
U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 2, 2010 ISSN 1454-234x

PRACTICAL RANGE AGGREGATION, SELECTION AND
SET MAINTENANCE TECHNIQUES

Mugurel Ionuţ ANDREICA1, Nicolae ŢĂPUŞ2

În acest articol prezentăm câteva metode şi tehnici noi, foarte practice,
pentru calculul unor valori agregate în structuri şi baze de date multidimensionale.
De asemenea, considerăm şi problema determinării eficiente a celei de-a k-a valori
minime din mulţimi definite prin diverse constrângeri. A treia contribuţie a
articolului este reprezentată de câteva extensii şi aplicaţii ale unor probleme
fundamentale de gestiune a mulţimilor de elemente.

In this paper we present several new and very practical methods and
techniques for range aggregation and selection problems in multidimensional data
structures and other types of sets of values. We also present some new extensions
and applications for some fundamental set maintenance problems.

Keywords: range aggregation, selection, range update, set maintenance

1. Introduction

In this paper we present several novel techniques for range aggregation,
selection and the maintenance of sets of elements under certain constraints, as
well as some extensions and applications. Range aggregation and selection are
two fundamental problems with applications in a wide range of domains. Range
aggregation techniques were developed in the context of OLAP data cubes [1],
computational geometry problems and data structures [2], (multidimensional)
databases [3, 4], and so on. The range selection problem considers the
computation of the kth smallest value among a set of (database) entries whose
attributes belong to a given range. Selection techniques have been developed in
the context of geometric inter-distances [9] and implicit sorted matrices [5]. Set
maintenance is another fundamental issue with applications in a wide range of
domains. The rest of this paper is structured as follows. In Section 2 we consider
some range aggregation problems, while in Section 3 we discuss several selection
and range optimization problems. Sections 2 and 3 also address several set
maintenance issues. In Section 4 we conclude.

1 Assist., Computer Science and Engineering Department, University POLITEHNICA of
Bucharest, Romania, e-mail: mugurel.andreica@cs.pub.ro
2 Prof., Computer Science and Engineering Department, University POLITEHNICA of Bucharest,
Romania, e-mail: nicolae.tapus@cs.pub.ro

4 Mugurel Ionuţ Andreica, Nicolae Ţăpuş

2. Range Aggregation Problems

In this section we consider several range aggregation problems with
applications in a wide range of fields. The general model is the following. We
have n points in a d-dimensional space. Each point i has d coordinates (x(i,1), …,
x(i,d)) and a weight w(i). We are interested in answering efficiently the following
types of queries : compute an aggregate of the weights of all the points in a given
d-dimensional range [xa(1),xb(1)] x … x [xa(d),xb(d)]. We will consider two
cases : the sparse case and the dense case. Let’s consider that the points have
m(j)≤n distinct coordinates in dimension j. When m(j) is significantly smaller than
n (1≤j≤n), we call the point set dense. For instance, if m(*)=O(n1/d), the points are
densely packed into a d-dimensional “cube” of side lengths m(*).

We will start with the sparse case, for which the multidimensional range
tree data structure [2] is probably the best known. A d-dimensional range tree
consists of a balanced tree constructed on the m(d) distinct dth coordinates of the n
points. The values of the dth coordinate are the keys of this balanced tree. A
special property of this tree is that the keys are stored only at its leaves. An inner
node q of the tree contains the smallest coordinate left(q) and the largest
coordinate right(q) of a leaf in the subtree of q (for a leaf, we consider
left(q)=right(q)). Each tree node q (leaf or inner node) contains a (d-1)-
dimensional range tree T(q), constructed only over the points whose dth coordinate
is in the range [left(q),right(q)]. When d=1, instead of T(q), every node q stores
an aggregate value qagg, representing the value of the aggregate function over the
weights of the points contained in node q’s subtree. For d=1, the qagg value of a
leaf node is the weight of the point corresponding to that leaf (if there are several
points with exactly the same coordinates, we replace them by a single point whose
weight is the aggregate of the weights of the points). For d=1 and an inner node q,
we have qagg(q)=aggf(leftson(q), rightson(q)), where aggf is the aggregate
function and leftson(q) and rightson(q) denote the left and right sons of node q. A
range aggregate query on a d-dimensional range [xa(1),xb(1)] x … x [xa(d), xb(d)]
is performed by computing in O(log(n)) time a canonical decomposition of
O(log(n)) tree nodes q in the dth dimension, such that their [left(q), right(q)]
intervals are disjoint and, together, these intervals contain all the distinct
coordinates contained in [xa(d),xb(d)] (and only these). Then, a (d-1)-dimensional
range aggregate query is performed on the T(q) trees of each node q in the
canonical decomposition and the results are aggregated. When d=1, the qagg
values of the nodes in the canonical decomposition are aggregated. Thus, a query
takes O(logd(n)) time. The range tree can be turned into a dynamic data structure
which supports insertions of new points and deletions of old points. In this paper
we are concerned only with a semi-dynamic version of the range tree, in which the
weights of the points can be changed, but the points themselves cannot be deleted

Practical range aggregation, selection and set maintenance techniques 5

(nor can new points be inserted). Note, though, that a logical deletion can be
performed, by setting the weight of a point in such a way that it does not influence
the values of the aggregate function (e.g. to -∞ for aggf=max, 0 for aggf=+, 1 for
aggf=*, or +∞ for aggf=min). If we want to change the weight of a point, we find
the O(log(n)) nodes q in the d-dimensional tree, such that the dth coordinate of the
point is in the range [left(q),right(q)] ; then, we call the update function on the (d-
1)-dimensional trees T(q), considering only the first (d-1) coordinates of the point.
When d=1, after locating the leaf containing the point, we change the point’s
weight and recompute the qagg value of the leaf. Then, we recompute the qagg
values of each of the leaf’s ancestors, from the leaf towards the root, by
considering the qagg values of their left and right sons. A weight update takes
O(logd(n)) time. We can extend the range tree with a range update function :
rangeUpdate(u, [xa(1),xb(1)] x … x [xa(d),xb(d)]). This function has the effect of
setting the weight of each point i in the range to uaggf(u, w(i)) (uaggf is the
update function). We can implement this function efficiently by using the ideas
presented in [7], where the authors described an algorithmic framework based on
segment trees (see Fig. 1) in the dense case. Each node q will maintain two trees,
T1(q) and T2(q). One of them will be updated whenever q is part of the canonical
decomposition of a range given as argument to rangeUpdate. The other one will
be updated whenever q is the ancestor of a node p which is part of the canonical
decomposition of a range. When d=1, each tree node q maintains an extra value
uagg, representing the aggregate of all the update values u of the range update
calls for which node q was part of the canonical decomposition of the update
range (in the first dimension). The exact details can be derived from the case
presented in [7] (note that if multiple points with the same 1st coordinate were
replaced by a single point, we may also need to maintain how many of the original
points are represented by the stored point). We will now consider the dense case.
We focus here only on range aggregates where the aggregate function aggf is
invertible, i.e. if c=aggf(a,b), then a=aggf(c,b-1) (e.g. aggf=addition and (aggf)-

1=subtraction ; aggf=multiplication and (aggf)-1= division ; aggf=xor and (aggf)-1

=xor, and so on). Moreover, we will be interested only in static data sets at first.
We can think of the points as being located in a d-dimensional “cube” of size m(1)
x m(2) x … x m(d). Each cell (c(1), …, c(d)) of the cube (1≤c(i)≤m(i) ; c(i) stands
for the c(i)th distinct coordinate value in dimension i , 1≤i≤d) is occupied by a
point i and we say that Cube(c(1), …, c(d))=w(i). If there is no point with the
corresponding coordinates, we say that Cube(c(1),…,c(d)) is equal to the neutral
element of the aggregation function (e.g. 0 for +,xor ; 1 for *, and so on). We
want to compute the aggregate of the cube values in a d-dimensional range
[clow(1), chigh(1)] x … x [clow(d), chigh(d)], where 1 ≤ clow(i) ≤ chigh(i) ≤ m(i)

6 Mugurel Ionuţ Andreica, Nicolae Ţăpuş

Fig. 1. A 1D segment tree with 16 leaves and a canonical decomposition of the range [3,11].

(1≤i≤d). We will present a well-known technique, based on computing the
prefix aggregate cube PSCube, where PSCube(c(1), …, c(d)) is the aggregate
value of all the entries Cube(c’(1), …, c’(d)), with 1≤c’(i)≤c(i) (1≤i≤d). We will
first assume that this prefix cube is already computed and we will show how we
can use it. Later, we will show how to compute the prefix cube, too. Let’s assume
that we want to compute the aggregate of all the entries in a range [clow(1),
chigh(1)] x … x [clow(d), chigh(d)]. We can do this by aggregating 2d entries of
the prefix cube PSCube :

∏ ∑
=

≤≤
−∈

⋅∑−= =
d

i
di

ichighiclowis

jsparity
dssPSCubeichighiclowRangeQuery

d

j

1
1

)}(,1)({)(

))((
))(),...,1(()1()])(),([(1 . (1)

The function parity(s(i)) returns 0 if s(i)=chigh(i), and 1 if s(i)=clow(i)-1.
If the term (-1)·PSCube(s(1),…,s(d)) appears in the « sum », then we need to
consider the inverse of PSCube(s(1),…,s(d)) (the inverse of a value x is : –x, for
aggf=+ ; 1/x, for aggf=* ; x, for aggf=xor ; and so on). The large « sum » symbol
denotes the aggregation of the terms (or their inverses) of PSCube. The small
« sum » symbol denotes addition. If we consider the number of dimensions d to be
constant, then a range aggregate query can be answered in O(1) time. We will
now show how to compute efficiently the entries of the prefix « sum » cube. We
consider the sequences of coordinates (c(1), …, c(d)) in lexicographic order and
compute PSCube(c(1), …, c(d)) as follows. If any of the coordinates is 0, then the
entry is equal to the neutral element (depending on aggf). Otherwise, we have :

)))(),...,1(()1()),(),...,1((())(),...,1((
)()(.1)(

1)},(,1)({)(

))(('1
1∑

≠≤≤∃
≤≤−∈

+

⋅
∑

−= =

jcjsdj
diicicis

isparity

dssPSCubedccCubeaggfdccPSCube

d

j (2)

The function parity’(s(i)) returns 0 if s(i)=c(i), and 1, if s(i)=c(i)-1. This

Practical range aggregation, selection and set maintenance techniques 7

way, every entry PSCube(c(1), …, c(d)) is computed in O(2d) time. The large
« sum » symbol and the terms (-1)·PSCube(c(1),…,c(d)) have the same meaning
as before. We can do a little better, though, as was observed in [1]. We initialize
PSCube(c(1), …, c(d)) to Cube(c(1), …, c(d)) (for all the tuples (c(1), …, c(d))).
Then, for each dimension i (1≤i≤d), in order, we compute the prefix « sums »
along that dimension, i.e., in lexicographic order of the sequences of coordinates
(c(1), …, c(d)), we set PSCube(c(1), …, c(d))=aggf(PSCube(c(1), …, c(d)),
PSCube(c(1), …, c(i-1), c(i)-1, c(i+1), …, c(d))). This takes O(d) time per entry.
 An application of the prefix « sum » technique is provided by the batched
range update problem, which was briefly mentioned in [7]. Let’s consider the
same d-dimensional data cube as before, whose entries initially contain the neutral
element. We are given a list of q updates. An update consists of a d-dimensional
range [xa(1),xb(1)] x … x [xa(d),xb(d)] (1≤xa(i)≤xb(i)≤m(i), 1≤i≤d, xa(i) and xb(i)
are the indices of the xa(i)th and the xb(i)th distinct coordinate values in dimension
i) and an update value u. The effect of the update is to set each data entry
Cube(c(1), …, c(d)) with xa(i)≤c(i)≤xb(i) (1≤i≤d) to aggf(u, Cube(c(1), …, c(d))).
Of course, we want to perform the updates in an efficient manner, i.e. without
changing the value of each data entry independently (such an approach would
have a time complexity of O(q·Np), where Np=m(1)·…·m(d)). An efficient
technique is the following. For each update, we modify the 2d entries Cube(c(1),
…, c(d)), with c(i) in {xa(i), xb(i)+1} in the following way. If the number of
coordinates c(i) (1≤i≤d) such that c(i)=xb(i)+1 is even, then we set Cube(c(1), …,
c(d)) to aggf(u, Cube(c(1), …, c(d))) ; otherwise, we set it to aggf(u-1, Cube(c(1),
…, c(d))). For instance, if aggf=+, in the first case we increase Cube(c(1), …,
c(d)) by u and in the second case we decrease it by u (it’s similar for the other
functions, e.g. multiplication and division, xor and xor, and others). In the end we
compute the prefix « sum » cube PSCube, as shown before. PSCube(c(1), …,
c(d)) will be equal to the final value of the entry Cube(c(1), …, c(d)), after
applying all the updates. The complexity is only O((q+Np)·2d), or O(q·2d+Np·d).

The techniques developed for range searching are also useful for solving
problems where some unexpected transformation reduced them to a range
searching problem. For instance, let’s consider the following problem. We are
given a rooted tree with n vertices. Each vertex i has a weight w(i) and every edge
(u,v) has a length length(u,v). We want to answer queries of the following form:
compute the aggregate of the weights of all the vertices located in the subtree of
vertex i and located at distance at least d1 and at most d2 (d2≥d1≥0) from i. The
subtree of a vertex i is composed of vertex i and the subtrees of its sons. We will
perform a DFS traversal of the tree starting from the root. During this traversal,
we assign to each vertex i its DFS number (DFSnum(i)). We have DFSnum(i)=j if
vertex i was the jth distinct vertex visited during the DFS traversal. All the DFS
numbers of the vertices p in vertex i’s subtree are ≥DFSnum(i) and they form an

8 Mugurel Ionuţ Andreica, Nicolae Ţăpuş

interval of consecutive numbers [DFSnum(i), DFSmax(i)], where DFSmax(i) is
the largest DFS number of a vertex in vertex i’s subtree. We also compute for
each vertex i the value droot(i)=the distance from the root to vertex i. We have
droot(root)=0 and droot(i≠root)=length(parent(i),i)+droot(parent(i)). We will
assign to each vertex i a point in the plane with coordinates (DFSnum(i), droot(i))
and weight w(i). We insert all these points in a 2D range tree RT. The types of
queries that we mentioned are now equivalent to range querying the range
[DFSnum(i), DFSmax(i)] x [droot(i)+d1, droot(i)+d2] and obtaining the aggregate
value of the weights of the points in this range. Thus, each query can be answered
in O(log2(n)) time, or O(log(n)) if we use the fractional cascading method. This
method assumes that the range tree nodes q at d=2 do not store a tree T(q), but
rather an array A(q) of the points in the corresponding range (the same points that
would have been stored in T(q)), sorted according to the points’ first dimension
coordinates (if q is not a leaf, A(q) can be obtained by merging A(leftson(q)) and
A(rightson(q))). If the aggregate function aggf is invertible, we compute an array
of prefix aggregates at each such node q: pagg(q,0)=the neutral element and
pagg(q,i≥1)=pagg(q,i-1) aggf w(A(q,i)) (where A(q,i) is the ith point in the sorted
array of node q). A (multidimensional) range query will ask every node q at d=2
to run a 1D range query on an interval [u,v] of positions from A(q): such a range
query can be answered in constant time, as pagg(q,v) aggf (pagg(q,u-1))-1. We can
also answer range maximum or minimum queries in O(1) time at a node q, as it is
well known that we can preprocess the weights of the points stored at every node
q (at d=2) in time proportional to their number, in order to answer such queries in
O(1) time. Usually, the indices u and v are computed by using a binary search
(because the 1D range is [xa(1),xb(1)] and we need to find the smallest position u
s.t. x(A(q,u),1)≥xa(1) and the largest position v s.t. x(A(q,v),1)≤xb(1)). The
fractional cascading technique allows us to perform a binary search only at the
root of the tree T(q’) in which a node q is contained. Then, the indices u and v for
each relevant node q from T(q’) are computed in O(1) time.

A 1D application of some of the range update and aggregation techniques
we presented earlier is the following. We are given n communication stations,
interconnected by a network architecture similar to a bus. The stations are
arranged in a line, such that station i can transmit data only to station i+1 (1≤i≤n-
1). Each station has a data sending rate s(i)>0 and a maximum data processing
rate r(i)>s(i). In a normal state, each station i sends data at a rate s(i) and receives
data at a rate rr(i)≤r(i)-s(i). If, however, rr(i)>r(i)-s(i), the station collapses
naturally and does not consume the received data anymore. As a consequence,
data is transmitted at a rate of rr(i)+s(i) to the next station (i+1). Each station also
has a security cost c(i), representing the amount of effort required to make the
station collapse artificially (i.e. set r(i) to 0). For security reasons, we want to
assess the minimum total amount of effort required to make the nth station

Practical range aggregation, selection and set maintenance techniques 9

collapse. Note that by collapsing a subset of stations, other stations might collapse
without any extra effort, due to the data receiving rate being larger than their
maximum allowed rate. We will compute the prefix sums ps(i)=s(1)+…+s(i)
(ps(0)=0 and ps(i)=ps(i-1)+s(i)). Then, using these prefix sums, for each station i
we will compute the smallest index prev(i) (1≤prev(i)≤i), such that ps(i)-
ps(prev(i)-1)≤r(i) (we can use binary search to compute prev(i)). After this, for
each station i, we will compute e(i)=the total effort required to collapse the nth
station if we artificially collapse station i and we do not artificially collapse any
other station j<i. We will maintain a segment tree over the e(i) values of the n
stations, which are initialized to 0. Then, for each station i, we update the interval
[prev(i),i] with the value c(i). This means that the value e(j) of every station j
(prev(i)≤j≤i) should be increased by c(i). By using a segment tree, we find the
canonical decomposition of the interval [prev(i),i] and increase the uagg values of
the tree nodes in the canonical decomposition. At the end, we compute the actual
values e(i). e(i) is the sum of the uagg(q) values of the tree nodes q on the path
between the leaf corresponding to station i and the tree root (including the
endpoints). The time complexity is O(n·log(n)). Note that all the updates take
place before the point queries. Thus, we could also use the technique regarding
batched range updates, presented earlier, for computing all the e(*) values in O(n)
time (the total time complexity remains O(n·log(n)), due to the binary searches).

3. Selection and Range Optimization Problems

In this section we will present novel algorithmic results for several
selection and range optimization problems. In the first problem we consider n
(ascendingly) sorted sequences of numbers. Each sequence i (1≤i≤n) has b(i)
distinct elements. We want to find the kth smallest element of the sequence
obtained by merging the elements of the n sequences in increasing order.
However, the numbers in the n sorted sequences are not known in advance. We
can use a query operation Qu(i,j) which returns the jth number (1≤j≤b(i)) from the
ith sequence. We would like to use the query operation as few times as possible.
We will present a solution which does not necessarily perform the minimum
number of queries, but which is, nevertheless, quite efficient. We will maintain for
every sequence i, the potential interval of positions [low(i),high(i)] in which the
number we are looking for may reside – initially, low(i)=1 and high(i)=b(i). The
meaning of low(i) (high(i)) is that we know for sure that all the numbers in the
sequence i located on positions which are strictly smaller (larger) than low(i)
(high(i)) are strictly smaller (larger) than the element we are looking for. We will
perform several iterations, as follows. In every iteration, we will choose any
sequence q, such that low(q)<high(q). Then, we will set mid(q)=(low(q)+high(q))
div 2. Moreover, for every sequence i we will maintain a data structure DS(i) (e.g.

10 Mugurel Ionuţ Andreica, Nicolae Ţăpuş

a balanced tree) with values j and associated values x(i,j) (i.e. the value on
position j of the sequence i), for all the positions j for which the values are known
in the sequence i. We will try to find the value x(q,mid(q)). If the position q is in
DS(q), then we already know the value; otherwise, we perform a query
Qu(q,mid(q)) and we find out x(q,mid(q)) (then, we insert mid(q) with the
associated value x(q,mid(q)) into DS(q)). After this, we will compute nv(i) for
every sequence i: nv(i)=the number of values in the sequence i which are smaller
than or equal to x(q,mid(q)). Obviously, nv(q)=mid(q). For every other sequence i,
we will find the two positions u(i) and v(i) from DS(i) with known values on
them, such that x(i,u(i))≤x(q,mid(q)) (and u(i) is the largest with this property) and
x(i,v(i))>x(q,mid(q)) (and v(i) is the smallest with this property); we also consider
that DS(i) contains the fictitious positions 0, with x(i,0)=-∞, and b(i)+1, with
x(i,b(i)+1)=+∞. Then, we will perform a binary search on the interval [u(i),v(i)-
1]. Let ulow=u(i), uhigh=v(i)-1 and uok=u(i). While ulow≤uhigh, we perform the
following steps: (1) we set umid=(ulow+uhigh) div 2; (2) if x(i,umid) is not
known, we query Qu(i,umid) (and then we insert the values umid and the
associated value x(i,umid) in DS(i)); (3) if x(i,umid)≤x(q,mid(q)) then we set
uok=umid and ulow=umid+1; otherwise, we set uhigh=umid-1. At the end of this
binary search, we set nv(i)=mid(i)=uok. Then, we compute the sum of the nv(*)
values: snv=nv(1)+…+nv(n). If snv<k then, for every sequence i, we set
low(i)=max{low(i), mid(i)+1}; if snv>k then, for every sequence i, we set
high(i)=min{high(i), mid(i)}. If snv=k then the kth smallest value in all the
sequences is x(q,mid(q)) and the algorithm ends. The iterative process also stops
when there are no more sequences i with low(i)<high(i) (or, alternatively, after we
obtain snv>k and snv-k<n and we update the high(*) values accordingly). Then, if
the kth smallest value has not been found, yet, we compute snv=the sum of the
high(i) values of all the sequences: snv=high(1)+…+high(n). Then, since the kth
smallest element has not been found, yet, we must have snv>k. However, we have
that snv-k<n. We initialize idx(i)=high(i) for every sequence i. Then, we insert in
a max-heap H all the values x(i,idx(i)), together with their associated sequence
index i (with 1≤i≤n and idx(i)>0); if the value is not known, we perform a query
for it. While snv>k : 1) we extract the largest value x(i,idx(i)) (corresponding to a
sequence i) from H; 2) we decrease idx(i) by 1; 3) if idx(i)>0 we insert x(i,idx(i))
into H (together with the associated sequence index i) – if x(i,idx(i)) is not known,
we perform a query for it; 4) we decrement snv by 1. In the end, when snv=k, the
largest value in H is the kth smallest value we were searching for. The algorithm
performs at most n·log(max{b(i)|1≤i≤n}) queries per iteration, and the number of
iterations can be O(n·log(max{b(i)|1≤i≤n})). In the end, the algorithm may
perform O(n) extra queries. This algorithm can be extended to finding the kth
smallest value among the numbers on the positions [a(i),b(i)] of every sequence i:
we just replace every sequence i by a sequence i’ consisting of the b(i)-a(i)+1

Practical range aggregation, selection and set maintenance techniques 11

positions [a(i),b(i)] of the sequence i, and we translate Qu(i’,j) into Qu(i,j+a(i)-1).
As the second problem we consider the multidimensional dynamic range

median problem. We have a d-dimensional hyper-cube, with m(j) cells in each
dimension j (1≤j≤d). The kth cell in the jth dimension has an assigned coordinate:
x(j,k) (x(j,k)≤x(j,k+1) for 1≤k≤m(j)-1). Each cell (c(1), ..., c(d)) has a value
Cube(c(1), ..., c(d)). Given a d-dimensional range [clow(1), chigh(1)] x ... x
[clow(d), chigh(d)] (with 1≤clow(j)≤chigh(j)≤m(j) for every 1≤j≤d), we want to
find the location of a point P such that the sum of weighted L1 distances from P to
every point assigned to a cell in the range is minimum (the point assigned to a cell
(c(1), ..., c(d)) is (x(1,c(1)), ..., x(d,c(d)))); the weighted L1 distance to the point
corresponding to a cell (c(1), ..., c(d)) is equal to (Cube(c(1), ..., c(d)) multiplied
by the actual L1 distance). In [4] an efficient solution to the static version of this
problem was given. Here we augment that solution by allowing point updates (i.e.
the value of a cell can be modified) and restricted range updates (i.e. the value of
each point in a given range is updated, e.g. it is increased, by the same value u);
our time complexities are: O(d·logd(n)) for a point update and O(n·d·logd(n)) for a
range update. The technique in [4] is based on being able to compute efficiently
the sum of the XCube(*,...,*) values in any given d-dimensional range of a d-
dimensional array XCube. When the hyper-cube is static, this can be done in
O(2d)=O(1) time. If we construct a d-dimensional segment tree over the cells of a
hyper-cube H, then point updates, some restricted range updates, and range sum
queries can be performed in O(logd(n)) time each over the cells of H (n=max{m(j)
| 1≤j≤d}) ; see [7]. Thus, the query time complexity of the method given in [4] is
increased by an O(logd(n)) factor in this version of the problem. When a range
[clow(1), chigh(1)] x ... x [clow(d), chigh(d)] (possibly just one cell) of Cube(c(1),
..., c(d)) is modified by v (e.g. each value in the range is increased by v), we need
to update the range in the Cube d-dimensional array by v. Then, we need to
(range) update every range [clow(1), chigh(1)] x ... x [clow(j-1), chigh(j-1)] x
[c(j), c(j)] x [clow(j+1), chigh(j+1)] x ... x [clow(d), chigh(d)] in the DCubej d-
dimensional array by x(j,c(j))·v (for every cell clow(j)≤c(j)≤chigh(j); 1≤j≤d).

A related median finding problem is the following. Given n points on the
real line (with point i at coordinate x(i); 1≤i≤n), we want to find the location of a
point xp such that the sum of distances from each of the n points to xp is
minimum. We consider two cases. In case 1, the distance from point i to xp is
|x(i)-xp|. In case 2, every point i also has a non-negative weight w(i) and the
distance is defined as w(i)·(x(i)-xp)2. For case 1, let’s consider the points sorted
such that x(1)≤...≤x(n). xp can be located anywhere inside the interval [x(1),x(n)],
without changing the sum of distances to the points 1 and n. In a similar manner,
xp can be located anywhere inside [x(2), x(n-1)], and so on. If n is odd then
xp=x((n+1)/2). If n is even, then xp can be any point inside the interval [x(n/2),
x((n/2)+1)] (even xp=x(n/2)). Thus, in order to compute xp, we can sort all the n

12 Mugurel Ionuţ Andreica, Nicolae Ţăpuş

values in O(n·log(n)) time, or we can use a linear time algorithm for selecting the
median value of the (multi-)set of numbers x(1), ..., x(n).

In case 2 we must minimize the sum S(xp)=w(1)·(x(1)-xp)2+...+w(n)·
(x(n)-xp)2. The derivative of S, dS/dxp must be equal to 0. Thus, we must have
2·(w(1)·x(1)+...+w(n)·x(n))=2·(w(1)+...+w(n))·xp => xp=(w(1)·x(1)+...+w(n)·
x(n))/(w(1)+...+w(n)) (i.e. xp is the weighted average of the n x-coordinates). In
this case, the solution also has a linear time complexity.

For the third problem we consider a sequence of n numbers: S(1), ..., S(n)
and a sequence of m operations of three types: type 1) R(i,j) (1≤i≤j≤n) reverses
the order of the numbers on the positions i, ..., j ; type 2) C(i,j,p) (1≤i≤j≤n; -1≤
p≤n-(j-i+1)) cuts the numbers S(i), …, S(j) from the sequence and pastes them, in
the same order, after the position p of the remaining sequence (if p=-1 then no
paste occurs) ; type 3) I(p, k, v1, …, vk) – inserts the numbers v1, …, vk after the
position p of the sequence ; type 4) Q(i) asks for the current value of S(i) (the
current number on the position i in the sequence). We will start by presenting a
solution which works well when m is not too large. We will maintain a sequence
SI of ([a(u),b(u)], dir(u)) pairs, where the intervals correspond to the order in
which the elements occur in the sequence. Such an interval [a(u),b(u)] occurring
on the position u of SI will have the meaning that the numbers So(a(u)), …,
So(b(u)) from the original sequence So are located on consecutive positions in the
current sequence. If dir(u)=+1 then these numbers occur in increasing order of
the positions a(u), …, b(u); if dir(u)=-1 then they occur in reverse order. Initially,
we only have one interval, [a(1)=1,b(1)=n], and dir(1)=+1. Then, we traverse the
sequence of operations (in order). All the operations will make use of the
following function: Find(i). If i=0 then Find(i) returns 0. Otherwise, Find(i)
works as follows: We will traverse the (interval, direction) pairs from SI from left
to right (i.e. starting from the first position) and we will maintain a counter k,
representing the number of positions traversed so far (initially k=0). When we
reach a position p in SI, we increase k by (b(p)-a(p)+1). If, after considering the
uth interval in SI, we have k≥i, then [a(u),b(u)] is the interval containing the
position i. Let q=i-(k-(b(u)-a(u)+1)) be the position in the interval corresponding
to position i. If dir(u)=+1 then we will split the interval [a(u),b(u)] into x=(at
most) 3 intervals: [a(u),a(u)+q-2], [q’=a(u)+q-1,q’=a(u)+q-1] and [a(u)+q,b(u)]
(we disregard any empty intervals among these three). We will insert these
intervals (in this order) instead of the interval on position u of SI, setting their
corresponding dir values to +1 (not before shifting x-1 positions to the right every
interval and dir value from a position larger than u). If dir(u)=-1, then we split the
interval into x=(at most 3) intervals: [b(u)-q+2,b(u)], [q’=b(u)-q+1,q’=b(u)-q+1]
and [a(u),b(u)-q]. Like before, we insert the non-empty intervals among these
intervals in SI (in this order) instead of the former interval on position u and we
set their dir values to -1 (we also shift the other (interval, direction) pairs to the

Practical range aggregation, selection and set maintenance techniques 13

right, like before). Find(i) returns h, such that a(h)=b(h)=q’.
At an operation R(i,j) we will first compute u’=Find(i) and then v’=

Find(j). Then, we will reverse the order of the (interval, direction) pairs between
the positions u’ and v’ from the SI array. Basically, we swap the (interval,
direction) pairs from the positions po and (v’-(po-u’)) (for u’≤po≤(v’+u’) div 2).
Afterwards, we set dir(po)=-dir(po) for every position u’≤po≤v’. In the case of a
C(i,j,p) operation, we compute u’=Find(i) and then v’=Find(j). Then, we
construct SI’ by removing from SI all the (interval, direction) pairs on the
positions between u’ and v’ inclusive. Then, we compute w’=Find(p) (using the
SI’ array). Then, we insert the (interval, direction) pairs removed previously (their
a, b, and dir values) in SI’, right after the position w’ and we set SI to the obtained
sequence of (interval, direction) pairs. If, however, we have p=-1 then we set
SI=SI’. An I(p, k, v1, …, vk) operation is handled as follows. We add the numbers
v1, …, vk at the end of the original sequence So: (So(n+i)=vi; 1≤i≤k) and then we
set n=n+k. Then, we compute w’=Find(p). After the position w’, we insert in the
array SI the pair ([n-k+1,n],1). In order to answer a query Q(i), we find the
interval [a(u),b(u)] containing the position i (by using the same counter k as in the
function Find) and the value of q=i-(k-(b(u)-a(u)+1)). This time, however, we
will not split the interval u. If dir(u)=+1, then the answer is So(a(u)+q-1); if
dir(u)=-1, then the answer is So(b(u)-q+1). Here, So(p) denotes the number on the
position p in the initial sequence (on which no changes were performed). The time
complexity is O(min{m,n}) for each R, C or Q operation, and O(min{m,n}+k) for
each I operation (where k is the number of inserted elements). The overall time
complexity is O(min{m·n,m2}+n), where n is the total number of elements (the
initial elements plus the newly inserted elements).

In order to solve the problem more efficiently we make use of an idea
mentioned to us by M. Paşoi. We will split the sequence of m operations into
groups of z operations (the last group may contain fewer than z operations). For
each group of z operations, we will use the methods described above. After
processing all the z operations in the gth group (1≤g≤ng; ng=O(m/z) is the total
number of groups), we will generate the contents of the sequence S of numbers at
that moment in time, in O(n+min{n,z}) time. We will traverse the sequence of
intervals SI from position 1 to |SI| (|SI|=the total number of intervals in SI) and, at
the same time, we will maintain a counter k (initially, k=0). When we reach the uth
interval, if dir(u)=+1, then we set S(k+j)=So(g-1, a(u)+j-1) (1≤j≤b(u)-a(u)+1); if
dir(u)=-1, then we set S(k+j)=So(g-1, b(u)-j+1) (1≤j≤b(u)-a(u)+1). Then, we
increment k by (b(u)-a(u)+1). Here, So(g-1) denotes the sequence right before
performing the first operation from the current group. If g=1, then So(0) is the
original sequence. After computing S, we set So(g)=S and n=k. Note that after
computing So(g), we do not need the previous sequences So(0≤g’≤g-1), which can
be dropped (in order to use only O(n) memory). The time complexity of this

14 Mugurel Ionuţ Andreica, Nicolae Ţăpuş

approach is O(m/z·min{n·z,n+z2})=O(min{m·n/z+m·z,m·n}). We can choose, for
instance, z=O(sqrt(n)) or z=O(sqrt(m)), obtaining an O(m·sqrt(n)) or an
O(min{(n+m)·sqrt(m),m·n}) time complexity, which is much better than
O(min{m·n,m2}+n); sqrt(h) denotes the square root of h.

A related problem is the following. We consider a stack (initially empty),
on which we perform M operations of the following two types: 1) Push(x): push
an element x at the top of the stack; 2) rotate the topmost K elements of the stack
(K is the same for each such operation). We want to print the final order of the
elements in the stack (from bottom to top). In order to solve the problem we will
construct a stack F (initially empty), containing the final order of the elements.
We will also construct an array V which is sufficiently large (e.g. it has at least
2·M elements) and we will maintain two pointers, up and down (up points to the
topmost element and down points to the Kth element from the top, or the bottom
element if there are less than K elements in the stack). We will also maintain the
direction dir in which the next element will be added. We will start with down=M,
up=down-1 and dir=+1. At every Push(x) operation, we set up=up+dir and then
V(up)=x. If at least K+1 Push operations have been performed so far (including
the current one), then we push V(down) at the top of F and then we set down=
down+dir. At a rotation operation, we swap the values of up and down and set
dir=-dir. After performing all the operations, we traverse all the elements between
down and up from the array V (V(down), V(down+dir), V(down+2·dir), …, V(up))
and we push each of them on top of F. Thus, each operation takes O(1) time.
Instead of the array V we could use a doubly-linked list in which every node has
two neighbors, corresponding to the directions -1 and +1 (then, we would replace
x=x+dir by x=x->neighbor(dir), where x=up or down; in the end, we would
traverse the list from down and following the direction dir until we reach up).
 The following interesting geometric selection problem was mentioned to
us by R. Berinde in a private communication. We have n points in the plane (point
i lies at coordinates (x(i),y(i)) and y(i)≥0). We have m queries of the following
type: what is the kj

th smallest (Euclidean) distance from a point i with x(i)≤xqj to
the point (xqj,0) ? The problem is offline, meaning that all the queries are known
in advance. For each query j, we could sort all the n points according to their
distance to (xqj,0) and then just select the kj

th distance. This approach has an
O(m·n·log(n)) time complexity. An improvement consists of selecting the kj

th
smallest distance without sorting the distances for each query, by using the
QuickSelect selection algorithm [8] (inspired from the QuickSort algorithm). This
approach has an O(m·n) time complexity. In order to obtain a better time
complexity, we will proceed as follows. We will sort the coordinates xqj of the
queries, such that we have xqp(1)≤xqp(2)≤…≤xqp(m). We will sort the points i with
x(i)≤xqp(1) in increasing order of their distance from (xqp(1),0). Thus, we have an
order of the points: od(1), ..., od(np(1)) (np(1) is the number of points i with

Practical range aggregation, selection and set maintenance techniques 15

x(i)≤xqp(1)). We will sweep the plane from left to right with a vertical line. At
every moment, we will want to maintain the sorted order of the points i with
coordinates x(i)≤xd, according to their distance from (xd,0), where x=xd is the
current position of the sweep line. As we sweep the line, we have 3 types of
events: 1) insertion of a new point i: a new point is inserted when we reach
xd=x(i); 2) query – such an event occurs when xd=xqj for some j (1≤j≤m); 3)
swapping the order of two points located on consecutive positions in the ordering
according to distance. Event 3 is based on the following observation. Let’s assume
that we have the points od(i) and od(i+1), in increasing order of their distance
from (xd,0). If x(od(i))<x(od(i+1)) (the x-condition) then there exists a coordinate
xsod(od(i)), up until which od(i) will be located before od(i+1) in the distance
ordering, and after which the order of od(i) and od(i+1) will be swapped – from
there on, od(i+1) will always be located before od(i) in the ordering. We can
compute this coordinate from the equation: (x(od(i))-xsod(od(i)))2+y(od(i))2=
(x(od(i+1))-xsod(od(i)))2+y(od(i+1))2. This equation is, in fact, only a first degree
equation with the unknown xsod(od(i)). Thus, we can use the following solution.
We will maintain a heap with events of type 3 and two arrays of events of types 1
and 2. At every step, we will choose the event located at the smaller coordinate
(either the next event of type 1 or 2 from the corresponding array, or the event
with the minimum x-coordinate from the heap; if multiple events of different
types take place at the same x-coordinate, we give preference to type 1 events
first). Initially, we compute the values xsod(od(i)) for the initial order of the points
(relative to the distance to (xqp(1),0)) and only for those points for which the x-
condition is met; we insert the values xsod(od(i)) (together with the values od(i)
and od(i+1)) in H (1≤i≤np(1)). For a type 1 event, we will search the position p on
which the point has to be inserted in the distance ordering (distances are computed
relative to (xd,0), where xd is the x-coordinate of the event). If we insert the new
point on the position i (the new point is od(i)), then we compute the values
xsod(od(i-1)) (if i>1) and xsod(od(i)) (if i is not the currently last position) – only
if the corresponding x-conditions are met - and insert them into H (together with
the indices of the two points to which the event corresponds). We can store the
points od(i) in an array, in which case an operation of type 1 can be handled in
O(log(n)) (for binary searching the position i) + O(n) (for shifting to the right the
points located after the position i in the od array) time. A type 2 event is handled
in O(1) time, by setting the distance from od(kp(i)) to (xqp(i),0) as the answer to the
query p(i) to which the type 2 event corresponds. A type 3 event, corresponding to
the swap of the points a and b, is handled as follows. For each point i (1≤i≤n) we
will maintain a value pos(i)=p, if od(p)=i (or pos(i)=0 if i was not inserted in the
od array, yet). Whenever we insert a new point, we shift a point to the right, or we
swap the order of two points in the od array, we also update the pos values of the
corresponding point(s). Let’s assume that pos(a)<pos(b) and pos(b)=pos(a)+1.

16 Mugurel Ionuţ Andreica, Nicolae Ţăpuş

Then, we swap od(pos(a)) with od(pos(b)). Before performing the swap, we delete
from H the events corresponding to the swap of a with od(pos(a)-1)
(xsod(od(pos(a)-1))) and to the swap of b with od(pos(b)+1) (xsod(b)), if such
events exist in H. After performing the swap (and adjusting the pos values
accordingly), if pos(a) is not the last position in the od array (pos(b)>1), we insert
in H a type 3 event with x=xsod(od(pos(a))) (x=xsod(od(pos(b)-1)))
corresponding to the swap of the points od(pos(a)) (od(pos(b))) and od(pos(a)+1)
(od(pos(b)-1)); the events are considered only if the corresponding x-conditions
are met. A type 3 event is handled in O(log(n)) time. Overall, there are n type 1
events, m type 2 events (which need to be sorted) and O(n2) type 3 events. The
time complexity is O(n2+m·log(m)+n2·log(n))=O(m·log(m)+n2·log(n)). If the
queries are given in increasing order of xqj, then sorting the type 2 events is no
longer required and the total time complexity becomes O(m+n2·log(n)).

Another related problem (the Longest Common Contiguous Subsequence)
is mentioned in [6]. The algorithm in [6] contains a small error, which we correct
here: (2) the first position of su(left) belongs to a string S(j) for which ((x(j)>a(j))
or ((x(j)=a(j)) and (nok>F)) or ((x(j)<a(j)) and (nok≥F))) : in this case we set
x(j)=x(j)-1 first (and, if x(j) becomes equal to a(j)-1, we also decrement nok by 1).

4. Conclusions

In this paper we presented several novel, practical, range aggregation and
selection techniques and we discussed several important set maintenance issues.

R E F E R E N C E S

[1] C.-T. Ho, R. Agrawal, N. Megiddo, R. Srikant, “Range Queries in OLAP Data Cubes”, ACM
SIGMOD Record, vol. 26, no. 2, pp. 73-88, 1997

[2] J. L. Bentley, J. H. Friedman, „Data Structures for Range Searching”, ACM Computing
Surveys, vol. 11, no. 4, pp. 397-409, 1979

[3] I. Mocanu, „An Indexing Scheme for Content-based Retrieval of Images by Shape”, U.P.B.
Scientific Bulletin, vol. 68, no. 1, pp. 25-34, 2006

[4] M. E. Andreica, M. I. Andreica, N. Cătăniciu, “Multidimensional Data Structures and
Techniques for Efficient Decision Making”, Proc. of the 10th WSEAS Intl. Conf. on
Mathematics and Computers in Business and Economics, pp. 249-254, 2009

[5] A. Glozman, K. Kedem, G. Shpitalnik, „On Some Geometric Selection and Optimization
Problems via Sorted Matrices”, Computational Geometry, vol. 11, no. 1, pp. 17-28, 1998

[6] M. I. Andreica, N. Ţăpuş, “Practical Algorithmic Techniques for Several String Processing
Problems”, Proc. of the RoEduNet International Conference, pp. 136-141, 2009

[7] M. I. Andreica, N. Ţăpuş, “Efficient Data Structures for Online QoS-Constrained Data Transfer
Scheduling”, Proc. of the IEEE Intl. Symp. on Par. and Distrib. Comp., pp. 285-292, 2008

[8] H. Prodinger, “Multiple Quickselect—Hoare’s Find Algorithm for Several Elements”,
Information Processing Letters, vol. 56, no. 3, pp. 123-129, 1995

[9] J. S. Salowe, “Shallow Interdistance Selection and Interdistance Enumeration”, Lecture Notes
in Computer Science, vol. 519, pp. 117-128, 1991.

