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THE EXTENDED VERTICAL LINEAR COMPLEMENTARITY 
PROBLEM VIA TWO RANDOMIZED ALGORITHMS

Cui-Xia Li1 and Shi-Liang Wu2

In this paper, inspired by the already published work (Comput. Optim.
Appl., 2022, 82: 595-615), we extend two randomized algorithms, i.e., the randomized

Kaczmarz algorithm and the randomized coordinate descent algorithm, to solve the ex-

tended vertical linear complementarity problem. Some convergence properties of both
are presented. Numerical experiments show that these two randomized algorithms are

feasible and efficient.
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1. Introduction

The aim of extended vertical linear complementarity problem (EVLCP) is to find
x ∈ Rn such that

min
1≤s≤ℓ

{Asx+ qs} = 0, (1)

where, hereafter, “min” stands for the entry-wise minimum, As ∈ Rn×n and qs ∈ Rn, see
[5]. Clearly, the EVLCP (1) is a generalization form of the vertical linear complementarity
problem (VLCP) in [3] and the classical linear complementarity problem (LCP) in [4]. Not
only that, the EVLCP (1) is often used in many fields of scientific computing and engineering
technology, such as volterra ecosystem [6], stochastic impulse control games [22], the discrete
HJB equations [21], and others. One can see [5] for more applications.

Developing an efficient iteration algorithm to solve the EVLCP (1) has been the focus
of attention. Whereas, to date, only a few iterative algorithms have been proposed to solve
the EVLCP (1), such as the Newton-type algorithm in [13, 14], the projected-type algorithm
[17, 12], and the modulus-type algorithm [9].

Recently, the randomized algorithm because of its economics and efficiency for solving
the corresponding system has attracted much interest, like the randomized Kaczmarz (RK)
algorithm [16] and its other versions, the randomized coordinate descent (RCD) algorithm
[8] and its other versions. The RK algorithm and the RCD algorithm greatly enhance the
convergence rate of the Kaczmarz algorithm in [7] and the coordinate descent algorithm
in [15], respectively. At present, the RK algorithm and the RCD algorithm have been
successfully extended to solve many practical problems, e.g., the tensor linear system [11], the
tensor complementarity problem [19] and the linear least-squares problem [1]. Nevertheless,
to our knowledge, there are no corresponding RK and RCD algorithms for solving the
EVLCP (1), which is our main motivation. Based on this, together with the published work
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in [19], in the present paper, our main goal is to design the proper RK and RCD algorithms
for solving the EVLCP (1).

The remaining part of this paper is arranged below. In Section 2, we design the proper
RK and RCD algorithms for solving the EVLCP (1) and obtain their some convergence
properties. In Section 3, we show the performance of the RK algorithm and the RCD
algorithm by some numerical experiments. Finally, in Section 4, by using some conclusions,
we end up with this paper.

2. The RK and RCD algorithms

In this section, we will establish the proper RK and RCD algorithms for solving the
EVLCP (1). To achieve this aim, the following lemmas are required.

For convenience, throughout the paper, tr(·), (·)T and (·)∗, respectively, indicate the
trace, transpose and conjugate transpose of matrix. The symbol ⊗ denotes the Kronecker
product symbol, vec(·) stands for the vector gained by successively stacking all columns of
matrix into a vector.

Lemma 2.1. [10] For all ai, bi ∈ Rn (i = 1, 2, . . . , n),

| max
1≤i≤n

{ai} − max
1≤i≤n

{bi}| ≤ max
1≤i≤n

{|ai − bi|}.

Lemma 2.2. [2] Let R,S, F and G be complex matrices of proper dimensions. Then
• tr(RS) = tr(SR) and tr(R∗S) = vec(R)∗vec(S);
• (R⊗ S)∗ = R∗ ⊗ S∗ and vec(RSGT ) = (G⊗R)vec(S);
• (R⊗ S)(F ⊗G) = (RF )⊗ (SG).

Lemma 2.3. [17] The EVLCP (1) is equivalent to looking for x ∈ Rn such that

x = max
1≤s≤ℓ

{x− δΩ(Asx+ qs)} with δ > 0,

in which Ω is any positive diagonal matrix.

Based on Lemma 2.3, for δ = 1 and Ω = I with I being the identity matrix, together
with the methodology of the RK algorithm [16], we present the proper RK algorithm for
the EVLCP (1), see Algorithm 1, in which ∥A∥2F = tr(A∗A) and Ai stands for the ith row
of matrix A.

Algorithm 2.1. (The RK algorithm)
Input: As, qs, x

0; iteration count N .
Output: xN

1. for k = 0, 1, . . . , N − 1 do

2. Select ik ∈ {1, 2, ..., n} with probability Pr(row = ik) =
∑ℓ

s=1 ∥Aik
s ∥2

2∑ℓ
s=1 ∥As∥2

F

.

3. Set

xk+1 = max
1≤s≤ℓ

{
xk − Aik

s xk + qiks
∥Aik

s ∥2F
(Aik

s )T
}
.

4. endfor

The EVLCP (1) for any block vector q = (q1, q2, . . . , qs) has a unique solution if and
only if A = (A1, A2, . . . , As) has the row W-property, i.e.,

min(A0x,A1x, . . . , Asx) ≤ 0 ≤ max(A0x,A1x, . . . , Asx) ⇒ x = 0,

see [18]. Hence, we always assume that A has the row W-property to ensure that the
EVLCP (1) has a unique solution. In such case, we can present the convergence condition
for Algorithm 1. To present our convergence conditions, the following lemma is required.
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Lemma 2.4. Assume that x⋆ is a unique solution of the EVLCP (1). The kth iteration xk

of RK and x⋆ satisfy

|xk+1 − x⋆| ≤ Hik |xk − x⋆|,
where

Hik = max
1≤s≤ℓ

{∣∣∣∣I − (Aik
s )TAik

s

∥Aik
s ∥2F

∣∣∣∣}.

Proof. Since x⋆ is a solution of the EVLCP (1),

x⋆ = max
1≤s≤ℓ

{
x⋆ − Aik

s x⋆ + qiks
∥Aik

s ∥2F
(Aik

s )T
}
.

So, from Lemma 2.1 we have

|xk+1 − x⋆| =
∣∣∣∣ max
1≤s≤ℓ

{
xk − Aik

s xk + qiks
∥Aik

s ∥2F
(Aik

s )T
}

− max
1≤s≤ℓ

{
x⋆ − Aik

s x⋆ + qiks
∥Aik

s ∥2F
(Aik

s )T
}∣∣∣∣

≤ max
1≤s≤ℓ

{∣∣∣∣xk − Aik
s xk + qiks
∥Aik

s ∥2F
(Aik

s )T −
(
x⋆ − Aik

s x⋆ + qiks
∥Aik

s ∥2F
(Aik

s )T
)∣∣∣∣}

= max
1≤s≤ℓ

{∣∣∣∣xk − x⋆ − Aik
s (xk − x⋆)

∥Aik
s ∥2F

(Aik
s )T

∣∣∣∣}
= max

1≤s≤ℓ

{∣∣∣∣xk − x⋆ − (Aik
s )TAik

s (xk − x⋆)

∥Aik
s ∥2F

∣∣∣∣}
≤Hik |xk − x⋆|,

where

Hik = max
1≤s≤ℓ

{∣∣∣∣I − (Aik
s )TAik

s

∥Aik
s ∥2F

∣∣∣∣}.

The proof is completed. □

In the sequel, similar to the work in [2], from the following mean squared error (MSE),
i.e.,

MSE := E∥xN − x⋆∥2,
where xN is the Nth iteration by Algorithm 1 and x⋆ is a unique solution of EVLCP (1),
we establish the convergence property of Algorithm 1. Concretely, we have

Theorem 2.1. Assume that x⋆ is a unique solution of the EVLCP (1). For any initial
guess vector x0 ∈ Rn, after N iteration steps of RK, the average error satisfies

E∥xN − x⋆∥22 ≤ vec(I)THNvec((x0 − x⋆)(x0 − x⋆)T ), (2)

where

H =

n∑
i=1

pi(Hi ⊗Hi) with Hi = max
1≤s≤ℓ

{∣∣∣∣I − (Ai
s)

TAi
s

∥Ai
s∥2F

∣∣∣∣}, pi =

∑ℓ
s=1 ∥Ai

s∥22∑ℓ
s=1 ∥As∥2F

. (3)

Proof. From Lemma 2.4, we know

|xk+1 − x⋆| ≤ Hik |xk − x⋆|.
After N iteration step, we have

|xN − x⋆| ≤ HiN−1
HiN−2

. . . Hi0 |x0 − x⋆|.
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Hence, after N ≥ 1 steps, the MSE can be estimated below

E∥xN − x⋆∥22 ≤E∥HiN−1
HiN−2

. . . Hi0(x
0 − x⋆)∥22

=E[(x0 − x⋆)THT
i0 . . . H

T
iN−2

HT
iN−1

I

×HiN−1
HiN−2

. . . Hi0(x
0 − x⋆)]

=E[tr(HT
i0 . . . H

T
iN−2

HT
iN−1

IHiN−1
HiN−2

. . . Hi0

× (x0 − x⋆)0(x− x⋆)T )]

=(E[vec(HT
i0 . . . H

T
iN−2

HT
iN−1

IHiN−1
HiN−2

. . . Hi0)])
T

vec((x0 − x⋆)(x0 − x⋆)T ).

(4)

From Lemma 2.2, note that Hik for k ≥ 0 is mutually independent, we have

E[vec(HT
i0 . . . H

T
iN−2

HT
iN−1

IHiN−1
HiN−2

. . . Hi0)]

= E[(HT
i0 ⊗HT

i0)vec(H
T
i1 . . . H

T
iN−1

IHiN−1
. . . Hi1)]

= E[(HT
i0 ⊗HT

i0)]E[vec(H
T
i1 . . . H

T
iN−1

IHiN−1
. . . Hi1)]

= E[(HT
i0 ⊗HT

i0)]E[(H
T
i1 ⊗HT

i1)] . . .E[(H
T
iN−1

⊗HT
iN−1

)]vec(I). (5)

As

E[(HT
ik
⊗HT

ik
)] =

n∑
ik=1

pik(H
T
ik
⊗HT

ik
) = HT ,

we can rewrite (5) as

E[vec(HT
i0 . . . H

T
iN−2

HT
iN−1

IHiN−1
HiN−2

. . . Hi0)] = (HT )Nvec(I). (6)

Substituting (6) into (4) leads to (2).
In addition, when N = 0 in (2), it becomes an exact equality. This is because from

Lemma 2.2 we have

E∥x0 − x⋆∥22 = tr((x0 − x⋆)T (x0 − x⋆))

= tr((x0 − x⋆)(x0 − x⋆)T )

= vec(I)Tvec((x0 − x⋆)(x0 − x⋆)T ).

This completes the proof. □

Theorem 2.2. Let σ1 be the largest singular value of matrix H in (3), and let x⋆ be a
unique solution of the EVLCP (1). For any initial guess vector x0 ∈ Rn, after N iteration
steps of RK, the average error satisfies

E∥xN − x⋆∥22 ≤ σN
1

√
n∥x0 − x⋆∥22.

Proof. As is known, the matrix H ∈ Rn2×n2

is written as H = UΩV ∗, where U ∈ Rn2×n2

and V ∈ Rn2×n2

are two unitary matrices, and

Ω = diag(σ1, σ2, . . . , σn2) ∈ Rn2×n2

with σ1 ≥ σ2 ≥ . . . ≥ σn2 ≥ 0

is a diagonal matrix with σi (i = 1, 2, . . . , n2) being the singular value of H.
Based on (2), we have

E∥xN − x⋆∥22 ≤ vec(I)T (UΩV ∗)Nvec((x0 − x⋆)(x0 − x⋆)T ).

Let

vec(I)T (UΩV ∗)N = (q̄1, q̄2, . . . , q̄n2) and vec((x0 − x⋆)(x0 − x⋆)T ) = (q̂1, q̂2, . . . , q̂n2)T .
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With the aid of the Hölder inequality, we obtain

E∥xN − x⋆∥22 ≤
n2∑
i=1

q̄iq̂i ≤
n2∑
i=1

|q̄iq̂i| ≤
( n2∑

i=1

|q̄i|2
) 1

2
( n2∑

i=1

|q̂i|2
) 1

2

= ∥vec(I)T (UΩV ∗)N∥2∥vec((x0 − x⋆)(x0 − x⋆)T )∥2
≤ ∥vec(I)T ∥2∥(UΩV ∗)N∥2∥vec((x0 − x⋆)(x0 − x⋆)T )∥2
≤ σN

1

√
n∥x0 − x⋆∥22,

which completes the proof. □

Similarly, based on the methodology of the RCD algorithm [8], we present the proper
RCD algorithm for the EVLCP (1), see Algorithm 2.

Algorithm 2.2. (The RCD algorithm)
Input: As, qs, x

0; iteration count N .
Output: xN

1. for k = 0, 1, . . . , N − 1 do

2. Select jk ∈ {1, 2, ..., n} with probability Pr(column = jk) =
∑ℓ

s=1 ∥(As)jk∥
2
2∑ℓ

s=1 ∥As∥2
F

.

3. Set

xk+1 = max
1≤s≤ℓ

{
xk −

(As)
T
jk
(Asx

k + qs)

∥(As)jk∥22
ejk

}
.

4. endfor

For Algorithm 2, similar to Lemma 2.4, Theorems 2.1 and 2.2, we have Lemma 2.5
and Theorem 2.3.

Lemma 2.5. Assume that x⋆ is a unique solution of the EVLCP (1). The kth iteration xk

of RCD and x⋆ satisfy

|xk+1 − x⋆| ≤ Gjk |xk − x⋆|,
where

Gjk = max
1≤s≤ℓ

{∣∣∣∣I − ejk(As)
T
jk
As

∥(As)jk∥22

∣∣∣∣}.

Theorem 2.3. Assume that x⋆ is a unique solution of the EVLCP (1). For any initial
guess vector x0 ∈ Rn, after N iteration steps of RCD, the average error satisfies

E∥xN − x⋆∥22 ≤ vec(I)TGNvec((x0 − x⋆)(x0 − x⋆)T ),

where G =
∑n

j=1 pj(Gj⊗Gj) with pj =
∑ℓ

s=1 ∥(As)j∥2
2∑ℓ

s=1 ∥As∥2
F

and Gj = max1≤s≤ℓ

{∣∣∣∣I− ej(As)
T
j As

∥(As)j∥2
2

∣∣∣∣}.

Let δ1 be the largest singular value of matrix G. Then

E∥xN − x⋆∥22 ≤ δN1
√
n∥x0 − x⋆∥22.

3. Numerical verification

In this section, a simple randomized example is provided to evaluate the performance
of the proposed RK and RCD algorithms. For convenience, in our computations, we take
ℓ = 2, and construct test problems with q1 = u⋆ − A11 and q2 = v⋆ − A21 with 1 =
(1, 1, . . . , 1)T , where u⋆ and v⋆ are given by

u⋆ = (1, 0, 1, 0 . . . , 1, 0, . . .)T , v⋆ = (0, 1, 0, 1 . . . , 0, 1, . . .)T .

The stopping criterion is RES := ∥xk−x⋆∥
∥x⋆∥ ≤ 10−4 with x⋆ = 1.
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Example 3.1 Consider the EVLCP (1) from the view of the random matrix, in which
A1 and A2 are given by

(A1)ij = Sij , i ̸= j, (A1)ii = 4 +

n∑
i̸=j

|Sij |;

(A2)ij = Tij , i ̸= j, and (A2)ii = 4 +

n∑
i̸=j

|Tij |,

where S = µ · rand(n, n)−1, and T = ν · rand(n, n)−1. Clearly, A1 and A2 are full random
matrices.

Since A1 and A2 are two strict diagonally dominant in Example 3.1, from Lemma 3.4
in [20], we know that the corresponding A has row W-property such that the corresponding
EVLCP (1) has a unique solution, i.e., 1 constructed by us.

Table 1. Numerical results of RK and RCD for Example 3.1 with µ = 3
and ν = 2.

m 600 800 1000 1200
IT 9 11 10 10

RK CPU 0.1157 0.2688 0.3441 0.5262
RES 6.5891e-5 1.3030e-5 1.5519e-5 2.3385e-5
IT 7 7 6 6

RCD CPU 0.1878 0.3104 0.5367 0.9338
RES 7.0879e-5 9.8252e-5 8.4438e-5 3.8140e-5

Table 2. Numerical results of RK and RCD for Example 3.1 with µ = 3
and ν = 5.

m 600 800 1000 1200
IT 9 9 9 8

RK CPU 0.1119 0.2004 0.3224 0.4389
RES 1.0352e-5 3.0849e-5 1.6279e-5 3.4870e-5
IT 9 7 6 6

RCD CPU 0.2239 0.3522 0.4852 0.8775
RES 4.8578e-5 1.7820e-5 6.0824e-5 1.8343e-5

In our computations, we consider two aspects: (1) µ = 3 and ν = 2; (2) µ = 3 and
ν = 5. For these two cases, Tables 1 and 2 in turn display the numerical results of IT,
CPU and RES by RK and RCD for solving Example 3.1 with various dimensions, where
‘IT’, ‘CPU’ in order stand for the iteration numbers and the elapsed CPU times (second).
From the numerical results in Tables 1 and 2, we can drive a simple conclusion that the
presented RK and RCD algorithms are feasible and effective when both are adopted to solve
the EVLCP (1).

4. Conclusion

In this paper, we have established the proper RK algorithm and the proper RCD
algorithm for solving the EVLCP (1), and discussed their convergence properties under the
mild conditions. The performance of these proposed algorithms are confirmed by a simple
randomized example.
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