

THE EXTENDED VERTICAL LINEAR COMPLEMENTARITY PROBLEM VIA TWO RANDOMIZED ALGORITHMS

Cui-Xia Li¹ and Shi-Liang Wu²

In this paper, inspired by the already published work (Comput. Optim. Appl., 2022, 82: 595-615), we extend two randomized algorithms, i.e., the randomized Kaczmarz algorithm and the randomized coordinate descent algorithm, to solve the extended vertical linear complementarity problem. Some convergence properties of both are presented. Numerical experiments show that these two randomized algorithms are feasible and efficient.

Keywords: randomized Kaczmarz algorithm, randomized coordinate descent algorithm, the extended vertical linear complementarity problem, convergence

MSC2020: 90C33, 65F10.

1. Introduction

The aim of extended vertical linear complementarity problem (EVLCP) is to find $x \in \mathbb{R}^n$ such that

$$\min_{1 \leq s \leq \ell} \{A_s x + q_s\} = 0, \quad (1)$$

where, hereafter, “min” stands for the entry-wise minimum, $A_s \in \mathbb{R}^{n \times n}$ and $q_s \in \mathbb{R}^n$, see [5]. Clearly, the EVLCP (1) is a generalization form of the vertical linear complementarity problem (VLCP) in [3] and the classical linear complementarity problem (LCP) in [4]. Not only that, the EVLCP (1) is often used in many fields of scientific computing and engineering technology, such as volterra ecosystem [6], stochastic impulse control games [22], the discrete HJB equations [21], and others. One can see [5] for more applications.

Developing an efficient iteration algorithm to solve the EVLCP (1) has been the focus of attention. Whereas, to date, only a few iterative algorithms have been proposed to solve the EVLCP (1), such as the Newton-type algorithm in [13, 14], the projected-type algorithm [17, 12], and the modulus-type algorithm [9].

Recently, the randomized algorithm because of its economics and efficiency for solving the corresponding system has attracted much interest, like the randomized Kaczmarz (RK) algorithm [16] and its other versions, the randomized coordinate descent (RCD) algorithm [8] and its other versions. The RK algorithm and the RCD algorithm greatly enhance the convergence rate of the Kaczmarz algorithm in [7] and the coordinate descent algorithm in [15], respectively. At present, the RK algorithm and the RCD algorithm have been successfully extended to solve many practical problems, e.g., the tensor linear system [11], the tensor complementarity problem [19] and the linear least-squares problem [1]. Nevertheless, to our knowledge, there are **no** corresponding RK and RCD algorithms for solving the EVLCP (1), which is our main motivation. Based on this, together with the published work

¹Corresponding author: School of Mathematics, Yunnan Normal University, Kunming, Yunnan, 650500, P.R. China, e-mail: lixiatkynu@126.com

²School of Mathematics, Yunnan Normal University, Kunming, Yunnan, 650500, P.R. China; Yunnan Key Laboratory of Modern Analytical Mathematics and Applications, Kunming, Yunnan, 650500, P.R. China, e-mail: wushiliang1999@126.com

in [19], in the present paper, our main goal is to design the proper RK and RCD algorithms for solving the EVLCP (1).

The remaining part of this paper is arranged below. In Section 2, we design the proper RK and RCD algorithms for solving the EVLCP (1) and obtain their some convergence properties. In Section 3, we show the performance of the RK algorithm and the RCD algorithm by some numerical experiments. Finally, in Section 4, by using some conclusions, we end up with this paper.

2. The RK and RCD algorithms

In this section, we will establish the proper RK and RCD algorithms for solving the EVLCP (1). To achieve this aim, the following lemmas are required.

For convenience, throughout the paper, $\text{tr}(\cdot)$, $(\cdot)^T$ and $(\cdot)^*$, respectively, indicate the trace, transpose and conjugate transpose of matrix. The symbol \otimes denotes the Kronecker product symbol, $\text{vec}(\cdot)$ stands for the vector gained by successively stacking all columns of matrix into a vector.

Lemma 2.1. [10] *For all $a_i, b_i \in \mathbb{R}^n$ ($i = 1, 2, \dots, n$),*

$$|\max_{1 \leq i \leq n} \{a_i\} - \max_{1 \leq i \leq n} \{b_i\}| \leq \max_{1 \leq i \leq n} \{|a_i - b_i|\}.$$

Lemma 2.2. [2] *Let R, S, F and G be complex matrices of proper dimensions. Then*

- $\text{tr}(RS) = \text{tr}(SR)$ and $\text{tr}(R^*S) = \text{vec}(R)^*\text{vec}(S)$;
- $(R \otimes S)^* = R^* \otimes S^*$ and $\text{vec}(RSG^T) = (G \otimes R)\text{vec}(S)$;
- $(R \otimes S)(F \otimes G) = (RF) \otimes (SG)$.

Lemma 2.3. [17] *The EVLCP (1) is equivalent to looking for $x \in \mathbb{R}^n$ such that*

$$x = \max_{1 \leq s \leq \ell} \{x - \delta \Omega(A_s x + q_s)\} \text{ with } \delta > 0,$$

in which Ω is any positive diagonal matrix.

Based on Lemma 2.3, for $\delta = 1$ and $\Omega = I$ with I being the identity matrix, together with the methodology of the RK algorithm [16], we present the proper RK algorithm for the EVLCP (1), see Algorithm 1, in which $\|A\|_F^2 = \text{tr}(A^*A)$ and A^i stands for the i th row of matrix A .

Algorithm 2.1. (The RK algorithm)

Input: A_s, q_s, x^0 ; iteration count N .

Output: x^N

1. *for* $k = 0, 1, \dots, N - 1$ *do*

2. *Select* $i_k \in \{1, 2, \dots, n\}$ *with probability* $\text{Pr}(\text{row} = i_k) = \frac{\sum_{s=1}^{\ell} \|A_s^{i_k}\|_2^2}{\sum_{s=1}^{\ell} \|A_s\|_F^2}$.

3. *Set*

$$x^{k+1} = \max_{1 \leq s \leq \ell} \left\{ x^k - \frac{A_s^{i_k} x^k + q_s^{i_k}}{\|A_s^{i_k}\|_F^2} (A_s^{i_k})^T \right\}.$$

4. *endfor*

The EVLCP (1) for any block vector $\mathbf{q} = (q_1, q_2, \dots, q_s)$ has a unique solution if and only if $\mathbf{A} = (A_1, A_2, \dots, A_s)$ has the row \mathcal{W} -property, i.e.,

$$\min(A_0 x, A_1 x, \dots, A_s x) \leq 0 \leq \max(A_0 x, A_1 x, \dots, A_s x) \Rightarrow x = 0,$$

see [18]. Hence, we always assume that \mathbf{A} has the row \mathcal{W} -property to ensure that the EVLCP (1) has a unique solution. In such case, we can present the convergence condition for Algorithm 1. To present our convergence conditions, the following lemma is required.

Lemma 2.4. Assume that x^* is a unique solution of the EVLCP (1). The k th iteration x^k of RK and x^* satisfy

$$|x^{k+1} - x^*| \leq H_{i_k} |x^k - x^*|,$$

where

$$H_{i_k} = \max_{1 \leq s \leq \ell} \left\{ \left| I - \frac{(A_s^{i_k})^T A_s^{i_k}}{\|A_s^{i_k}\|_F^2} \right| \right\}.$$

Proof. Since x^* is a solution of the EVLCP (1),

$$x^* = \max_{1 \leq s \leq \ell} \left\{ x^* - \frac{A_s^{i_k} x^* + q_s^{i_k}}{\|A_s^{i_k}\|_F^2} (A_s^{i_k})^T \right\}.$$

So, from Lemma 2.1 we have

$$\begin{aligned} |x^{k+1} - x^*| &= \left| \max_{1 \leq s \leq \ell} \left\{ x^k - \frac{A_s^{i_k} x^k + q_s^{i_k}}{\|A_s^{i_k}\|_F^2} (A_s^{i_k})^T \right\} \right. \\ &\quad \left. - \max_{1 \leq s \leq \ell} \left\{ x^* - \frac{A_s^{i_k} x^* + q_s^{i_k}}{\|A_s^{i_k}\|_F^2} (A_s^{i_k})^T \right\} \right| \\ &\leq \max_{1 \leq s \leq \ell} \left\{ \left| x^k - \frac{A_s^{i_k} x^k + q_s^{i_k}}{\|A_s^{i_k}\|_F^2} (A_s^{i_k})^T - \left(x^* - \frac{A_s^{i_k} x^* + q_s^{i_k}}{\|A_s^{i_k}\|_F^2} (A_s^{i_k})^T \right) \right| \right\} \\ &= \max_{1 \leq s \leq \ell} \left\{ \left| x^k - x^* - \frac{A_s^{i_k} (x^k - x^*)}{\|A_s^{i_k}\|_F^2} (A_s^{i_k})^T \right| \right\} \\ &= \max_{1 \leq s \leq \ell} \left\{ \left| x^k - x^* - \frac{(A_s^{i_k})^T A_s^{i_k} (x^k - x^*)}{\|A_s^{i_k}\|_F^2} \right| \right\} \\ &\leq H_{i_k} |x^k - x^*|, \end{aligned}$$

where

$$H_{i_k} = \max_{1 \leq s \leq \ell} \left\{ \left| I - \frac{(A_s^{i_k})^T A_s^{i_k}}{\|A_s^{i_k}\|_F^2} \right| \right\}.$$

The proof is completed. \square

In the sequel, similar to the work in [2], from the following mean squared error (MSE), i.e.,

$$\text{MSE} := \mathbb{E} \|x^N - x^*\|_2,$$

where x^N is the N th iteration by Algorithm 1 and x^* is a unique solution of EVLCP (1), we establish the convergence property of Algorithm 1. Concretely, we have

Theorem 2.1. Assume that x^* is a unique solution of the EVLCP (1). For any initial guess vector $x^0 \in \mathbb{R}^n$, after N iteration steps of RK, the average error satisfies

$$\mathbb{E} \|x^N - x^*\|_2^2 \leq \text{vec}(I)^T H^N \text{vec}((x^0 - x^*)(x^0 - x^*)^T), \quad (2)$$

where

$$H = \sum_{i=1}^n p_i (H_i \otimes H_i) \text{ with } H_i = \max_{1 \leq s \leq \ell} \left\{ \left| I - \frac{(A_s^i)^T A_s^i}{\|A_s^i\|_F^2} \right| \right\}, p_i = \frac{\sum_{s=1}^{\ell} \|A_s^i\|_2^2}{\sum_{s=1}^{\ell} \|A_s^i\|_F^2}. \quad (3)$$

Proof. From Lemma 2.4, we know

$$|x^{k+1} - x^*| \leq H_{i_k} |x^k - x^*|.$$

After N iteration step, we have

$$|x^N - x^*| \leq H_{i_{N-1}} H_{i_{N-2}} \dots H_{i_0} |x^0 - x^*|.$$

Hence, after $N \geq 1$ steps, the MSE can be estimated below

$$\begin{aligned}
\mathbb{E}\|x^N - x^*\|_2^2 &\leq \mathbb{E}\|H_{i_{N-1}}H_{i_{N-2}}\dots H_{i_0}(x^0 - x^*)\|_2^2 \\
&= \mathbb{E}[(x^0 - x^*)^T H_{i_0}^T \dots H_{i_{N-2}}^T H_{i_{N-1}}^T I \\
&\quad \times H_{i_{N-1}} H_{i_{N-2}} \dots H_{i_0}(x^0 - x^*)] \\
&= \mathbb{E}[\text{tr}(H_{i_0}^T \dots H_{i_{N-2}}^T H_{i_{N-1}}^T I H_{i_{N-1}} H_{i_{N-2}} \dots H_{i_0}) \\
&\quad \times (x^0 - x^*)^0 (x^0 - x^*)^T] \\
&= (\mathbb{E}[\text{vec}(H_{i_0}^T \dots H_{i_{N-2}}^T H_{i_{N-1}}^T I H_{i_{N-1}} H_{i_{N-2}} \dots H_{i_0})])^T \\
&\quad \text{vec}((x^0 - x^*)(x^0 - x^*)^T).
\end{aligned} \tag{4}$$

From Lemma 2.2, note that H_{i_k} for $k \geq 0$ is mutually independent, we have

$$\begin{aligned}
&\mathbb{E}[\text{vec}(H_{i_0}^T \dots H_{i_{N-2}}^T H_{i_{N-1}}^T I H_{i_{N-1}} H_{i_{N-2}} \dots H_{i_0})] \\
&= \mathbb{E}[(H_{i_0}^T \otimes H_{i_0}^T) \text{vec}(H_{i_1}^T \dots H_{i_{N-1}}^T I H_{i_{N-1}} \dots H_{i_1})] \\
&= \mathbb{E}[(H_{i_0}^T \otimes H_{i_0}^T)] \mathbb{E}[\text{vec}(H_{i_1}^T \dots H_{i_{N-1}}^T I H_{i_{N-1}} \dots H_{i_1})] \\
&= \mathbb{E}[(H_{i_0}^T \otimes H_{i_0}^T)] \mathbb{E}[(H_{i_1}^T \otimes H_{i_1}^T)] \dots \mathbb{E}[(H_{i_{N-1}}^T \otimes H_{i_{N-1}}^T)] \text{vec}(I).
\end{aligned} \tag{5}$$

As

$$\mathbb{E}[(H_{i_k}^T \otimes H_{i_k}^T)] = \sum_{i_k=1}^n p_{i_k} (H_{i_k}^T \otimes H_{i_k}^T) = H^T,$$

we can rewrite (5) as

$$\mathbb{E}[\text{vec}(H_{i_0}^T \dots H_{i_{N-2}}^T H_{i_{N-1}}^T I H_{i_{N-1}} H_{i_{N-2}} \dots H_{i_0})] = (H^T)^N \text{vec}(I). \tag{6}$$

Substituting (6) into (4) leads to (2).

In addition, when $N = 0$ in (2), it becomes an exact equality. This is because from Lemma 2.2 we have

$$\begin{aligned}
\mathbb{E}\|x^0 - x^*\|_2^2 &= \text{tr}((x^0 - x^*)^T (x^0 - x^*)) \\
&= \text{tr}((x^0 - x^*)(x^0 - x^*)^T) \\
&= \text{vec}(I)^T \text{vec}((x^0 - x^*)(x^0 - x^*)^T).
\end{aligned}$$

This completes the proof. \square

Theorem 2.2. *Let σ_1 be the largest singular value of matrix H in (3), and let x^* be a unique solution of the EVLCP (1). For any initial guess vector $x^0 \in \mathbb{R}^n$, after N iteration steps of RK, the average error satisfies*

$$\mathbb{E}\|x^N - x^*\|_2^2 \leq \sigma_1^N \sqrt{n} \|x^0 - x^*\|_2^2.$$

Proof. As is known, the matrix $H \in \mathbb{R}^{n^2 \times n^2}$ is written as $H = U\Omega V^*$, where $U \in \mathbb{R}^{n^2 \times n^2}$ and $V \in \mathbb{R}^{n^2 \times n^2}$ are two unitary matrices, and

$$\Omega = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_{n^2}) \in \mathbb{R}^{n^2 \times n^2} \text{ with } \sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_{n^2} \geq 0$$

is a diagonal matrix with σ_i ($i = 1, 2, \dots, n^2$) being the singular value of H .

Based on (2), we have

$$\mathbb{E}\|x^N - x^*\|_2^2 \leq \text{vec}(I)^T (U\Omega V^*)^N \text{vec}((x^0 - x^*)(x^0 - x^*)^T).$$

Let

$$\text{vec}(I)^T (U\Omega V^*)^N = (\bar{q}_1, \bar{q}_2, \dots, \bar{q}_{n^2}) \text{ and } \text{vec}((x^0 - x^*)(x^0 - x^*)^T) = (\hat{q}_1, \hat{q}_2, \dots, \hat{q}_{n^2})^T.$$

With the aid of the Hölder inequality, we obtain

$$\begin{aligned}
\mathbb{E}\|x^N - x^*\|_2^2 &\leq \sum_{i=1}^{n^2} \bar{q}_i \hat{q}_i \leq \sum_{i=1}^{n^2} |\bar{q}_i \hat{q}_i| \leq \left(\sum_{i=1}^{n^2} |\bar{q}_i|^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n^2} |\hat{q}_i|^2 \right)^{\frac{1}{2}} \\
&= \|\text{vec}(I)^T (U\Omega V^*)^N\|_2 \|\text{vec}((x^0 - x^*)(x^0 - x^*)^T)\|_2 \\
&\leq \|\text{vec}(I)^T\|_2 \|(U\Omega V^*)^N\|_2 \|\text{vec}((x^0 - x^*)(x^0 - x^*)^T)\|_2 \\
&\leq \sigma_1^N \sqrt{n} \|x^0 - x^*\|_2^2,
\end{aligned}$$

which completes the proof. \square

Similarly, based on the methodology of the RCD algorithm [8], we present the proper RCD algorithm for the EVLCP (1), see Algorithm 2.

Algorithm 2.2. (The RCD algorithm)

Input: A_s, q_s, x^0 ; iteration count N .

Output: x^N

1. for $k = 0, 1, \dots, N-1$ do

2. Select $j_k \in \{1, 2, \dots, n\}$ with probability $\Pr(\text{column} = j_k) = \frac{\sum_{s=1}^{\ell} \|(A_s)_{j_k}\|_2^2}{\sum_{s=1}^{\ell} \|A_s\|_F^2}$.

3. Set

$$x^{k+1} = \max_{1 \leq s \leq \ell} \left\{ x^k - \frac{(A_s)_{j_k}^T (A_s x^k + q_s)}{\|(A_s)_{j_k}\|_2^2} e_{j_k} \right\}.$$

4. endfor

For Algorithm 2, similar to Lemma 2.4, Theorems 2.1 and 2.2, we have Lemma 2.5 and Theorem 2.3.

Lemma 2.5. Assume that x^* is a unique solution of the EVLCP (1). The k th iteration x^k of RCD and x^* satisfy

$$|x^{k+1} - x^*| \leq G_{j_k} |x^k - x^*|,$$

where

$$G_{j_k} = \max_{1 \leq s \leq \ell} \left\{ \left| I - \frac{e_{j_k} (A_s)_{j_k}^T A_s}{\|(A_s)_{j_k}\|_2^2} \right| \right\}.$$

Theorem 2.3. Assume that x^* is a unique solution of the EVLCP (1). For any initial guess vector $x^0 \in \mathbb{R}^n$, after N iteration steps of RCD, the average error satisfies

$$\mathbb{E}\|x^N - x^*\|_2^2 \leq \text{vec}(I)^T G^N \text{vec}((x^0 - x^*)(x^0 - x^*)^T),$$

where $G = \sum_{j=1}^n p_j (G_j \otimes G_j)$ with $p_j = \frac{\sum_{s=1}^{\ell} \|(A_s)_j\|_2^2}{\sum_{s=1}^{\ell} \|A_s\|_F^2}$ and $G_j = \max_{1 \leq s \leq \ell} \left\{ \left| I - \frac{e_j (A_s)_j^T A_s}{\|(A_s)_j\|_2^2} \right| \right\}$.

Let δ_1 be the largest singular value of matrix G . Then

$$\mathbb{E}\|x^N - x^*\|_2^2 \leq \delta_1^N \sqrt{n} \|x^0 - x^*\|_2^2.$$

3. Numerical verification

In this section, a simple randomized example is provided to evaluate the performance of the proposed RK and RCD algorithms. For convenience, in our computations, we take $\ell = 2$, and construct test problems with $q_1 = u^* - A_1 \mathbf{1}$ and $q_2 = v^* - A_2 \mathbf{1}$ with $\mathbf{1} = (1, 1, \dots, 1)^T$, where u^* and v^* are given by

$$u^* = (1, 0, 1, 0, \dots, 1, 0, \dots)^T, \quad v^* = (0, 1, 0, 1, \dots, 0, 1, \dots)^T.$$

The stopping criterion is $\text{RES} := \frac{\|x^k - x^*\|}{\|x^*\|} \leq 10^{-4}$ with $x^* = \mathbf{1}$.

Example 3.1 Consider the EVLCP (1) from the view of the random matrix, in which A_1 and A_2 are given by

$$(A_1)_{ij} = S_{ij}, i \neq j, (A_1)_{ii} = 4 + \sum_{i \neq j}^n |S_{ij}|;$$

$$(A_2)_{ij} = T_{ij}, i \neq j, \text{ and } (A_2)_{ii} = 4 + \sum_{i \neq j}^n |T_{ij}|,$$

where $S = \mu \cdot \text{rand}(n, n) - 1$, and $T = \nu \cdot \text{rand}(n, n) - 1$. Clearly, A_1 and A_2 are full random matrices.

Since A_1 and A_2 are two strict diagonally dominant in Example 3.1, from Lemma 3.4 in [20], we know that the corresponding \mathbf{A} has row \mathcal{W} -property such that the corresponding EVLCP (1) has a unique solution, i.e., $\mathbf{1}$ constructed by us.

TABLE 1. Numerical results of RK and RCD for Example 3.1 with $\mu = 3$ and $\nu = 2$.

	m	600	800	1000	1200
RK	IT	9	11	10	10
	CPU	0.1157	0.2688	0.3441	0.5262
	RES	6.5891e-5	1.3030e-5	1.5519e-5	2.3385e-5
RCD	IT	7	7	6	6
	CPU	0.1878	0.3104	0.5367	0.9338
	RES	7.0879e-5	9.8252e-5	8.4438e-5	3.8140e-5

TABLE 2. Numerical results of RK and RCD for Example 3.1 with $\mu = 3$ and $\nu = 5$.

	m	600	800	1000	1200
RK	IT	9	9	9	8
	CPU	0.1119	0.2004	0.3224	0.4389
	RES	1.0352e-5	3.0849e-5	1.6279e-5	3.4870e-5
RCD	IT	9	7	6	6
	CPU	0.2239	0.3522	0.4852	0.8775
	RES	4.8578e-5	1.7820e-5	6.0824e-5	1.8343e-5

In our computations, we consider two aspects: (1) $\mu = 3$ and $\nu = 2$; (2) $\mu = 3$ and $\nu = 5$. For these two cases, Tables 1 and 2 in turn display the numerical results of IT, CPU and RES by RK and RCD for solving Example 3.1 with various dimensions, where ‘IT’, ‘CPU’ in order stand for the iteration numbers and the elapsed CPU times (second). From the numerical results in Tables 1 and 2, we can drive a simple conclusion that the presented RK and RCD algorithms are feasible and effective when both are adopted to solve the EVLCP (1).

4. Conclusion

In this paper, we have established the proper RK algorithm and the proper RCD algorithm for solving the EVLCP (1), and discussed their convergence properties under the mild conditions. The performance of these proposed algorithms are confirmed by a simple randomized example.

Acknowledgments

The author would like to thank the referees; their opinions and comments improved the presentation of the paper greatly. This research was supported by National Natural Science Foundation of China (No.11961082), Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province, China (202405AS350003), Yunnan Key Laboratory of Modern Analytical Mathematics and Applications (202302AN360007).

REFERENCES

- [1] *Z. Z. Bai and W. T. Wu*, On greedy randomized coordinate descent methods for solving large linear least-squares problems, *Numer Linear Algebra Appl.*, **26**(2019), Article number e2237.
- [2] *Z. Z. Bai and W. T. Wu*, On convergence rate of the randomized Kaczmarz method, *Linear Algebra Appl.*, **553**(2018), 252-269.
- [3] *R. W. Cottle and G. B. Dantzig*, A generalization of the linear complementarity problem, *J. Combin. Theory.*, **8**(1970), 79-90.
- [4] *R. W. Cottle, J. S. Pang and R. E. Stone*, *The Linear Complementarity Problem*, Academic, San Diego, 1992.
- [5] *M. S. Gowda and R. Sznajder*, The generalized order linear complementarity problem, *SIAM J. Matrix Anal. Appl.*, **15**(1994), 779-795.
- [6] *G. J. Habetler and G. N. Haddad*, Global stability of a two-species piecewise linear volterra ecosystem, *Appl. Math. Lett.*, **5**(1992), 25-28.
- [7] *S. Kaczmarz*, Angenäherte auflösung von systemen linearer gleichungen, *Bull. Int. Acad. Polon. Sci. Lett.*, **35**(1937), 355-357.
- [8] *D. Leventhal and A. S. Lewis*, Randomized methods for linear constraints: convergence rates and conditioning, *Math. Oper. Res.*, **35**(2010), 641-654.
- [9] *C. X. Li and S. L. Wu*, A class of modulus-based matrix splitting methods for vertical linear complementarity problems, *Optim.* **72**(2023), 2499-2516.
- [10] *C. X. Li and S. L. Wu*, The projected-type method for the extended vertical linear complementarity problem revisited, *J. Global Optim.*, <https://doi.org/10.1007/s10898-024-01392-2>
- [11] *A. Ma and D. Molitor*, Randomized Kaczmarz for tensor linear systems, *BIT. Numer. Math.*, **62**(2022), 171-194.
- [12] *F. Mezzadri and E. Galligani*, Projected splitting methods for vertical linear complementarity problems, *J. Optim. Theory Appl.*, **193**(2022), 598-620
- [13] *J. M. Peng and Z. Lin*, A non-interior continuation method for generalized linear complementarity problems, *Math. Program. Ser. A.*, **86**(1999), 533-563
- [14] *H. D. Qi and L. Z. Liao*, A smoothing Newton method for extended vertical linear complementarity problems, *SIAM J. Matrix Anal. Appl.*, **21**(1999), 45-66
- [15] *A. Ruhe*, Numerical aspects of Gram-Schmidt orthogonalization of vectors, *Linear Algebra Appl.*, **52-53** (1983), 591-601
- [16] *T. Strohmer and R. Vershynin*, A randomized Kaczmarz algorithm with exponential convergence, *J. Fourier Anal. Appl.*, **15**(2009), 262-278
- [17] *M. Sun*, Monotonicity of Mangasarian's iterative algorithm for generalized linear complementarity problems, *J. Math. Anal. Appl.*, **144**(1989), 474-485.
- [18] *R. Sznajder and M. S. Gowda*, Generalizations of P0- and P-properties; extended vertical and horizontal linear complementarity problems, *Linear Algebra Appl.*, **223-224**(1995), 695-715.
- [19] *X. Wang, M. Che and Y. Wei*, Randomized Kaczmarz methods for tensor complementarity problems, *Comput. Optim. Appl.*, **82**(2022), 595-615.

- [20] *S. L. Wu, W. Li and H. H. Wang*, The perturbation bound of the extended vertical linear complementarity problem, *J. Oper. Res. Soc. China.*, **12**(2024), 601-625.
- [21] *S. Z. Zhou and Z. Y. Zou*, A new iterative method for discrete HJB equations, *Numer. Math.*, **111**(2008), 159-167.
- [22] *D. Zabaljauregui*, A fixed-point policy-iteration-type algorithm for symmetric nonzero-sum stochastic impulse control games, *Appl. Math. Optim.*, **84**(2021), 1751-1790.