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THE EXTENDED VERTICAL LINEAR COMPLEMENTARITY
PROBLEM VIA TWO RANDOMIZED ALGORITHMS

Cui-Xia Li' and Shi-Liang Wu®

In this paper, inspired by the already published work (Comput. Optim.
Appl., 2022, 82: 595-615), we extend two randomized algorithms, i.e., the randomized
Kaczmarz algorithm and the randomized coordinate descent algorithm, to solve the ex-
tended vertical linear complementarity problem. Some convergence properties of both
are presented. Numerical experiments show that these two randomized algorithms are
feasible and efficient.
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1. Introduction

The aim of extended vertical linear complementarity problem (EVLCP) is to find
x € R” such that

2ig {Asw + 00} =0, 0

where, hereafter, “min” stands for the entry-wise minimum, A, € R™*" and ¢, € R", see
[5]. Clearly, the EVLCP (1) is a generalization form of the vertical linear complementarity
problem (VLCP) in [3] and the classical linear complementarity problem (LCP) in [4]. Not
only that, the EVLCP (1) is often used in many fields of scientific computing and engineering
technology, such as volterra ecosystem [6], stochastic impulse control games [22], the discrete
HJB equations [21], and others. One can see [5] for more applications.

Developing an efficient iteration algorithm to solve the EVLCP (1) has been the focus
of attention. Whereas, to date, only a few iterative algorithms have been proposed to solve
the EVLCP (1), such as the Newton-type algorithm in [13, 14], the projected-type algorithm
[17, 12], and the modulus-type algorithm [9].

Recently, the randomized algorithm because of its economics and efficiency for solving
the corresponding system has attracted much interest, like the randomized Kaczmarz (RK)
algorithm [16] and its other versions, the randomized coordinate descent (RCD) algorithm
[8] and its other versions. The RK algorithm and the RCD algorithm greatly enhance the
convergence rate of the Kaczmarz algorithm in [7] and the coordinate descent algorithm
in [15], respectively. At present, the RK algorithm and the RCD algorithm have been
successfully extended to solve many practical problems, e.g., the tensor linear system [11], the
tensor complementarity problem [19] and the linear least-squares problem [1]. Nevertheless,
to our knowledge, there are mo corresponding RK and RCD algorithms for solving the
EVLCP (1), which is our main motivation. Based on this, together with the published work
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in [19], in the present paper, our main goal is to design the proper RK and RCD algorithms
for solving the EVLCP (1).

The remaining part of this paper is arranged below. In Section 2, we design the proper
RK and RCD algorithms for solving the EVLCP (1) and obtain their some convergence
properties. In Section 3, we show the performance of the RK algorithm and the RCD
algorithm by some numerical experiments. Finally, in Section 4, by using some conclusions,
we end up with this paper.

2. The RK and RCD algorithms

In this section, we will establish the proper RK and RCD algorithms for solving the
EVLCP (1). To achieve this aim, the following lemmas are required.

For convenience, throughout the paper, tr(-), (-)7 and (-)*, respectively, indicate the
trace, transpose and conjugate transpose of matrix. The symbol ® denotes the Kronecker
product symbol, vec(-) stands for the vector gained by successively stacking all columns of
matrix into a vector.

Lemma 2.1. [10] For all a;,b; e R™ (1 =1,2,...,n),

. | < - bV,
| max {a;} — max {b;}| < max {|a; —bi[}

Lemma 2.2. [2] Let R, S, F and G be complex matrices of proper dimensions. Then
o tr(RS) = tr(SR) and tr(R*S) = vec(R)*vec(S);
e (R®S)*=R*®S* and vec(RSGT) = (G ® R)vec(S);
e (R®S)(F®G)=(RF)®(SG).

Lemma 2.3. [17] The EVLCP (1) is equivalent to looking for x € R™ such that

x = 121?§Z{x — QU (Asx + g5)} with § > 0,

in which € is any positive diagonal matriz.

Based on Lemma 2.3, for § = 1 and Q2 = I with I being the identity matrix, together
with the methodology of the RK algorithm [16], we present the proper RK algorithm for
the EVLCP (1), see Algorithm 1, in which ||A]|% = tr(A*A) and A? stands for the ith row
of matrix A.

Algorithm 2.1. (The RK algorithm)
Input: A,, q,, 2°; iteration count N.
Output: =N
1. fork=0,1,...,N —1 do

‘ , o : Tl A¥ 3

2. Select iy, € {1,2,...,n} with probability Pr(row = iy) = W

s=1 sllF
3. Set
P = max { o - AT O oyl
25 [

4. endfor

The EVLCP (1) for any block vector q = (q1,¢2, - . ., ¢s) has a unique solution if and
only if A = (A1, As, ..., As) has the row W-property, i.e.,

min(4oz, A1z, .., Asx) <0 < max(Aopz, Az, ..., Ax) = =0,

see [18]. Hence, we always assume that A has the row W-property to ensure that the

EVLCP (1) has a unique solution. In such case, we can present the convergence condition
for Algorithm 1. To present our convergence conditions, the following lemma is required.
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Lemma 2.4. Assume that z* is a unique solution of the EVLCP (1). The kth iteration z*
of RK and x* satisfy
 Aar g

* * i A’Lk T )
= o o - S )

So, from Lemma 2.1 we have

| — 2| < Hy, |2 — 27|,
where VT 4
ik ik
= s {1 -
s IF
Proof. Since x* is a solution of the EVLCP (1),

Aik k ik i
|$k+1 _ $*| —| max {xk s xik‘i'zqs (A?‘)T}
1ssst A 1%
Aik * ik )
— max dp*— 8 JC‘ + ds (Aik)T
Lssst A%
< max { MO Gt YT (w B Kt (A”)T)‘}
RS (e 5 JAZ]E
Aik k _ % .
= max { |zF —g* - =2/ (sc :c )(A;’“)T
2 AT
k. (ARTAREE =)
1=sst || AL 113
<H; |zF — 2*],
where o
Alk)E Atk
H;, = max {‘I— % }
AT A
The proof is completed. O

In the sequel, similar to the work in [2], from the following mean squared error (MSE),
ie.,
MSE := E||lzV — 2%z,
where zVV is the Nth iteration by Algorithm 1 and z* is a unique solution of EVLCP (1),
we establish the convergence property of Algorithm 1. Concretely, we have

Theorem 2.1. Assume that x* is a unique solution of the EVLCP (1). For any initial
guess vector x° € R™, after N iteration steps of RK, the average error satisfies

Ellz™ — 2*||2 < vee(I)T HNvec((z° — 2*)(2® — 2*)7), (2)

where

H_i (H; @ H;) with H; = I [COlEH
T L AT R A

Z .
} 2 AL
y T T Y .
2= A%

Proof. From Lemma 2.4, we know
|z — 2t < HZ,C|x’C —z*|.
After N iteration step, we have

|:L'N —z*| < H;,,_,H; Hio|:c0 — "

N_2 *"*
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Hence, after N > 1 steps, the MSE can be estimated below
Ellz™ — a*||3 <El|Hiy_, H; Hy (2% — 273
=E[(2° —2*)"H] ... H] _H] I

IN—2 TIN—1
X Hz Hl Hio (I'O — :c*)]

N_2 **

N-1 N—-2 """
=Etr(H} ...H} _H! IH;, Hi,_,...H;, (4)
x (2% — )z — 2*)")]
=(E[vec(H} ... H]  H] IH;, Hi, ,...Hy)]))"

vee((z® — ) (20 — 2)T).
From Lemma 2.2, note that H;, for £ > 0 is mutually independent, we have

E[vec(H;. ... H{\ H} IH;\ Hiy ,...H)]
(H @ HOIE[(H] @ HY))...E[(H], |, @ H)]vec(I). (5)

N-2"*
N-1"

N-1"°

in o Hiy THiy_,
=E[(H] @ H )vec(H ...H IH;, ,...H;)]
=E[(H] ® H.)Evec(H} ... H} IH;, ,...H,;)]
=E[( ino1
As .
E[(H ® H)] =Y po(H @ HY) = H,

ip=1

we can rewrite (5) as

Elvec(H} ...H}  H} IH

IN—2 TIN—-1 IN—1

Hiy_,...Hi))] = (H")Nvec(I). (6)

Substituting (6) into (4) leads to (2).
In addition, when N = 0 in (2), it becomes an exact equality. This is because from
Lemma 2.2 we have

Ell2® — 2*[3 = tr((2® — )7 (a° — 2*))
= tr((2° — 2*)(2® - 2")T)
= vec(I)Tvec((2° — 2*)(2° — 2*)T).
This completes the proof. O

Theorem 2.2. Let o1 be the largest singular value of matrix H in (3), and let x* be a
unique solution of the EVLCP (1). For any initial guess vector z° € R", after N iteration
steps of RK, the average error satisfies

Ea™ —a*[3 < of vnl|2® - a*]3.

Proof. As is known, the matrix H € R™X"* g written as H = UQV*, where U € R7*xn’
and V € R™ X" are two unitary matrices, and

2 2
O = diag(o1,02,...,0,2) ER™ *" with oy > 09> ... > 0,2 >0

is a diagonal matrix with o; (i = 1,2,...,n?) being the singular value of H.
Based on (2), we have

E|zN — 2*||% < vec(I)T(UQV*)Nvec((z® — 2*)(2® — 2)T).
Let
VGC([)T(UQV*)N = (qla 42, - - - 7Cjn2) and VGC((I’O - x*)(xo - x*)T) = (qla q27 cee 7Cjn2)T'
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With the aid of the Holder inequality, we obtain

n? n? n? 1 n2 1
2 2
Bl o3 < Y ad< 3l < () (L)
i=1 i=1 i=1 i=1
= [[vec(I)" (UQV*)¥||z||vec((2” — a*)(z® — 2*)T)]|2
< [vee(D)T UV [l2]vee((2° — 2*) (2 — &)™)l
< o7 v/nll2® — 2*|J3,
which completes the proof. O

Similarly, based on the methodology of the RCD algorithm [8], we present the proper
RCD algorithm for the EVLCP (1), see Algorithm 2.

Algorithm 2.2. (The RCD algorithm)
Input: A,, q,, 2°; iteration count N.
Output: =N
1. fork=0,1,...,N—1 do

0 2
2. Select ji, € {1,2,...,n} with probability Pr(column = jj) = W.
s=1 sllEp
3. Set

.Tk+1 = Imax
1<s<t

{xk B (As)ka(Asggk +qs)e‘ }
I(As)jll5
4. endfor

For Algorithm 2, similar to Lemma 2.4, Theorems 2.1 and 2.2, we have Lemma 2.5
and Theorem 2.3.

Lemma 2.5. Assume that z* is a unique solution of the EVLCP (1). The kth iteration z*
of RCD and x* satisfy

254 — 2] < Gy ek — a7,
where
€, (AS);‘{;AS }
(A5 l3 1)
Theorem 2.3. Assume that x* is a unique solution of the EVLCP (1). For any initial
guess vector x° € R™, after N iteration steps of RCD, the average error satisfies

Gj, = max {‘I—

1<s<¢

B2 — 2*||3 < vec(I)T GV vec((2° — 2*) (2 — 2*)T),

e;j(As)] As
> A 1(A:);113

Let 61 be the largest singular value of matrix G. Then

Ella™ —2*||3 < 67 v/n|2® — 2*|I3.

SN (GG with s — Ze=t (A 15 _ _
where G =35 pi(G;®G;) withp; = and G; = maxi<g<¢ 9 |1

3. Numerical verification

In this section, a simple randomized example is provided to evaluate the performance
of the proposed RK and RCD algorithms. For convenience, in our computations, we take
{ = 2, and construct test problems with ¢; = u* — A11 and ¢ = v* — As1 with 1 =
(1,1,...,1)T, where u* and v* are given by

uw* =(1,0,1,0...,1,0,...)F, v* =(0,1,0,1...,0

) 9

1,..)7.

k *
The stopping criterion is RES := 12 =21 < 104 with 2* = 1.

flz*ll =
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Example 3.1 Consider the EVLCP (1) from the view of the random matrix, in which
A; and A, are given by

(A1)ij = Siyi # 5, (A)is =4+ [Si1;
i#]

(A2)ij = Tij,i # j,and (Az)i =4+ Z T3],
i#]
where S = p-rand(n,n) —1, and T = v-rand(n,n) — 1. Clearly, A; and A are full random
matrices.
Since A; and As are two strict diagonally dominant in Example 3.1, from Lemma 3.4
in [20], we know that the corresponding A has row W-property such that the corresponding
EVLCP (1) has a unique solution, i.e., 1 constructed by us.

TABLE 1. Numerical results of RK and RCD for Example 3.1 with y = 3

and v = 2.
m 600 800 1000 1200
1T 9 11 10 10

RK CPU 0.1157 0.2688 0.3441 0.5262
RES 6.5891e-5 1.3030e-5 1.5519e-5 2.3385e-5
1T 7 7 6 6

RCD CPU 0.1878 0.3104 0.5367 0.9338

RES 7.0879e-5 9.8252e-5 8.4438e-5 3.8140e-5

TABLE 2. Numerical results of RK and RCD for Example 3.1 with y = 3

and v = 5.
m 600 800 1000 1200
IT 9 9 9 8

RK CPU 0.1119 0.2004 0.3224 0.4389
RES 1.0352¢-5 3.0849¢e-5 1.6279¢-5 3.4870e-5
1T 9 7 6 6

RCD CPU 0.2239 0.3522 0.4852 0.8775

RES 4.8578e-5 1.7820e-5 6.0824e-5 1.8343e-5

In our computations, we consider two aspects: (1) p =3 and v = 2; (2) p = 3 and
v = 5. For these two cases, Tables 1 and 2 in turn display the numerical results of IT,
CPU and RES by RK and RCD for solving Example 3.1 with various dimensions, where
‘IT’, ‘CPU’ in order stand for the iteration numbers and the elapsed CPU times (second).
From the numerical results in Tables 1 and 2, we can drive a simple conclusion that the
presented RK and RCD algorithms are feasible and effective when both are adopted to solve
the EVLCP (1).

4. Conclusion

In this paper, we have established the proper RK algorithm and the proper RCD
algorithm for solving the EVLCP (1), and discussed their convergence properties under the
mild conditions. The performance of these proposed algorithms are confirmed by a simple
randomized example.
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