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G-FRAMES AND GREEDY APPROXIMATIONS IN HILBERT SPACES

Dongwei Li1, Jinsong Leng2, Thingzhu Huang3

In this paper, we introduce the greedy approximations for g-frames in Hilbert

spaces. It is shown that g-frames satisfy the quasi greedy and almost greedy conditions.

Moreover, we prove that g-Riesz bases satisfy the greedy condition.
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1. Introduction

The concept of frames was introduced by Duffine and Schaefer [9] to address some deep

questions in non-harmonic Fourier series. It was made popular by Daubechies [6]. Today

frame theory has applications in a variety of areas of mathematics, physics and engineering

such as probability statistics[13], sigma-delta quantization [2], filter bank theory [5], signal

and image processing [3], system modeling [20], wireless communications [17] and many

other fields.

Sun in [18] introduced the concept of g-frame in Hilbert spaces. G-frames are natural

generalizations of frames which cover many other recent generalizations of frames such as

bounded quasi-projections [11], fusion frame [1] and pseudo-frames [14] and a class of time-

frequency localization operators [8].

There is a long tradition for studying the approximations of frames. The approx-

imation properties of frames in Banach spaces was studied in [4]. In [12], the authors

introduced the symmetric approximation of frames by normalized tight frames. In [10], the

authors studied nonlinear approximation properties of multivariate wavelet bi-frames. And

the nonlinear approximations of frames in Hilbert spaces was studied in [15].

We know that g-frames and g-Riesz bases have properties similar to those of frames

and Riesz bases, respectively. However, not all the properties are similar. For example,

Riesz bases are equivalent to exact frames, but it is not the case for g-Riesz bases and exact

g-frames [18]. So it is necessary to study the approximations of g-frames in Hilbert space.

In this paper, we study the nonlinear approximations of g-frames by greedy approximations.

Throughout this paper, H andK are separable Hilbert spaces and {H n} is a sequence
of closed subspaces of K and L(H ,H n) is the collection of all bounded linear operators from

H into H n. For T ∈ L(H ), we denote R T for the Range of T , and we denote N T for the

Ker of T .
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Note that for any sequence {H n}, we can assume that there exists a Hilbert space

K such that for all n ∈ N , H n ⊂ K ( for example K = ⊕nH n).

Definition 1.1. A sequence {Λn} ⊂ L(H ,H n) of bounded operators from H to H n is said

to be a generalized frame, or simply a g-frame, for H with respect to {H n} if there are two

positive constants A and B such that

A∥x∥2 ≤
∑
n

∥Λnx∥2 ≤ B∥x∥2, for all x ∈ H .

We call A and B the lower and upper g-frame bounds, respectively. We simply call

{Λn} a g-frame for H whenever the space sequence {H n}n∈N is clear. We call {Λn}n∈N a

tight g-frame if A = B and a Parseval g-frame if A = B = 1. If only the second inequality

is required, we call it a Bessel g-sequence.

Note that the {Λn} is a Bessel g-sequence if {Λn} is a g-frame for {Λ∗
n(H n)}. And a

g-basis is indeed a generalization of Schauder basis of a Hilbert space [16].

Let Λ = {Λn} be a Bessel g-sequence, the synthesis operator for Λ is given by

T : (
∑
n

⊕H n)ℓ2 −→ H : T{cn} =
∑
n

Λ∗
n(cn).

The adjoint T ∗ of the synthesis operator is called the analysis operator. Then the frame

operator S of Λ is defined as follows

Sx =
∑
n

Λ∗
nΛnx, for all x ∈ H .

W.Sun proved in [18] showed that S is a well-defined, bounded and self-adjoint operator.

Then the following reconstruction formula takes place for all x ∈ H

x = SS−1x = S−1Sx =
∑
n

Λ∗
nΛ̃nx =

∑
n

(Λ̃n)
∗Λnx.

We call {Λ̃n} = {ΛnS
−1} the canonical dual g-frame of Λ.

Definition 1.2. If {Λn} is g-complete and there are positive constants A and B such that

for any finite subset I ⊂ N and cn ∈ H n, n ∈ I,

A
∑
n∈I

∥cn∥2 ≤ ∥
∑
n∈I

Λ∗
ncn∥2 ≤ B

∑
n∈I

∥cn∥2,

then we say that {Λn} is a g-Riesz basis for H .

In [18], the author has shown that every g-frame can be considered as a frame. More

precisely, let {Λn} be a g-frame for H and {enj}j∈Jn be an orthonormal basis for H n, where

Jn ⊂ N , then there exists a frame {unj}n∈N ,j∈Jn of H such that

unj = Λ∗
nenj . (1)

We call {unj}n∈N ,j∈Jn the frame induced by {Λn} with respect to {enj}n∈N ,j∈Jn . The next

lemma is a characterization of g-frame by a frame.

Lemma 1.1. [18] Let {Λn} be a family of linear operators and {unj} be defined as in (1).

Then {Λn} is a g-frame (respectively Bessel g-sequence, g-Riesz basis) for H if and only if

{unj}n∈N ,j∈Jn is a frame (respectively Bessel sequence, Riesz basis) for H .
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The notion of N -term error of approximation and thresholding greedy algorithm of

order N for Schauder basis in Banach space have been defined and studied in [7, 19].

Let X be a Banach space and (xn, fn) be a Schauder basis for X , and let

ΣN =

{∑
n∈σ

anxn : σ ⊆ N, |σ| = N ∈ N, an are scalars

}
.

For x ∈ X , x =
∑

n∈N fn(x)xn we define

Σ̃N =

{∑
n∈σ

fn(x)xn : σ ⊆ N , |σ| = N ∈ N

}
.

For each x ∈ X the N -term errors of approximation are defined by

σN (x) = inf {∥x− y∥ : y ∈ ΣN} , σ̃N (x) = inf
{
∥x− y∥ : y ∈ Σ̃N

}
.

Let δ = {ni} be a permutation of natural numbers such that

|fn1(x)| ≥ |fn2(x)| ≥ |fn3(x)| ≥ · · ·

The N -greedy approximant is given by GN (x) =
∑N

i=1 fni(x)xni .

Definition 1.3. A Schauder basis (xn, fn) is said to be quasi greedy if there exists a constant

C such that ∥GN (x)∥ ≤ C∥x∥ for all x ∈ X . It is said to be almost greedy if there exists

a constant C such that ∥x − GN (x)∥ ≤ Cσ̃N . If there exists a constant C such that ∥x −
GN (x)∥ ≤ CσN for all x ∈ X , it is said to be greedy.

2. G-frames and greedy approximation

Let Λ = {Λn} be a g-frame for a Hilbert space H with canonical dual g-frame

{ΛnS
−1}. Let x =

∑
n Λ

∗
nΛnS

−1x for all x ∈ H . We now define the nonlinear N -term

approximation manifolds for g-frames, in the similar manner as we have defined for Schauder

basis as follows.

ΣN (Λ) =

{∑
n∈σ

Λ∗
ncn : σ ⊆ N, |σ| = N, cn are scalars

}
,

Σ̃N (Λ) =

{∑
n∈σ

Λ∗
nΛnS

−1x : σ ⊆ N , |σ| = N

}
.

We define the N -term approximation errors as

σN (x) = inf{∥x− y∥ : y ∈ ΣN (Λ)}, σ̃N (x) = inf{∥x− y∥ : y ∈ Σ̃N (Λ)}.

Next, we define Sσ, Qσ : H −→ H as

Sσ(x) =
∑
n∈σ

Λ∗
nΛnx, σ ⊆ N , |σ| = N, Qσ(x) = Sσ(S

−1(x)) =
∑
n∈σ

Λ∗
nΛnS

−1x.

Let γ = {ni} be a permutation of natural numbers such that

∥Λn1
S−1x∥ ≥ ∥Λn2

S−1x∥ ≥ ∥Λn3
S−1x∥ ≥ · · ·

Now, define the N -greedy approximant for a g-frame {Λn} as

GN (x) =

N∑
i=1

Λ∗
ni
ΛniS

−1x
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for all x ∈ H . We have GN (x) = Qσ0(x) for some σ0 ⊆ N , |σ0| = N .

Lemma 2.1. Let Λ = {Λn} be a g-frame for a Hilbert space H with bounds A and B, and

let σ ⊂ N . Then ∥Sσ(x)∥ ≤ B∥x∥ for all x ∈ H .

Proof. Let Tσ be the synthesis operator of {Λn}n∈σ, for all x ∈ H , we have

∥T ∗
σ (x)∥2 =

∑
n∈σ

∥Λnx∥2 ≤
∑
n

∥Λnx∥2 ≤ B∥x∥2.

Then we have

∥T ∗
σ (x)∥ ≤

√
B∥x∥

for all x ∈ H . Thus, we get

∥Sσ(x)∥ = ∥TσT
∗
σ (x)∥ ≤ ∥Tσ∥∥T ∗

σ (x)∥ ≤ B∥x∥, x ∈ H .

�

The next result shows that g-frames satisfy the quasi greedy condition.

Theorem 2.1. Let Λ = {Λn} be a g-frame for H with bounds A and B. Then

(1) ∥GN (x)∥ ≤ B

A
∥x∥ for all x ∈ H , (2) ∥x−GN (x)∥ −→ 0 as N → ∞.

Proof. Let GN (x) = Qσ0(x) for some σ0 ⊆ N , |σ0| = N , then we have

∥GN (x)∥ = ∥Qσ0(x)∥ = ∥Sσ0S
−1(x)∥ ≤ ∥Sσ0∥ · ∥S−1∥ · ∥(x)∥.

By Lemma 2.1, ∥Sσ0∥ ≤ B and ∥S−1∥ ≤ A−1. Hence ∥GN (x)∥ ≤ B
A∥x∥.

We now prove (2).

∥x−GN (x)∥2 = ∥
∑
i>N

Λ∗
ni
ΛniS

−1x∥2 = sup
y∈H ,∥y∥=1

∣∣∣∣∣
⟨∑

i>N

Λ∗
ni
ΛniS

−1x, y

⟩∣∣∣∣∣
2

= sup
y∈H ,∥y∥=1

|
∑
i>N

⟨
Λni

S−1x,Λni
y
⟩
|2

≤
∑
i>N

∥ΛniS
−1x∥2 sup

∥y∥=1

∑
i>N

∥Λniy∥2 ≤ B
∑
i>N

∥ΛniS
−1x∥2.

By the definition of greedy algorithm, for any σ ⊆ N with |σ| = N , we have∑
i>N

∥ΛniS
−1x∥2 ≤

∑
n∈N \σ

∥ΛnS
−1x∥2

=
∑
i

∥ΛniS
−1x∥2 −

∑
i∈σ

∥ΛniS
−1x∥2 → 0, as N → ∞.

Thus, we obtain

∥x−GN (x)∥2 ≤ B
∑

n=N+1

∥ΛnS
−1x∥2 → 0 as N → ∞.

�

The next result shows that g-frames also satisfy the almost greedy condition. We

need the following lemma.
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Lemma 2.2. Let Λ = {Λn} be a g-frame for H with bounds A and B. Let T be its synthesis

operator, for all {cn} ∈ N⊥
T , we have

A
∑
n

|cn|2 ≤

∥∥∥∥∥∑
n

Λ∗
ncn

∥∥∥∥∥
2

≤ B
∑
n

|cn|2. (2)

Proof. Since Λ = {Λn} is a g-frame for H , the Λ = {Λn} is a Bessel g-sequence for H with

bound B. Then ∥∥∥∥∥∑
n

Λ∗
ncn

∥∥∥∥∥
2

= ∥T{cn}∥2 ≤ B
∑
n

|cn|2.

We now prove the left-hand inequality in (2). Assume that Λ = {Λn} satisfies the lower

frame condition with bound A. Note that R T∗ is closed because R T is closed. Therefore

N⊥
T = R T∗ = R T∗ ,

i.e., N⊥
T consists of all sequences of the form {Λnx}, x ∈ H . Now, given x ∈ H ,(∑

n

∥Λnx∥2
)2

= ∥ ⟨Sx, x⟩ |2 ≤ ∥Sx∥2∥x∥2 ≤ ∥Sx∥2 1
A

∑
n

∥Λnx∥2.

This implies that

A
∑
n

∥Λnx∥2 ≤ ∥Sx∥2 = ∥T{Λnx}∥2.

Let {cn} = {Λnx}, then we get the following result. �

Theorem 2.2. Let Λ = {Λn} be a g-frame for H with bounds A and B. Then

∥x−GN (x)∥ ≤
√

B

A
σ̃N (x).

Proof. As in the proof of Theorem 2.1, we have

∥x−GN (x)∥2 ≤ B
∑

n∈N \σ

∥ΛnS
−1x∥2

for any σ ⊆ N with |σ| = N and x ∈ H . Also, by Lemma 2.2 we have

A
∑
n

|cn|2 ≤

∥∥∥∥∥∑
n

Λ∗
ncn

∥∥∥∥∥
2

≤ B
∑
n

|cn|2

for all {cn} ∈ N⊥
T . Moreover, {ΛnS

−1x} = T ∗S−1x ∈ R T∗ = N⊥
T . So, for any σ ⊆ N with

|σ| = N we obtain

∥x−GN (x)∥ ≤ B

A
∥
∑

n∈N \σ

Λ∗
nΛnS

−1x∥2

for all x ∈ H . Now, let y =
∑

n∈σ Λ
∗
nΛnS

−1x ∈ Σ̃N (Λ). Then we have

∥x− y∥2 = ∥
∑

n∈N \σ

Λ∗
nΛnS

−1x∥2.

Thus,

∥x−GN (x)∥ ≤ B

A
∥x− y∥2,
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for any y ∈ Σ̃N (Λ). Hence,

∥x−GN (x)∥ ≤
√

B

A
σ̃N (x), for all x ∈ H .

�

Corollary 2.1. Let Λ = {Λn} be a g-Riesz basis for H , then it satisfies the quasi greedy

(or almost greedy ) condition.

Proof. Since a g-Riesz basis for H is also a g-frame for H , by Theorem 2.1 and Theorem

2.2, we get the following results. �

Theorem 2.3. Let Λ = {Λn} be a g-frame for H and unj be defined as in (1). Then

Λ = {Λn} satisfies the quasi greedy (or almost greedy ) condition if and only if {unj}
satisfies the quasi greedy (or almost greedy ) condition.

Proof. The proof is straightforward. �

It is easy to obtain the following result which is given by [15].

Corollary 2.2. Let {xn} be a frame for H , then it satisfies the quasi greedy (or almost

greedy ) condition.

Finally, we prove the g-Riesz bases are greedy.

Theorem 2.4. Let Λ = {Λn} be a g-Riesz basis for Hilbert space H with bounds A and B.

Then, for any N ∈ N , we have

∥x−GN (x)∥ ≤
√

B

A
σN (x), for all x ∈ H .

Proof. Note that a g-Riesz basis is a g-frame for H with the same bounds. Since A and B

are the bounds of the g-Riesz basis {Λn}, by the g-frame inequality we have

A∥x∥2 ≤
∑
n

∥Λnf∥2 ≤ B∥x∥2, for all x ∈ H .

As in the proof of Theorem 2.1, we have

∥x−GN (x)∥2 ≤ B
∑

n∈N \σ

∥ΛnS
−1x∥2

for any σ ⊆ N with |σ| = N and x ∈ H . Let Sσ be the frame operator for the g-frame

{Λn}n∈σ of H σ = {Λ∗
n(H n)}n∈σ. Let Pσ be the orthogonal projection from H onto H σ,

given by Pσ(x) =
∑

n∈σ Λ
∗
nΛnS

−1
σ x. By the inequalities of canonical dual g-frame of {Λn},

we have
1

A
∥x− Pσ(x)∥2 ≥

∑
n∈N

∥ΛnS
−1(x− Pσ(x))∥2 ≥

∑
n∈N \σ

∥ΛnS
−1x− ΛnS

−1Pσ(x)∥2

=
∑

n∈N \σ

∥ΛnS
−1x−

∑
i∈σ

ΛnS
−1Λ∗

iΛiS
−1
σ x∥2

=
∑

n∈N \σ

∥ΛnS
−1x−

∑
i∈σ

Λ̃nΛ
∗
iΛiS

−1
σ x∥2

=
∑

n∈N \σ

∥ΛnS
−1x∥2.
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Thus, for any σ ⊆ N with |σ| = N , we obtain

∥x−GN (x)∥2 ≤ B

A
∥x− Pσ(x)∥2, for all x ∈ H . (3)

For any x ∈ H we have

∥x− Pσ(x)∥ = dist(x,H σ) = inf{∥x− y∥ : y ∈ H σ}.

So, for any y ∈ H σ we have ∥x− Pσ(x)∥ ≤ ∥x− y∥. Hence

σN (x) = inf
σ
{∥x− Pσ(x)∥ : σ ⊆ N , |σ| = N}. (4)

By (3) and (4), we have

∥x−GN (x)∥2 ≤ B

A
∥x− Pσ(x)∥2 ≤ B

A
∥x− y∥2 =

B

A
σN (x),

for all x ∈ H . �

Corollary 2.3. Let {xn} be a Riesz basis for H , then it satisfies the greedy condition.
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