If n is a weakly 2-absorbing
submodule element, then n is a weakly (3,2)-absorbing submodule element of M.

Proof. Choose r1,79,73 € Rand g € M, Op; # r17213¢ < n. Since n is a weakly 2-absorbing
submodule element, 179 € (n: €) or rirsq < nor rarsq < n. Also, it is clear that Op; # 11739
and 0p7 # rorsq. Then again since n is a weakly 2-absorbing submodule elements, we have
either 79 € (n:e)orrirs € (n:e) orrarg € (n:e) or rig < norreg <morrsg <n.ltis
done. O

As final results, we characterize (n, k)-absorbing and weakly (n, k)-absorbing submod-
ule elements in Theorem 4.5 and Theorem 4.6, respectively.

Theorem 4.5. Suppose that p is a proper submodule element in M. For arbitrary two
positive integers n and k such that k < n,

(1) If p is an (n,k)-absorbing submodule element, p is a (k + 1, k)-absorbing submodule
element.

(2) If p is an (n, k)-absorbing submodule element, then p is a (n,k')-absorbing submodule
element, for any positive integer k' > k.

Proof. (1): Suppose that p is an (n, k)-absorbing for any k& < n. Then since k < k + 1, we
can consider k + 1 as n. Thus by our assumption, p is (k + 1, k)-absorbing.

(2): Let p be (n, k)-absorbing and &’ be a positive integer such that &’ > k. Choose
r1,72,...Tn € R and ¢ € M, rire..7,qg < p. Then by our hypothesis, we have either
aias...ar, € (p : e) or byba..by_1q¢ < p, where the a;’s and b;’s are some of the r;’s is
obtained on renaming. Let choose a among the r;’s but other than the a;’s. Thus, it is
clear that aajas...ar € (p : e). Let choose b among the r;’s but other than the b;’s. Then
bb1by...b,—1q < p. As a consequence, continuing the same way, p is an (n, k’)-absorbing
submodule element, for every positive integer k' > k. O

Theorem 4.6. Suppose that p is a proper submodule element in M. For arbitrary two
positive integers n and k such that k < n,

(1) If p is a weakly (n, k)-absorbing submodule element, p is a weakly (k+ 1, k)-absorbing
submodule element.

(2) If p is a weakly (n,k)-absorbing submodule element, p is a weakly (n,k’)-absorbing
submodule element, for any positive integer k' > k.

Proof. Similar to the previous proof. O
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