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PRACTICAL RANGE AGGREGATION, SELECTION AND 
SET MAINTENANCE TECHNIQUES 

Mugurel Ionuţ ANDREICA1, Nicolae ŢĂPUŞ2 

În acest articol prezentăm câteva metode şi tehnici noi, foarte practice, 
pentru calculul unor valori agregate în structuri şi baze de date multidimensionale. 
De asemenea, considerăm şi problema determinării eficiente a celei de-a k-a valori 
minime din mulţimi definite prin diverse constrângeri. A treia contribuţie a 
articolului este reprezentată de câteva extensii şi aplicaţii ale unor probleme 
fundamentale de gestiune a mulţimilor de elemente. 

In this paper we present several new and very practical methods and 
techniques for range aggregation and selection problems in multidimensional data 
structures and other types of sets of values. We also present some new extensions 
and applications for some fundamental set maintenance problems. 

Keywords: range aggregation, selection, range update, set maintenance 

1. Introduction 

In this paper we present several novel techniques for range aggregation, 
selection and the maintenance of sets of elements under certain constraints, as 
well as some extensions and applications. Range aggregation and selection are 
two fundamental problems with applications in a wide range of domains. Range 
aggregation techniques were developed in the context of OLAP data cubes [1], 
computational geometry problems and data structures [2], (multidimensional) 
databases [3, 4], and so on. The range selection problem considers the 
computation of the kth smallest value among a set of (database) entries whose 
attributes belong to a given range. Selection techniques have been developed in 
the context of geometric inter-distances [9] and implicit sorted matrices [5]. Set 
maintenance is another fundamental issue with applications in a wide range of 
domains. The rest of this paper is structured as follows. In Section 2 we consider 
some range aggregation problems, while in Section 3 we discuss several selection 
and range optimization problems. Sections 2 and 3 also address several set 
maintenance issues. In Section 4 we conclude. 
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2. Range Aggregation Problems 

In this section we consider several range aggregation problems with 
applications in a wide range of fields. The general model is the following. We 
have n points in a d-dimensional space. Each point i has d coordinates (x(i,1), …, 
x(i,d)) and a weight w(i). We are interested in answering efficiently the following 
types of queries : compute an aggregate of the weights of all the points in a given 
d-dimensional range [xa(1),xb(1)] x … x [xa(d),xb(d)]. We will consider two 
cases : the sparse case and the dense case. Let’s consider that the points have 
m(j)≤n distinct coordinates in dimension j. When m(j) is significantly smaller than 
n (1≤j≤n), we call the point set dense. For instance, if m(*)=O(n1/d), the points are 
densely packed into a d-dimensional “cube” of side lengths m(*). 

We will start with the sparse case, for which the multidimensional range 
tree data structure [2] is probably the best known. A d-dimensional range tree 
consists of a balanced tree constructed on the m(d) distinct dth coordinates of the n 
points. The values of the dth coordinate are the keys of this balanced tree. A 
special property of this tree is that the keys are stored only at its leaves. An inner 
node q of the tree contains the smallest coordinate left(q) and the largest 
coordinate right(q) of a leaf in the subtree of q (for a leaf, we consider 
left(q)=right(q)). Each tree node q (leaf or inner node) contains a (d-1)-
dimensional range tree T(q), constructed only over the points whose dth coordinate 
is in the range [left(q),right(q)]. When d=1, instead of T(q), every node q stores 
an aggregate value qagg, representing the value of the aggregate function over the 
weights of the points contained in node q’s subtree. For d=1, the qagg value of a 
leaf node is the weight of the point corresponding to that leaf (if there are several 
points with exactly the same coordinates, we replace them by a single point whose 
weight is the aggregate of the weights of the points). For d=1 and an inner node q, 
we have qagg(q)=aggf(leftson(q), rightson(q)), where aggf is the aggregate 
function and leftson(q) and rightson(q) denote the left and right sons of node q. A 
range aggregate query on a d-dimensional range [xa(1),xb(1)] x … x [xa(d), xb(d)] 
is performed by computing in O(log(n)) time a canonical decomposition of 
O(log(n)) tree nodes q in the dth dimension, such that their [left(q), right(q)] 
intervals are disjoint and, together, these intervals contain all the distinct 
coordinates contained in [xa(d),xb(d)] (and only these). Then, a (d-1)-dimensional 
range aggregate query is performed on the T(q) trees of each node q in the 
canonical decomposition and the results are aggregated. When d=1, the qagg 
values of the nodes in the canonical decomposition are aggregated. Thus, a query 
takes O(logd(n)) time. The range tree can be turned into a dynamic data structure 
which supports insertions of new points and deletions of old points. In this paper 
we are concerned only with a semi-dynamic version of the range tree, in which the 
weights of the points can be changed, but the points themselves cannot be deleted 
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(nor can new points be inserted). Note, though, that a logical deletion can be 
performed, by setting the weight of a point in such a way that it does not influence 
the values of the aggregate function (e.g. to -∞ for aggf=max, 0 for aggf=+, 1 for 
aggf=*, or +∞ for aggf=min). If we want to change the weight of a point, we find 
the O(log(n)) nodes q in the d-dimensional tree, such that the dth coordinate of the 
point is in the range [left(q),right(q)] ; then, we call the update function on the (d-
1)-dimensional trees T(q), considering only the first (d-1) coordinates of the point. 
When d=1, after locating the leaf containing the point, we change the point’s 
weight and recompute the qagg value of the leaf. Then, we recompute the qagg 
values of each of the leaf’s ancestors, from the leaf towards the root, by 
considering the qagg values of their left and right sons. A weight update takes 
O(logd(n)) time. We can extend the range tree with a range update function : 
rangeUpdate(u, [xa(1),xb(1)] x … x [xa(d),xb(d)]). This function has the effect of 
setting the weight of each point i in the range to uaggf(u, w(i)) (uaggf is the 
update function). We can implement this function efficiently by using the ideas 
presented in [7], where the authors described an algorithmic framework based on 
segment trees (see Fig. 1) in the dense case. Each node q will maintain two trees, 
T1(q) and T2(q). One of them will be updated whenever q is part of the canonical 
decomposition of a range given as argument to rangeUpdate. The other one will 
be updated whenever q is the ancestor of a node p which is part of the canonical 
decomposition of a range. When d=1, each tree node q maintains an extra value 
uagg, representing the aggregate of all the update values u of the range update 
calls for which node q was part of the canonical decomposition of the update 
range (in the first dimension). The exact details can be derived from the case 
presented in [7] (note that if multiple points with the same 1st coordinate were 
replaced by a single point, we may also need to maintain how many of the original 
points are represented by the stored point). We will now consider the dense case. 
We  focus  here only on range aggregates where the  aggregate function aggf  is 
invertible,  i.e. if  c=aggf(a,b),  then a=aggf(c,b-1) (e.g. aggf=addition and (aggf)-

1=subtraction ; aggf=multiplication and (aggf)-1= division ; aggf=xor and (aggf)-1 

=xor, and so on).  Moreover, we will be interested only in static data sets at first.  
We can think of the points as being located in a d-dimensional “cube” of size m(1) 
x m(2) x … x m(d). Each cell (c(1), …, c(d)) of the cube (1≤c(i)≤m(i) ; c(i) stands 
for the c(i)th distinct coordinate value in dimension i , 1≤i≤d) is occupied by a 
point i and we say that Cube(c(1), …, c(d))=w(i). If there is no point with the 
corresponding coordinates, we say that Cube(c(1),…,c(d)) is equal to the neutral 
element of the aggregation function (e.g. 0 for +,xor ; 1 for *, and so on). We 
want to compute the aggregate of the cube values in a d-dimensional range 
[clow(1), chigh(1)] x … x [clow(d), chigh(d)], where 1 ≤ clow(i) ≤ chigh(i) ≤ m(i) 
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Fig. 1. A 1D segment tree with 16 leaves and a canonical decomposition of the range [3,11]. 

 
(1≤i≤d). We will present a well-known technique, based on computing the 
prefix aggregate cube PSCube, where PSCube(c(1), …, c(d)) is the aggregate 
value of all the entries Cube(c’(1), …, c’(d)), with 1≤c’(i)≤c(i) (1≤i≤d). We will 
first assume that this prefix cube is already computed and we will show how we 
can use it. Later, we will show how to compute the prefix cube, too. Let’s assume 
that we want to compute the aggregate of all the entries in a range [clow(1), 
chigh(1)] x … x [clow(d), chigh(d)]. We can do this by aggregating 2d entries of 
the prefix cube PSCube : 
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The function parity(s(i)) returns 0 if s(i)=chigh(i), and 1 if s(i)=clow(i)-1. 
If the term (-1)·PSCube(s(1),…,s(d)) appears in the « sum », then we need to 
consider the inverse of PSCube(s(1),…,s(d)) (the inverse of a value x is : –x, for 
aggf=+ ; 1/x, for aggf=* ; x, for aggf=xor ; and so on). The large « sum » symbol 
denotes the aggregation of the terms (or their inverses) of PSCube. The small 
« sum » symbol denotes addition. If we consider the number of dimensions d to be 
constant, then a range aggregate query can be answered in O(1) time. We will 
now show how to compute efficiently the entries of the prefix « sum » cube. We 
consider the sequences of coordinates (c(1), …, c(d)) in lexicographic order and 
compute PSCube(c(1), …, c(d)) as follows. If any of the coordinates is 0, then the 
entry is equal to the neutral element (depending on aggf). Otherwise, we have : 
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The function parity’(s(i)) returns 0 if s(i)=c(i), and 1, if s(i)=c(i)-1. This 



Practical range aggregation, selection and set maintenance techniques                     7 

 

way, every entry PSCube(c(1), …, c(d)) is computed in O(2d) time. The large 
« sum » symbol and the terms (-1)·PSCube(c(1),…,c(d)) have the same meaning 
as before. We can do a little better, though, as was observed in [1]. We initialize 
PSCube(c(1), …, c(d)) to Cube(c(1), …, c(d)) (for all the tuples (c(1), …, c(d))). 
Then, for each dimension i (1≤i≤d), in order, we compute the prefix « sums » 
along that dimension, i.e., in lexicographic order of the sequences of coordinates 
(c(1), …, c(d)), we set PSCube(c(1), …, c(d))=aggf(PSCube(c(1), …, c(d)), 
PSCube(c(1), …, c(i-1), c(i)-1, c(i+1), …, c(d))). This takes O(d) time per entry. 
 An application of the prefix « sum » technique is provided by the batched 
range update problem, which was briefly mentioned in [7]. Let’s consider the 
same d-dimensional data cube as before, whose entries initially contain the neutral 
element. We are given a list of q updates. An update consists of a d-dimensional 
range [xa(1),xb(1)] x … x [xa(d),xb(d)] (1≤xa(i)≤xb(i)≤m(i), 1≤i≤d, xa(i) and xb(i) 
are the indices of the xa(i)th and the xb(i)th distinct coordinate values in dimension 
i) and an update value u. The effect of the update is to set each data entry 
Cube(c(1), …, c(d)) with xa(i)≤c(i)≤xb(i) (1≤i≤d) to aggf(u, Cube(c(1), …, c(d))). 
Of course, we want to perform the updates in an efficient manner, i.e. without 
changing the value of each data entry independently (such an approach would 
have a time complexity of O(q·Np), where Np=m(1)·…·m(d)). An efficient 
technique is the following. For each update, we modify the 2d entries Cube(c(1), 
…, c(d)), with c(i) in {xa(i), xb(i)+1} in the following way. If the number of 
coordinates c(i) (1≤i≤d) such that c(i)=xb(i)+1 is even, then we set Cube(c(1), …, 
c(d)) to aggf(u, Cube(c(1), …, c(d))) ; otherwise, we set it to aggf(u-1, Cube(c(1), 
…, c(d))). For instance, if aggf=+, in the first case we increase Cube(c(1), …, 
c(d)) by u and in the second case we decrease it by u (it’s similar  for the other 
functions, e.g. multiplication and division, xor and xor, and others). In the end we 
compute the prefix « sum » cube PSCube, as shown before. PSCube(c(1), …, 
c(d)) will be equal to the final value of the entry Cube(c(1), …, c(d)), after 
applying all the updates. The complexity is only O((q+Np)·2d), or O(q·2d+Np·d). 

The techniques developed for range searching are also useful for solving 
problems where some unexpected transformation reduced them to a range 
searching problem. For instance, let’s consider the following problem. We are 
given a rooted tree with n vertices. Each vertex i has a weight w(i) and every edge 
(u,v) has a length length(u,v). We want to answer queries of the following form: 
compute the aggregate of the weights of all the vertices located in the subtree of 
vertex i and located at distance at least d1 and at most d2 (d2≥d1≥0) from i. The 
subtree of a vertex i is composed of vertex i and the subtrees of its sons. We will 
perform a DFS traversal of the tree starting from the root. During this traversal, 
we assign to each vertex i its DFS number (DFSnum(i)). We have DFSnum(i)=j if 
vertex i was the jth distinct vertex visited during the DFS traversal. All the DFS 
numbers of the vertices p in vertex i’s subtree are ≥DFSnum(i) and they form an 
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interval of consecutive numbers [DFSnum(i), DFSmax(i)], where DFSmax(i) is 
the largest DFS number of a vertex in vertex i’s subtree. We also compute for 
each vertex i the value droot(i)=the distance from the root to vertex i. We have 
droot(root)=0 and droot(i≠root)=length(parent(i),i)+droot(parent(i)). We will 
assign to each vertex i a point in the plane with coordinates (DFSnum(i), droot(i)) 
and weight w(i). We insert all these points in a 2D range tree RT. The types of 
queries that we mentioned are now equivalent to range querying the range 
[DFSnum(i), DFSmax(i)] x [droot(i)+d1, droot(i)+d2] and obtaining the aggregate 
value of the weights of the points in this range. Thus, each query can be answered 
in O(log2(n)) time, or O(log(n)) if we use the fractional cascading method. This 
method assumes that the range tree nodes q at d=2 do not store a tree T(q), but 
rather an array A(q) of the points in the corresponding range (the same points that 
would have been stored in T(q)), sorted according to the points’ first dimension 
coordinates (if q is not a leaf, A(q) can be obtained by merging A(leftson(q)) and 
A(rightson(q))). If the aggregate function aggf is invertible, we compute an array 
of prefix aggregates at each such node q: pagg(q,0)=the neutral element and 
pagg(q,i≥1)=pagg(q,i-1) aggf w(A(q,i)) (where A(q,i) is the ith point in the sorted 
array of node q). A (multidimensional) range query will ask every node q at d=2 
to run a 1D range query on an interval [u,v] of positions from A(q): such a range 
query can be answered in constant time, as pagg(q,v) aggf (pagg(q,u-1))-1. We can 
also answer range maximum or minimum queries in O(1) time at a node q, as it is 
well known that we can preprocess the weights of the points stored at every node 
q (at d=2) in time proportional to their number, in order to answer such queries in 
O(1) time. Usually, the indices u and v are computed by using a binary search 
(because the 1D range is [xa(1),xb(1)] and we need to find the smallest position u 
s.t. x(A(q,u),1)≥xa(1) and the largest position v s.t. x(A(q,v),1)≤xb(1)). The 
fractional cascading technique allows us to perform a binary search only at the 
root of the tree T(q’) in which a node q is contained. Then, the indices u and v for 
each relevant node q from T(q’) are computed in O(1) time. 

A 1D application of some of the range update and aggregation techniques 
we presented earlier is the following. We are given n communication stations, 
interconnected by a network architecture similar to a bus. The stations are 
arranged in a line, such that station i can transmit data only to station i+1 (1≤i≤n-
1). Each station has a data sending rate s(i)>0 and a maximum data processing 
rate r(i)>s(i). In a normal state, each station i sends data at a rate s(i) and receives 
data at a rate rr(i)≤r(i)-s(i). If, however, rr(i)>r(i)-s(i), the station collapses 
naturally and does not consume the received data anymore. As a consequence, 
data is transmitted at a rate of rr(i)+s(i) to the next station (i+1). Each station also 
has a security cost c(i), representing the amount of effort required to make the 
station collapse artificially (i.e. set r(i) to 0). For security reasons, we want to 
assess the minimum total amount of effort required to make the nth station 
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collapse. Note that by collapsing a subset of stations, other stations might collapse 
without any extra effort, due to the data receiving rate being larger than their 
maximum allowed rate. We will compute the prefix sums ps(i)=s(1)+…+s(i) 
(ps(0)=0 and ps(i)=ps(i-1)+s(i)). Then, using these prefix sums, for each station i 
we will compute the smallest index prev(i) (1≤prev(i)≤i), such that ps(i)-
ps(prev(i)-1)≤r(i) (we can use binary search to compute prev(i)). After this, for 
each station i, we will compute e(i)=the total effort required to collapse the nth 
station if we artificially collapse station i and we do not artificially collapse any 
other station j<i. We will maintain a segment tree over the e(i) values of the n 
stations, which are initialized to 0. Then, for each station i, we update the interval 
[prev(i),i] with the value c(i). This means that the value e(j) of every station j 
(prev(i)≤j≤i) should be increased by c(i). By using a segment tree, we find the 
canonical decomposition of the interval [prev(i),i] and increase the uagg values of 
the tree nodes in the canonical decomposition. At the end, we compute the actual 
values e(i). e(i) is the sum of the uagg(q) values of the tree nodes q on the path 
between the leaf corresponding to station i and the tree root (including the 
endpoints). The time complexity is O(n·log(n)). Note that all the updates take 
place before the point queries. Thus, we could also use the technique regarding 
batched range updates, presented earlier, for computing all the e(*) values in O(n) 
time (the total time complexity remains O(n·log(n)), due to the binary searches). 

3. Selection and Range Optimization Problems 

In this section we will present novel algorithmic results for several 
selection and range optimization problems. In the first problem we consider n 
(ascendingly) sorted sequences of numbers. Each sequence i (1≤i≤n) has b(i) 
distinct elements. We want to find the kth smallest element of the sequence 
obtained by merging the elements of the n sequences in increasing order. 
However, the numbers in the n sorted sequences are not known in advance. We 
can use a query operation Qu(i,j) which returns the jth number (1≤j≤b(i)) from the 
ith sequence. We would like to use the query operation as few times as possible. 
We will present a solution which does not necessarily perform the minimum 
number of queries, but which is, nevertheless, quite efficient. We will maintain for 
every sequence i, the potential interval of positions [low(i),high(i)] in which the 
number we are looking for may reside – initially, low(i)=1 and high(i)=b(i). The 
meaning of low(i) (high(i)) is that we know for sure that all the numbers in the 
sequence i located on positions which are strictly smaller (larger) than low(i) 
(high(i)) are strictly smaller (larger) than the element we are looking for. We will 
perform several iterations, as follows. In every iteration, we will choose any 
sequence q, such that low(q)<high(q). Then, we will set mid(q)=(low(q)+high(q)) 
div 2. Moreover, for every sequence i we will maintain a data structure DS(i) (e.g. 
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a balanced tree) with values j and associated values x(i,j) (i.e. the value on 
position j of the sequence i), for all the positions j for which the values are known 
in the sequence i. We will try to find the value x(q,mid(q)). If the position q is in 
DS(q), then we already know the value; otherwise, we perform a query 
Qu(q,mid(q)) and we find out x(q,mid(q)) (then, we insert mid(q) with the 
associated value x(q,mid(q)) into DS(q)). After this, we will compute nv(i) for 
every sequence i: nv(i)=the number of values in the sequence i which are smaller 
than or equal to x(q,mid(q)). Obviously, nv(q)=mid(q). For every other sequence i, 
we will find the two positions u(i) and v(i) from DS(i) with known values on 
them, such that x(i,u(i))≤x(q,mid(q)) (and u(i) is the largest with this property) and 
x(i,v(i))>x(q,mid(q)) (and v(i) is the smallest with this property); we also consider 
that DS(i) contains the fictitious positions 0, with x(i,0)=-∞, and b(i)+1, with 
x(i,b(i)+1)=+∞. Then, we will perform a binary search on the interval [u(i),v(i)-
1]. Let ulow=u(i), uhigh=v(i)-1 and uok=u(i). While ulow≤uhigh, we perform the 
following steps: (1) we set umid=(ulow+uhigh) div 2; (2) if x(i,umid) is not 
known, we query Qu(i,umid) (and then we insert the values umid and the 
associated value x(i,umid) in DS(i)); (3) if x(i,umid)≤x(q,mid(q)) then we set 
uok=umid and ulow=umid+1; otherwise, we set uhigh=umid-1. At the end of this 
binary search, we set nv(i)=mid(i)=uok. Then, we compute the sum of the nv(*) 
values: snv=nv(1)+…+nv(n). If snv<k then, for every sequence i, we set 
low(i)=max{low(i), mid(i)+1}; if snv>k then, for every sequence i, we set 
high(i)=min{high(i), mid(i)}. If snv=k then the kth smallest value in all the 
sequences is x(q,mid(q)) and the algorithm ends. The iterative process also stops 
when there are no more sequences i with low(i)<high(i) (or, alternatively, after we 
obtain snv>k and snv-k<n and we update the high(*) values accordingly). Then, if 
the kth smallest value has not been found, yet, we compute snv=the sum of the 
high(i) values of all the sequences: snv=high(1)+…+high(n). Then, since the kth 
smallest element has not been found, yet, we must have snv>k. However, we have 
that snv-k<n. We initialize idx(i)=high(i) for every sequence i. Then, we insert in 
a max-heap H all the values x(i,idx(i)), together with their associated sequence 
index i (with 1≤i≤n and idx(i)>0); if the value is not known, we perform a query 
for it. While snv>k : 1) we extract the largest value x(i,idx(i)) (corresponding to a 
sequence i) from H; 2) we decrease idx(i) by 1; 3) if idx(i)>0 we insert x(i,idx(i)) 
into H (together with the associated sequence index i) – if x(i,idx(i)) is not known, 
we perform a query for it; 4) we decrement snv by 1. In the end, when snv=k, the 
largest value in H is the kth smallest value we were searching for. The algorithm 
performs at most n·log(max{b(i)|1≤i≤n}) queries per iteration, and the number of 
iterations can be O(n·log(max{b(i)|1≤i≤n})). In the end, the algorithm may 
perform O(n) extra queries. This algorithm can be extended to finding the kth 
smallest value among the numbers on the positions [a(i),b(i)] of every sequence i: 
we just replace every sequence i by a sequence i’ consisting of the b(i)-a(i)+1 
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positions [a(i),b(i)] of the sequence i, and we translate Qu(i’,j) into Qu(i,j+a(i)-1). 
As the second problem we consider the multidimensional dynamic range 

median problem. We have a d-dimensional hyper-cube, with m(j) cells in each 
dimension j (1≤j≤d). The kth cell in the jth dimension has an assigned coordinate: 
x(j,k) (x(j,k)≤x(j,k+1) for 1≤k≤m(j)-1). Each cell (c(1), ..., c(d)) has a value 
Cube(c(1), ..., c(d)). Given a d-dimensional range [clow(1), chigh(1)] x ... x 
[clow(d), chigh(d)] (with 1≤clow(j)≤chigh(j)≤m(j) for every 1≤j≤d), we want to 
find the location of a point P such that the sum of weighted L1 distances from P to 
every point assigned to a cell in the range is minimum (the point assigned to a cell 
(c(1), ..., c(d)) is (x(1,c(1)), ..., x(d,c(d)))); the weighted L1 distance to the point 
corresponding to a cell (c(1), ..., c(d)) is equal to (Cube(c(1), ..., c(d)) multiplied 
by the actual L1 distance). In [4] an efficient solution to the static version of this 
problem was given. Here we augment that solution by allowing point updates (i.e. 
the value of a cell can be modified) and restricted range updates (i.e. the value of 
each point in a given range is updated, e.g. it is increased, by the same value u); 
our time complexities are: O(d·logd(n)) for a point update and O(n·d·logd(n)) for a 
range update. The technique in [4] is based on being able to compute efficiently 
the sum of the XCube(*,...,*) values in any given d-dimensional range of a d-
dimensional array XCube. When the hyper-cube is static, this can be done in 
O(2d)=O(1) time. If we construct a d-dimensional segment tree over the cells of a 
hyper-cube H, then point updates, some restricted range updates, and range sum 
queries can be performed in O(logd(n)) time each over the cells of H (n=max{m(j) 
| 1≤j≤d}) ; see [7]. Thus, the query time complexity of the method given in [4] is 
increased by an O(logd(n)) factor in this version of the problem. When a range 
[clow(1), chigh(1)] x ... x [clow(d), chigh(d)] (possibly just one cell) of Cube(c(1), 
..., c(d)) is modified by v (e.g. each value in the range is increased by v), we need 
to update the range in the Cube d-dimensional array by v. Then, we need to 
(range) update every range [clow(1), chigh(1)] x ... x [clow(j-1), chigh(j-1)] x 
[c(j), c(j)] x [clow(j+1), chigh(j+1)] x ... x [clow(d), chigh(d)] in the DCubej d-
dimensional array by x(j,c(j))·v (for every cell clow(j)≤c(j)≤chigh(j); 1≤j≤d). 

A related median finding problem is the following. Given n points on the 
real line (with point i at coordinate x(i); 1≤i≤n), we want to find the location of a 
point xp such that the sum of distances from each of the n points to xp is 
minimum. We consider two cases. In case 1, the distance from point i to xp is 
|x(i)-xp|. In case 2, every point i also has a non-negative weight w(i) and the 
distance is defined as w(i)·(x(i)-xp)2. For case 1, let’s consider the points sorted 
such that x(1)≤...≤x(n). xp can be located anywhere inside the interval [x(1),x(n)], 
without changing the sum of distances to the points 1 and n. In a similar manner, 
xp can be located anywhere inside [x(2), x(n-1)], and so on. If n is odd then 
xp=x((n+1)/2). If n is even, then xp can be any point inside the interval [x(n/2), 
x((n/2)+1)] (even xp=x(n/2)). Thus, in order to compute xp, we can sort all the n 
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values in O(n·log(n)) time, or we can use a linear time algorithm for selecting the 
median value of the (multi-)set of numbers x(1), ..., x(n).  

In case 2 we must minimize the sum S(xp)=w(1)·(x(1)-xp)2+...+w(n)· 
(x(n)-xp)2. The derivative of S, dS/dxp must be equal to 0. Thus, we must have 
2·(w(1)·x(1)+...+w(n)·x(n))=2·(w(1)+...+w(n))·xp => xp=(w(1)·x(1)+...+w(n)· 
x(n))/(w(1)+...+w(n)) (i.e. xp is the weighted average of the n x-coordinates). In 
this case, the solution also has a linear time complexity. 

For the third problem we consider a sequence of n numbers: S(1), ..., S(n) 
and a sequence of m operations of three types: type 1) R(i,j) (1≤i≤j≤n) reverses 
the order of the numbers on the positions i, ..., j ; type 2) C(i,j,p) (1≤i≤j≤n; -1≤ 
p≤n-(j-i+1)) cuts the numbers S(i), …, S(j) from the sequence and pastes them, in 
the same order, after the position p of the remaining sequence (if p=-1 then no 
paste occurs) ; type 3) I(p, k, v1, …, vk) – inserts the numbers v1, …, vk after the 
position p of the sequence ; type 4) Q(i) asks for the current value of S(i) (the 
current number on the position i in the sequence). We will start by presenting a 
solution which works well when m is not too large. We will maintain a sequence 
SI of ([a(u),b(u)], dir(u)) pairs, where the intervals correspond to the order in 
which the elements occur in the sequence. Such an interval [a(u),b(u)] occurring 
on the position u of SI will have the meaning that the numbers So(a(u)), …, 
So(b(u)) from the original sequence So are located on consecutive positions in the 
current sequence. If dir(u)=+1 then these numbers occur in increasing order of 
the positions a(u), …, b(u); if dir(u)=-1 then they occur in reverse order. Initially, 
we only have one interval, [a(1)=1,b(1)=n], and dir(1)=+1. Then, we traverse the 
sequence of operations (in order). All the operations will make use of the 
following function: Find(i). If i=0 then Find(i) returns 0. Otherwise, Find(i) 
works as follows: We will traverse the (interval, direction) pairs from SI from left 
to right (i.e. starting from the first position) and we will maintain a counter k, 
representing the number of positions traversed so far (initially k=0). When we 
reach a position p in SI, we increase k by (b(p)-a(p)+1). If, after considering the 
uth interval in SI, we have k≥i, then [a(u),b(u)] is the interval containing the 
position i. Let q=i-(k-(b(u)-a(u)+1)) be the position in the interval corresponding 
to position i. If dir(u)=+1 then we will split the interval [a(u),b(u)] into x=(at 
most) 3 intervals: [a(u),a(u)+q-2], [q’=a(u)+q-1,q’=a(u)+q-1] and [a(u)+q,b(u)] 
(we disregard any empty intervals among these three). We will insert these 
intervals (in this order) instead of the interval on position u of SI, setting their 
corresponding dir values to +1 (not before shifting x-1 positions to the right every 
interval and dir value from a position larger than u). If dir(u)=-1, then we split the 
interval into x=(at most 3) intervals: [b(u)-q+2,b(u)], [q’=b(u)-q+1,q’=b(u)-q+1] 
and [a(u),b(u)-q]. Like before, we insert the non-empty intervals among these 
intervals in SI (in this order) instead of the former interval on position u and we 
set their dir values to -1 (we also shift the other (interval, direction) pairs to the 
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right, like before). Find(i) returns h, such that a(h)=b(h)=q’. 
At an operation R(i,j) we will first compute u’=Find(i) and then v’= 

Find(j). Then, we will reverse the order of the (interval, direction) pairs between 
the positions u’ and v’ from the SI array. Basically, we swap the (interval, 
direction) pairs from the positions po and (v’-(po-u’)) (for u’≤po≤(v’+u’) div 2). 
Afterwards, we set dir(po)=-dir(po) for every position u’≤po≤v’. In the case of a 
C(i,j,p) operation, we compute u’=Find(i) and then v’=Find(j). Then, we 
construct SI’ by removing from SI all the (interval, direction) pairs on the 
positions between u’ and v’ inclusive. Then, we compute w’=Find(p) (using the 
SI’ array). Then, we insert the (interval, direction) pairs removed previously (their 
a, b, and dir values) in SI’, right after the position w’ and we set SI to the obtained 
sequence of (interval, direction) pairs. If, however, we have p=-1 then we set 
SI=SI’. An I(p, k, v1, …, vk) operation is handled as follows. We add the numbers 
v1, …, vk at the end of the original sequence So: (So(n+i)=vi; 1≤i≤k) and then we 
set n=n+k. Then, we compute w’=Find(p). After the position w’, we insert in the 
array SI the pair ([n-k+1,n],1). In order to answer a query Q(i), we find the 
interval [a(u),b(u)] containing the position i (by using the same counter k as in the 
function Find) and the value of q=i-(k-(b(u)-a(u)+1)). This time, however, we 
will not split the interval u. If dir(u)=+1, then the answer is So(a(u)+q-1); if 
dir(u)=-1, then the answer is So(b(u)-q+1). Here, So(p) denotes the number on the 
position p in the initial sequence (on which no changes were performed). The time 
complexity is O(min{m,n}) for each R, C or Q operation, and O(min{m,n}+k) for 
each I operation (where k is the number of inserted elements). The overall time 
complexity is O(min{m·n,m2}+n), where n is the total number of elements (the 
initial elements plus the newly inserted elements). 

In order to solve the problem more efficiently we make use of an idea 
mentioned to us by M. Paşoi. We will split the sequence of m operations into 
groups of z operations (the last group may contain fewer than z operations). For 
each group of z operations, we will use the methods described above. After 
processing all the z operations in the gth group (1≤g≤ng; ng=O(m/z) is the total 
number of groups), we will generate the contents of the sequence S of numbers at 
that moment in time, in O(n+min{n,z}) time. We will traverse the sequence of 
intervals SI from position 1 to |SI| (|SI|=the total number of intervals in SI) and, at 
the same time, we will maintain a counter k (initially, k=0). When we reach the uth 
interval, if dir(u)=+1, then we set S(k+j)=So(g-1, a(u)+j-1) (1≤j≤b(u)-a(u)+1); if 
dir(u)=-1, then we set S(k+j)=So(g-1, b(u)-j+1) (1≤j≤b(u)-a(u)+1). Then, we 
increment k by (b(u)-a(u)+1). Here, So(g-1) denotes the sequence right before 
performing the first operation from the current group. If g=1, then So(0) is the 
original sequence. After computing S, we set So(g)=S and n=k. Note that after 
computing So(g), we do not need the previous sequences So(0≤g’≤g-1), which can 
be dropped (in order to use only O(n) memory). The time complexity of this 
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approach is O(m/z·min{n·z,n+z2})=O(min{m·n/z+m·z,m·n}). We can choose, for 
instance, z=O(sqrt(n)) or z=O(sqrt(m)), obtaining an O(m·sqrt(n)) or an 
O(min{(n+m)·sqrt(m),m·n}) time complexity, which is much better than 
O(min{m·n,m2}+n); sqrt(h) denotes the square root of h. 

A related problem is the following. We consider a stack (initially empty), 
on which we perform M operations of the following two types: 1) Push(x): push 
an element x at the top of the stack; 2) rotate the topmost K elements of the stack 
(K is the same for each such operation). We want to print the final order of the 
elements in the stack (from bottom to top). In order to solve the problem we will 
construct a stack F (initially empty), containing the final order of the elements. 
We will also construct an array V which is sufficiently large (e.g. it has at least 
2·M elements) and we will maintain two pointers, up and down (up points to the 
topmost element and down points to the Kth element from the top, or the bottom 
element if there are less than K elements in the stack). We will also maintain the 
direction dir in which the next element will be added. We will start with down=M, 
up=down-1 and dir=+1. At every Push(x) operation, we set up=up+dir and then 
V(up)=x. If at least K+1 Push operations have been performed so far (including 
the current one), then we push V(down) at the top of F and then we set down= 
down+dir. At a rotation operation, we swap the values of up and down and set 
dir=-dir. After performing all the operations, we traverse all the elements between 
down and up from the array V (V(down), V(down+dir), V(down+2·dir), …, V(up)) 
and we push each of them on top of F. Thus, each operation takes O(1) time. 
Instead of the array V we could use a doubly-linked list in which every node has 
two neighbors, corresponding to the directions -1 and +1 (then, we would replace 
x=x+dir by x=x->neighbor(dir), where x=up or down; in the end, we would 
traverse the list from down and following the direction dir until we reach up). 
 The following interesting geometric selection problem was mentioned to 
us by R. Berinde in a private communication. We have n points in the plane (point 
i lies at coordinates (x(i),y(i)) and y(i)≥0). We have m queries of the following 
type: what is the kj

th smallest (Euclidean) distance from a point i with x(i)≤xqj to 
the point (xqj,0) ? The problem is offline, meaning that all the queries are known 
in advance. For each query j, we could sort all the n points according to their 
distance to (xqj,0) and then just select the kj

th distance. This approach has an 
O(m·n·log(n)) time complexity. An improvement consists of selecting the kj

th 
smallest distance without sorting the distances for each query, by using the 
QuickSelect selection algorithm [8] (inspired from the QuickSort algorithm). This 
approach has an O(m·n) time complexity. In order to obtain a better time 
complexity, we will proceed as follows. We will sort the coordinates xqj of the 
queries, such that we have xqp(1)≤xqp(2)≤…≤xqp(m). We will sort the points i with 
x(i)≤xqp(1) in increasing order of their distance from (xqp(1),0). Thus, we have an 
order of the points: od(1), ..., od(np(1)) (np(1) is the number of points i with 
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x(i)≤xqp(1)). We will sweep the plane from left to right with a vertical line. At 
every moment, we will want to maintain the sorted order of the points i with 
coordinates x(i)≤xd, according to their distance from (xd,0), where x=xd is the 
current position of the sweep line. As we sweep the line, we have 3 types of 
events: 1) insertion of a new point i: a new point is inserted when we reach 
xd=x(i); 2) query – such an event occurs when xd=xqj for some j (1≤j≤m); 3) 
swapping the order of two points located on consecutive positions in the ordering 
according to distance. Event 3 is based on the following observation. Let’s assume 
that we have the points od(i) and od(i+1), in increasing order of their distance 
from (xd,0). If x(od(i))<x(od(i+1)) (the x-condition) then there exists a coordinate 
xsod(od(i)), up until which od(i) will be located before od(i+1) in the distance 
ordering, and after which the order of od(i) and od(i+1) will be swapped – from 
there on, od(i+1) will always be located before od(i) in the ordering. We can 
compute this coordinate from the equation: (x(od(i))-xsod(od(i)))2+y(od(i))2= 
(x(od(i+1))-xsod(od(i)))2+y(od(i+1))2. This equation is, in fact, only a first degree 
equation with the unknown xsod(od(i)). Thus, we can use the following solution. 
We will maintain a heap with events of type 3 and two arrays of events of types 1 
and 2. At every step, we will choose the event located at the smaller coordinate 
(either the next event of type 1 or 2 from the corresponding array, or the event 
with the minimum x-coordinate from the heap; if multiple events of different 
types take place at the same x-coordinate, we give preference to type 1 events 
first). Initially, we compute the values xsod(od(i)) for the initial order of the points 
(relative to the distance to (xqp(1),0)) and only for those points for which the x-
condition is met; we insert the values xsod(od(i)) (together with the values od(i) 
and od(i+1)) in H (1≤i≤np(1)). For a type 1 event, we will search the position p on 
which the point has to be inserted in the distance ordering (distances are computed 
relative to (xd,0), where xd is the x-coordinate of the event). If we insert the new 
point on the position i (the new point is od(i)), then we compute the values 
xsod(od(i-1)) (if i>1) and xsod(od(i)) (if i is not the currently last position) – only 
if the corresponding x-conditions are met - and insert them into H (together with 
the indices of the two points to which the event corresponds). We can store the 
points od(i) in an array, in which case an operation of type 1 can be handled in 
O(log(n)) (for binary searching the position i) + O(n) (for shifting to the right the 
points located after the position i in the od array) time. A type 2 event is handled 
in O(1) time, by setting the distance from od(kp(i)) to (xqp(i),0) as the answer to the 
query p(i) to which the type 2 event corresponds. A type 3 event, corresponding to 
the swap of the points a and b, is handled as follows. For each point i (1≤i≤n) we 
will maintain a value pos(i)=p, if od(p)=i (or pos(i)=0 if i was not inserted in the 
od array, yet). Whenever we insert a new point, we shift a point to the right, or we 
swap the order of two points in the od array, we also update the pos values of the 
corresponding point(s). Let’s assume that pos(a)<pos(b) and pos(b)=pos(a)+1. 
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Then, we swap od(pos(a)) with od(pos(b)). Before performing the swap, we delete 
from H the events corresponding to the swap of a with od(pos(a)-1) 
(xsod(od(pos(a)-1))) and to the swap of b with od(pos(b)+1) (xsod(b)), if such 
events exist in H. After performing the swap (and adjusting the pos values 
accordingly), if pos(a) is not the last position in the od array (pos(b)>1), we insert 
in H a type 3 event with x=xsod(od(pos(a))) (x=xsod(od(pos(b)-1))) 
corresponding to the swap of the points od(pos(a)) (od(pos(b))) and od(pos(a)+1) 
(od(pos(b)-1)); the events are considered only if the corresponding x-conditions 
are met. A type 3 event is handled in O(log(n)) time. Overall, there are n type 1 
events, m type 2 events (which need to be sorted) and O(n2) type 3 events. The 
time complexity is O(n2+m·log(m)+n2·log(n))=O(m·log(m)+n2·log(n)). If the 
queries are given in increasing order of xqj, then sorting the type 2 events is no 
longer required and the total time complexity becomes O(m+n2·log(n)). 

Another related problem (the Longest Common Contiguous Subsequence) 
is mentioned in [6]. The algorithm in [6] contains a small error, which we correct 
here: (2) the first position of su(left) belongs to a string S(j) for which ((x(j)>a(j)) 
or ((x(j)=a(j)) and (nok>F)) or ((x(j)<a(j)) and (nok≥F))) : in this case we set 
x(j)=x(j)-1 first (and, if x(j) becomes equal to a(j)-1, we also decrement nok by 1).  

4. Conclusions 

In this paper we presented several novel, practical, range aggregation and 
selection techniques and we discussed several important set maintenance issues. 
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