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SPECIAL ELEMENTS AND PSEUDO INVERSE FUNCTIONS IN
GROUPOIDS

Y. L. Liu', H. S. Kim?, J. Neggers®

In this paper, we consider a theory of elements w of a groupoid (X, *)
which have associated with them certain functions u : X — X, pseudo-inverse functions,
which are generalizations of the inverses associated with units of groupoids with identity
elements. It turns out that if we classify the elements u as special of one of twelve types,
then it is possible to do a rather detailed analysis of certain cases, leftoids, rightoids and
linear groupoids included, which demonstrates that it is possible to develop a successful
theory and that a good deal of information has already been obtained with much more

possible in the future.
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1. Introduction

R. H. Bruck ([5]) published a book, A survey of binary systems discussed in the theory
of groupoids, loops and quasigroups, and several algebraic structures. O. Boruvka ([4])
stated the theory of decompositions of sets and its application to binary systems. Recently,
some interesting results in groupoids were investigated by several researchers [3, 11, 13, 19].
Semigroups are in fact the first and simplest type of algebra to which the methods of universal
algebra must be applied, and any mathematician interested in universal algebra will find
semigroup theory a rewarding study ([10]). The notion of d-algebras which is another useful
generalization of BC' K-algebras was introduced by J. Neggers and H. S. Kim ([17]), and some
relations between d-algebras and BC'K-algebras as well as several other relations between d-
algebras and oriented digraphs were investigated. Several aspects on d-algebras were studied
([1,9,12, 15, 16]). H. S. Kim and J. Neggers [8] introduced the notion of Bin(X) of all binary
systems(groupoids, algebras) defined on a set X, and showed that it becomes a semigroup
under suitable operation.

In this paper, we consider a theory of elements u of a groupoid (X, *) which have
associated with them certain functions @ : X — X, pseudo-inverse functions, which are

generalizations of the inverses associated with units of groupoids with identity elements.
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It turns out that if we classify the elements u as special of one of twelve types, then it
is possible to do a rather detailed analysis of certain cases, leftoids, rightoids and linear
groupoids included, which demonstrates that it is possible to develop a successful theory
and that a good deal of information has already been obtained with much more possible in
the future.

2. Preliminaries

A d-algebra ([17]) is a non-empty set X with a constant 0 and a binary operation
“x7 satisfying the following axioms: (I) x*x =0, (II) Oxz =0, (III) zxy = 0 and y*xx =0
imply x = y for all z,y € X. For brevity we also call X a d-algebra. In X we can define a
binary relation “ <7” by x < y if and only if x x y = 0. For general references on d-algebras
we refer to [1, 2, 9, 12, 15, 16]. A BCK-algebra is a d-algebra X satisfying the following
additional axioms: (IV) (z*y)*(z*2))*(2xy) =0, (V) (z*(zxy))*xy =0 forall z,y,z € X.

Given two groupoids (X, ) and (X, ), we define a new binary operation O by Oy :=
(rxy) e (y=*x) for all z,y € X. Then we obtain a new groupoid (X,0), i.e, (X,0) =
(X,#)0d(X,e). We denote the collection of all binary systems(groupoid, algebras) defined
on X by Bin(X) [8].

Theorem 2.1. [8] (Bin(X),0d) is a semigroup and the left zero semigroup is an
identity.

3. LL-special and pseudo inverse functions

Given a groupoid (X, *), i.e., (X,*) € Bin(X), an element v € X is said to be LL-
special if there exists a map u : X — X such that (u(z) xu) xx = « for all z € X. Such a
function @ is said to be a pseudo inverse function of u and u(x) is called a pseudo inverse
of u with respect to z.

Example 3.1. Let (X, *) be a right-zero semigroup. For any u € X, for any u € XX,
we have (U(z) *u)*x = uxx = x for all x € X. This shows that every element u of a right-
zero semigroup is LL-special and every function @ : X — X is a pseudo inverse function of
U.

Example 3.1 shows that a pseudo inverse function % need not be unique.

Example 3.2. Let (X, *) be a left-zero semigroup and let « be an LL-special element
of X. Then (u(x) *u) *x = x for all z € X. It follows that @(z) = « for all z € X, which
means that a pseudo inverse function @ of u is the identity map on X.

Proposition 3.3. Let (X, *,¢e) be a group. Then

(i) every element of X is LL-special,
(ii) if u is LL-special, then its pseudo inverse function u is a constant map.

Proof. (i) Given u € X, we define a map 4 : X — X by @u(z) :=u~! for all z € X.
Then (u(z) *u)xx = (u='*u)*x = exx = , which shows that u is LL-special. (ii) Assume
w is LL-special. Then there exists a map @ : X — X such that (U(z) *u) * x = z for all
r € X. Since (X, *) is a group, we have %(z) * u = e, and hence u(z) = u~! for all z € X,

which proves that u is a constant map. O
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Remark 3.4. Given (X, x) € Bin(X), a condition X = XX is a necessary condition
for the existence of LL-special elements of (X, *). In fact, if u is LL-special in (X, %), then
there exists a map @ : X — X such that (u(z) *u) *xx = x for all x € X. If we let
a(x) :=u(r) * u, then a(x) * x = x for all x € X, which shows that X C X * X.

Proposition 3.5. Any leftoid (X, *), where x xy := f(x) forallz,y € X, f: X - X
is not onto, is a groupoid which does not contain any LL-special element of (X, x).

Proof. Since f : X — X is not onto, there exists g € X such that zo ¢ f(X).
Assume u is an LL-special element of X. Then there exists a map @ : X — X such that
(u(x)*u)*x =z for all z € X. It follow that (U(zo) *u) *xg = zo. If we let o := u(xp) * u,
then g = a*xxo = f(a) € f(X), since (X, ) is a leftoid, which leads to a contradiction.
This proves the proposition. O

Proposition 3.6. Let (X, x) be a leftoid for f, i.e., x xy := f(x) for all z,y € X.
Let u € X and @ : X — X be a map. Then u is LL-special if and only if f2(u(z)) = z for
allxz € X.

Proof. Tt follows immediately from = = (u(z) *u) *z = f(u(x)) *x = f(f(u(x))). for
all z € X. O

Example 3.7. Let X := R be the set of all real numbers. We define z * y := z2,
ie, r*xy = f(xr) =22 for all z,y € R. Assume u is LL-special. Then, by Proposition 3.6,
we have z = (t(z) *x u) * z = f2(u(z)) = (d(x))?* for all z € R. If we let x := —1, then
(W(—1))* = —1, a contradiction.

Theorem 3.8. Let (X,*) be a semigroup and let u,v be LL-special elements of
(X, *). Then (u(x)*u) *v(z) is another pseudo inverse of v with respect to x for all x € X.

Proof. Assume that u,v are LL-special elements of (X, *). Then there exist pseudo

inverse functions w, v respectively. For any © € X, we have z = (u(x) * u) x x = (4(x) * u) *

[(O(x) xv) xx)] = [(U(z) *xu) * (V(x) xv)] xx = [{(W(x) xu) *0(x)} * v] * z. If we take a map
v'(x) := (u(z) *u) *x v(z) for all z € X, then v,7" are pseudo-inverse functions of v with
respect to x. O

4. Several special elements

Let (X, *) € Bin(X). An element u of X is said to be
o LL-special : (u(x)*u)*x = x, « RL'-special : (x xu(x))*xu ==z,
e LR-special : u(z) * (u*z) =z, ®« RR-special : x x (u(z) *xu) = z,
e RL-special : ux (u(x) *x) = x, @ LL"-special : (u(x) * x) * u = z,
e RR-special : (uxu(x)) *x =x, ®« LR -special : u(x) x (x *u) = x,
o LL'-special : x* (uxu(x)) =x, « RL"-special : ux* (z xu(x)) = =z,
e LR'-special : (z *u)*u(x) =x, « RR"-special : (ux*z)x*u(x)=x
for all z € X, where u: X — X is a map.

We note that if (X,x*) is a semigroup, then (x % y) * z = x * (y * z) and thus we
find that (u(z) *u) * ¢ = u(x) * (u* x), and “LL-special = LR-special”. Similarly, we find
that “RL-special = RR-special”, “LR’-special = LL'-special”, “RL’-special = RR’-special”,
“LL"-special = LR"-special” and “RL"-special = RR"-special”. Next, suppose that (X, *)
is a commutative groupoid, i.e., x xy = y*xx for all ,y € X. Then (u(x) * u) x x =
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(uxu(z))*x = x* (uxu(x)) = x=* (u(r) *u), and hence “LL-special = RR-special =
LL'-special = RR'-special”. Since u(x) * (u x ) = u(z) * (x x u) = (z *xu) *x u(zr)) =
(uxx)*u(x), we have “LR-special = LR"-special = LR’'-special = RR/-special”. Moreover,
since u x (u(z) xx) = ux (x xu(x)) = (r*u(x)) *u = (u(x) * z) * u, we have “RL-special =
RL"-special = RL'-special = LL"-special”. If (X, ) is a commutative semigroup, then all
12 types of special elements into a single type. In this case, we call u a special element of
(X, %).

Example 4.1. Let X :=[0,00) and let  xy := 2 + y for all z,y € X where “+” is
the usual addition in real numbers. Assume u(x) + u + 2 = . Then @(z) + v = 0 for all
x € X. Tt follows that u(z) = u =0 for all z € X. Hence u = 0 is the only special element
of (X, %) and @(xz) =0 for all z € X, i.e., the zero map on X.

Example 4.2. Let X := (0,00) and let z xy := z + y for all z,y € X where “+” is
the usual addition in real numbers. Assume u(x) + u +x = . Then @(z) + « = 0 for all
x € X. It follows that u(x) =u =0 ¢ X. Hence (X, *) has no special elements whatsoever.

Proposition 4.3. If (X, x,0) is a BCK-algebra, then “LL-special = LL"-special”,
“RR-special = RR/-special” and “LL'-special = RL'-special”.

Proof. If (X, %,0) is a BCK-algebra, then (z xy) x 2z = (z x z) xy for all z,y,2z € X,
and the proposition can be proved. O

Theorem 4.4. Let K be a field and let o, 5,y € K. Define x xy := a + Bz + vy
forallz,y € K. If (xxy) *z = (x % z) xy for all x,y,z € K, then either x xy = o+ fx or
rxy=a+x+yy forall z,y € K.

Proof. Given z,y,z € K, we have (z*xy)*z = a+ B(zxy)+vz = a+B(a+fx+y)+
vz = a(1+B)+ B2z + Byy +vz. Similarly, we obtain (z*2)*xy = a(1+ ) + B2z + vz +7y.
It follows that 0 = (zxy)*xz — (xx 2) xy = By(y — 2) + v(z —y) =v(8 — 1)(y — z) for all
y, 2z € K. This implies that either v = 0 or 8 = 1, proving the theorem. |

Corollary 4.5. Let K be a field and let o, 8,y € K. Define x xy := a + Bz + vy
forallz,y e K. If (v xy)*xz= (z*z)*xy and x *y = yxx for all x,y,z € K, then either
rxy=aorrxxy=a+x+y forall x,y € K.

Proof. In the case of xxy = a+ Sz, if xxy = yxx for all z,y € K, then a+fx = a+ Py
and hence B(x —y) = 0 for all z,y € K. This shows that 8 = 0, proving that x *y = . In
the case of zxy =a+z+yy, if exy=yx*xzxforall z,y € K, then a+x+vy=a+y+yz
and hence (1 — y)(x —y) = 0 for all z,y € K. This shows that v = 1, proving that
rzxy=a+z+y. (Il

Proposition 4.6. If (X, x,0) is a groupoid satisfying the conditions:

(i) exy=y=xz forallz,y € X,
(i) (xxy)xz=(xxz)*xy for all z,y,z € X,

then it is a commutative semigroup and has a unique special element in (X, *) if it exists.
Proof. Given z,y,z € X, we have (xxy)*x 2= (z*x2)xy=(z2%xx)xy = (2*y)xx =
xx(z*y) = x* (y*z), proving that (X, *) is a commutative semigroup. Assume uj, usg
are special elements of (X,*). Let @;(z) := a(€ X) for all x € X (i = 1,2). Then
wy = (0 (ur) *ug) * up and ug = (Uz(uz) * u1) * us. It follows that uy = (uy(uy) * ug) *u; =

(axug)*uy = (a*xuy) *us = (ua(ug) * up) * ug = ug, proving the proposition. O
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Corollary 4.7. Let K be a field and let o« € K. A groupoid (K, ), where x xy := «
orxxy:=a«a+x+y forall z,y € K, has a special element if it exists.

Proof. 1t follows from Corollary 4.5 and Proposition 4.6. |

Proposition 4.8. Let K be a field and let o, B,y € K. Define z xy := a + Sz + vy
for all z,y € K. If (K, *) Is a semigroup, then txy = q, t*y =a+z, *y = o+ y or
rxy=a+x+yforalzyeckK.

Proof. Tt was proved that (z*y)*z = a(1+ ) + 3%z + Byy +vz. Similarly we obtain
z* (y*2) =a(l+7)+ Bz + 8y + 2z It follows that a(1 + 3) = a(1 +7), 5% = 3 and
~2 = ~, which proves the proposition. O

Remark. The property (xxy)*z = (z*z)*y also holds for BC'K-algebras and hence
there is no guarantee in general for either commutativity or associativity as is the setting of

the corollaries of the theorem.

5. Universally completely special elements

A groupoid (X, *) is said to be completely LL-special if u is LL-special for all u € X.
A groupoid (X, ) is said to be universally completely special if (X, *) is completely a-special
for any a € {LL, LR, RL,RR,LL',LR',RL’, RR',LL",LR", RL", RR"}.

Example 5.1. Define a binary operation “x” by x*y := 22 for all z,y € X := [0, ),
i.e., (X, *) is aleftoid for f(x) = 22. If uis L L-special in X, then x = (u(z)*u)*x = f2(u(z))
for all z € X. It follows that u(x) = ¥/« for all z € X. Hence (X, %) is completely LL-special.

Example 5.2. Let X := R, the set of all real numbers. Define a binary operation
“<’ on X by xxy:= (x+y) for all z,y € X. Given any u € X, if we define u(z) := 2z —u
for all z € X, then (U(z) * u) *x = 3[3(22 — u+ u) + 2] = x, proving that u is LL-special.
Hence (X, *) is completely LL-special.

Note that every abelian group is universally completely special. Let (X, #,¢e) be an
abelian group. Then all 12 types of special elements coincide into a single type. Given
u € X, we let (u(x) xu) * xz = x for all z € X. It follows that @(z) * u = e, i.e., u(x) = u~?!
for all x € X. Hence u is completely LL-special for all u € X.

Proposition 5.3. Let (X, *) be a leftoid for f, i.e., x xy := f(x) for all z,y € X.
Let w e X and w: X — X be a map. Then u is LR-special if and only if f(u(x)) = x for
allz € X.

Proof. Tt follows immediately from z = @(z) * (ux ) = f(u(z)) for all x € X. O

Example 5.4. Let X := R be the set of all real numbers. We define x xy := 23, i.e.,
r*y = f(x) = 23 for all z,y € R. Assume u is LR-special. Then, by Proposition 5.3, we
have z = f(u(z)) = (u(z))? for all z € R. Hence @i(x) = /x for all z € X. This shows that
(R, *,0) is completely LR-special.

Proposition 5.5. Let (X, *) be a leftoid for f, i.e., x xy := f(x) for all z,y € X.
Letu € X and 4 : X — X be a map. Then u is LR -special if and only if f*(x) = x for all
reX.

Proof. Tt follows immediately from = = (z % u) *x u(z) = f(z) * u(x) = f(f(z)) for all
reX. O
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Example 5.6. Let (X,-) be a group. We define a binary operation “«” on X by
rxy :=a 1 ie, f(zr) =27t for all z,y € X. It follows that f(f(z)) = (z=1)~! = x for
any x € X, showing that (X, *) is a leftoid for f and it is completely LR'-special.

Let K be a field and let «, 8,y € K. A groupoid (K, ) is said to be a linear groupoid
ifexxy:=a+Bx+~vyyforall z,y € K. If B =0, then x xy = a+ vy determines a rightoid,
and if ¥ = 0, then zxy = a+ S determines a leftoid. Let (X, %) be a groupoid. A mapping
u: X — X is said to have a fized point x € X if u(z) = x.

Theorem 5.7. Let (K, *) be a linear groupoid, i.e., x xy := fx + vy for all z,y € K
where B,y € K. Let u be an LL-special element of (K,*) and u be a pseudo inverse of u.
If u has a fixed point of u, then either

(i) zxy=—x+yy,v#0and u(z) = (1 —v)x + vu, for all z,y € K, or
(ii) xxy =Bz + (1 — By, B #0 and u(x) = %(I’* (1= p)u), for all x,y € K.
Proof. Let (K, x) be a linear groupoid, i.e., x xy := fx + vy for all z,y € K where
B,7 € K. Let u be an LL-special element of (K, *). Then x = (u(x) xu) xx for all z € K.
It follows that = B(t(x) *u) + vz = B(Bu(z) +yu) +vx = B2u(x) + Byu+ yx. This shows
that

. 1-
u(x) = ﬁg’yz - UB@ (1)
If we let « := u in (1), then
) = L =71+ A &)

Since u is a fixed point of @, i.e., U(u) = u, we have 1 — (1 + 3) = 2. It follows that
(14 8) =(1-p)(1+ B), and hence we have either 8 =—-1ory=1-4. If § = —1, i.e.,
xxy=—x+yy,v # 0, then (1) leads to u(x) = (1 — v)z + ~yu for all x € K, which is the
case (i). If y=1—-0,ie,xxy = pz+ (1 - L)y, S # 0, then (1) leads to u(z) = %x — %m
which is the case (ii). This completes the proof. O

Proposition 5.8. Let (K,*) be a linear groupoid with z % y := Sz + ~y for all
x,y € K where 8 # 0,7 € K. Let u be an LR-special element of (K, ) and & be a pseudo
inverse of u. If u has a fixed point of u, then z xy = Sz + (1 — B)y for all z,y € K and
uz)=2-pP)r+(B—1uforallz € K.

Proof. Let (K,x*) be a linear groupoid with = x y := Sz + vy for all 2,y € K where
B # 0,7 € K. Let u be an LR-special element of (K,*). Then z = u(x) * (u * z) for all
r € K. It follows that x = Bu(x) + v(u * 2) = pu(z) + v(Bu + vx) = Bu(z) + Byu + v3x.
From this equation we obtain

i(e) = 31— = 7 (3)
If we let u(u) = u, then f+v =1, ie,, zxy = Bz + (1 — By for all x,y € K and
u(zx) = %[(1 —(1-8)Hr—-BA—-PBul=2-p)z+ (B—1)uforall z € K. O

Example 5.9. Let =~ = % in Proposition 5.8. Then z xy = %(:c + y) for all
z,y € K and U(z) = 2z — u is the pseudo inverse function of u for all z € K. Hence (K, )
is completely L R-special.

Remark 5.10. In Theorem 5.7, assume (K, ) has an RL-special element u € K.

Then there exists a map w : K — K such that u x (u(z) x2) = « for all x € K. Tt
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follows that © = u * (4(x) * ) = a + fu+ y(u(x) + ) = a + fu + y(a + Bu(z) + yx) =
a+ Bu+ ay + Byi(x) + 2z and
1

(z) = E[(l =)z —a(l+7) - By (4)

Assume m be a fixed element of @, i.e., u(m) = m. Then, by (4), we obtain m = u(m) =
A1 =~2)m — a(1 + ) — Bul. Tt follows that

<)

_— a(l+7v)+ Bu 5)
1—92—pBy
when 1 —72 — By #0,ie, 1 Zy(B+7). fa=03=~= % in (5), then m = u, i.e.,
Uu)=uandzxy=1(z+y). fa=0,8=v=1in (5), then m = —u, ie., G(u) = u and
T*kY=o+Yy.
Conclusion.

Although the idea of what an inverse of an element means in restricted circumstances,
where these are often unique, or unique “on the left” or “on the right”, such as in the theory
of groups, or the multiplicative semigroups of rings, for example, there has not been a
detailed study of “inverse types” that may exist for arbitrary binary systems. Again, it is
true that the idea of “inverses” has been touched upon in more general circumstances ([5])
even in the ancestral age of such studies, but it has been limited by the abstractions caused
by excess universality, which has not promoted the progress one desires in a more detailed
development such as attempted here. In particular, we have dealt with a number of classes
of binary systems beyond the standard ones, which generate subsemigroups of (Bin(X),0)
or which are otherwise of significance, e.g., groups. The methods developed in this paper
can easily be applied to other classes of binary systems, and if necessary to other systems

of “higher” universal algebra classified types as well.
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