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MATHEMATICAL PROGRAMS INVOLVING E-CONVEX FUNCTIONS

Bhuwan Chandra Joshi', Pankaj?

In this paper, we have shown that generalized M-stationary condition is suf-
ficient for global optimality under the assumptions of E-convexity and mathematical
programming problems with equilibrium constraints. Further, we formulate and study
Wolfe type and Mond-Weir type dual models for the MPEC and we establish weak and
strong duality theorems relating to the MPEC and the two dual models.

Keywords: E-convexity, Stationary point, Wolfe type dual, Mond-Weir type dual,
Mathematical program with equilibrium constraints

1. Introduction

The present study focuses on mathematical programs with equilibrium constraints
(MPEC), which is a special class among the nonlinear optimization problems. This des-
ignation is established because its feasible set has complementarity conditions that do not
usually appear in standard optimization problems that is the reason why MPEC are also
known as mathematical programs with complementarity constraints (MPCC). In general,
this distinguishing characteristic produces a challenging problem for most of the algorithms
developed for solving continuous optimization problems, notably because many constraint
qualifications do not hold at the desired solution for example, the Mangasarian Fromovitz
constraint qualification (MFCQ) is not valid at any feasible point of an MPEC [25].

The MPEC are strongly connected with the bilevel optimization problem [4]. Al-
though these problems are not equivalent [1,6], one of the most usual ways of dealing with a
bilevel problem is to consider it as a special MPEC instance derived from the Karush-Kuhn-
Tucker (KKT) conditions applied to the lower level problem. Since bilevel optimization is
related with important real-world problems (e.g., see [2,5]), and many other applications
may be viewed as minimization problems with complementarity constraints [7,13]. For more
literature on MPEC problems see [8,10-12] and references therein.

Usually, generalized convex functions have been introduced in order to weaken the
convexity requirements as much as possible to obtain results related to optimization the-
ory [17,19-24]. One of the significant generalization of convex function is E-convex function
which was first introduced by Youness [27]. Subsequently, necessary and sufficient optimal-
ity conditions for a class of E-convex programming problems were discussed by Youness [28].
Modified form of the Kuhn-Tucker and Fritz-John problems i.e., E-Kuhn-Tucker and E-Fritz-
John problems were also presented by Youness [28]. Later, Megahed et al. [16], presented the
concept of an E-differentiable convex function which transforms a non-differentiable convex
function to a differentiable function, then a solution of mathematical programming with
a non-differentiable function could be found by applying the Kuhn-Tucker and Fritz-John
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conditions due to Mangasarian [14]. For more literature on E-convex functions one can
see [3,9,15] and references therein.

The organization of this paper is as follows: in Section 2, we give some preliminary,
definitions and results which will be used in the sequel. In Section 3, we show that M-
stationary condition is sufficient for global optimality under some MPEC and E-convexity
assumptions. In Section 4, we formulate Wolfe and Mond-Weir type dual models for the
MPEC and establish weak and strong duality theorems relating to the MPEC and the two
dual models under E-convexity assumptions. In Section 5, we conclude the results of this

paper.

2. Preliminaries

In this section, we give some preliminaries and definitions which will be used in the
paper. Throughout the paper R™ denotes the n-dimensional Euclidean space.

Definition 2.1. [27] A set M CR" is said to be E-convex iff there is a map E : R™ — R"
such that (1 — N)E(x) + AE(y) € M, for each x,y € M, and X € [0,1].

Example 2.1. Consider the set Sy = {(z,y) € R*|y < 2,0 <z < 1}. Let E(z,y) = (/7,v)
then it is clear that Sy is E-convex (since Sy is convex). It is easy to check that E(Sy) is
E-convex by taking the map E(x,y) = (/x,y), while E(S1) is not convex, where E(Sy) =
{(z,y) e R?ly <a2?,0 <z <1}

Definition 2.2. [27] A function F : R™ — R is said to be E-convex on M C R™ iff there
s a map E : R” — R™ such that M s an E-convex set and

FQAE(z)+ (1= )E(y) < AF(E(x)) + (1 = N F(E(y))-

Obviously, if f is a real-valued differentiable function on an E-convex set M C R™,
we can define a differentiable E-convex function in the following.

Definition 2.3. F' is E-convex on M at % if for each x € M, we have
F(E(z)) - F(E(T)) =2 (VF(E(2)), E(z) — E(Z)).
Definition 2.4. F' is E-pseudoconvex on M at T if for each x € M, we have
(VE(E(2)), E(x) — E(2)) =2 0= F(E(x)) > F(E(Z)).
Definition 2.5. F' is E-quasiconvexr on M at T if for each x € M, we have
F(E(z)) < F(E(T)) = (VF(E(T)), E(z) — E(Z)) <0.

We provide following examples in support of the definitions of E-convex functions and
generalized E-convex functions respectively.

Example 2.2. Consider the function F': R — R is given by F(z) =z and E : R — R is
given by E(z) = 22 then R is an E-convex set and F is an E-convez function at & = 0.

Example 2.3. Consider the function F : R — R is given by F(z) = cosz and E: R — R
is given by E(x) = x. Then R is an E-convex set and F is an E-pseudoconvez function at
T=m.

Example 2.4. Consider the function F': R — R is given by F(z) = —sinz. If E: R — R

is given by E(x) = —x then R is E-convex set and F' is E-quasiconvex function at T = 7.



Mathematical programs pnvolving E-convex functions 79

We consider the following MPEC problem over the E-convex sets in the following
form:

MPEC min F(E(x))
subject to: g(E(z)) <0, h(E(z)) =0,
G(E(z)) > 0, H(E(z)) > 0, (G(E(x)), H(E(z))) =0,
where E:R” - R*",F:R” - R, g:R* - RF, h:R* 5 RP, G:R” - Rl and H : R —

R! are continuously differentiable functions on R”.
The feasible set of the problem MPEC is denoted by X and defined by

8

X = {o € R": g(B(2)) < 0, h(E(x)) =0, G(E(2)) 2 0, H(E(x)) > 0, (G(E(x)), H(E(x))) = 0}.
Given a feasible vector Z € X for the problem (MPEC), we define the following index sets:
Iy = I(E(T) :=={i=1,2,....k: gi(E(Z)) = 0},
6::6(E(53))::{i:l,Q,...,l:Gi( (2)) =0,H;(E(%)) > 0},
B = B(E() = {i = 1,2,...,1: Gi(E(¥)) = 0, Hy(E(Z)) = 0},
k:=r(E@):={i=12,...,1: Gi(E(Z)) > 0,H;(E(Z)) = 0}.
Here the set 8 is known as degenerate set and if 3 is empty, the vector Z is said to satisfy
the strict complementarity condition.

Based on the definition of Mordukhovich stationary point [18], we are defining the
following concept of E-M-stationary point.

Definition 2.6. A feasible point & of MPEC is said to be E-Mordukhovich stationary point
if, 3 a = (a9, o, o, o) € RFFPH2Lsuch that following conditions hold:

l

0= VF(E@)+ Y afdVg(B@E)+Y aiVhi(E@) -3 aSVGi(B(#) +af VH(B())),

iely i=1 i=1
(1)

af >0, of =0, af =0, (2)
Vi € B, either af >0, off >0 or afall =0.

Based on the definition of No Nonzero Abnormal Multiplier Constraint Qualifica-
tion [26], we define the following concept of E-No Nonzero Abnormal Multiplier Constraint
Qualification (ENNAMCQ).

Definition 2.7. Let E(Z) be a feasible point of MPEC and all functions are continuously
differentiable at x. We say that the E-No Nonzero Abnormal Multiplier Constraint Qualifi-
cation (ENNAMCQ) is satisfied at &, if there is no nonzero vector a = (o, a", a%, afl) €
RFHPH2 - such that

0= afVgi(E@)+> alVhi(E@) - [afVGi(E(®)) + of VH;(E(z))],

iel, i=1 i=1
a? >0, a%=0, o =0,
Vi € B, either a >0, a >0 or aG =0.

(3

In the next section, it can be seen that M-stationary condition turns into a sufficient
optimality condition for a certain MPEC problem involving E-convexity assumptions.

Note Throughout the paper {} will denote an empty set.
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3. Sufficient E-M-stationary condition

Theorem 3.1. Let & be a feasible point of MPEC and E-M-stationary condition holds at
E,de, 3a=(ad,a" a% o) € REPH2 such that

p
0=VE(E@)+Y a!Vg(B@)+y_ alVhi(E(#) - [af VGi(E(®))+af VH(E())],
i€ly i=1 i=1
(3)
a? >0, o9=0, off =0,

Vi € 3, ezthera > 0, a >0 or aG =0.

K3

Let
jTi={i:al >0}, j7:={i:al <0},
pr={iep:af >0, af >0},
ﬂg::{ieﬁ:af:OaH>0} Bg={icpB:af =00 <0},
Bh={iep:al =0,a¢ >0}, By :={i € B:aff =0, <0},
sti={ics:af >0}, 6" :={ics:af <0},
kti={ick:al >0}, v :={ick:all <0},

and assume that F is E- pseudoconvez at &, g; (i € I,), h; (i € j7), —h; (i€j7), G; (i €
5~ UBR), —Gi (i € st uBLuUpBY), H; (i € k- UBG) and —H; (i € kT U BL UBT) are
E-quasiconvex at . If 5~ Uk~ U B, UBy = {} then T is a global optimal solution of MPEC.

Proof. Assume that = be any feasible point of MPEC, i.e., for any ¢ € I,
gi(E(z)) <0 = g;(E()).

Using E-quasiconvexity of g; at z, it follows that,

(Vgi(E(%)), E(z) — E(Z)) <0, Viel,. (4)
Similarly, we have
(Vhi(E(2)), E(z) — E(2)) <0, Vi€ j*, (5)
—(Vhi(E(%)), E(z) — E(2)) <0, Viej. (6)
Since, for any feasible point z, —G(E(x)) < 0, —H(E(zx)) < 0, one also have
—(VGi(E(2)), E(x) — E(2)) <0, Vied"upyupT, (7)
(VH,(B(®), B(x) - B(@) <0, Vi€t UG5 Ua". ®)

First, we take 6~ Uk~ UBGUBH = {}, multiplying (4 ) B)byad >0(iel,), al >0 (i€
it),—al>03G€j), af >0(iedtupLupt), af >0(ie P U B U BT) respectively
and adding (4)-(8), we obtain

< > afVgi(E(#)) + XP: ' Vhi(E(&)) — zl:[a?VGi(E(i:)) + o' VH,(E(2))], E(z) — E(az)> <0.
icly i=1 i=1
Using equation (3), the above inequality follows that
(VF(E(2)),E(z) — E(2)) > 0.
Applying, E-pseudoconvexity of F' at &, we get
F(E(x)) = F(E(T))
for all feasible point z. Hence Z is a global optimal solution of MPEC. ]
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In the next section, we formulate a Wolfe type dual problem and a Mond-Weir type
dual problem for the MPEC under the E-convexity assumptions.

4. Duality
WDMPEC
l
max { F(E(z)) + Y afgi(E(x)) + Z alhi(B(x)) =Y [af )+ ol Hy(E(x))]
ne iel, i=1
subject to:
l
0=VF(E(@)+> o!Vg(E +Z Al Vhi(E(z) =Y [afVG;i(E(z))+af VH;(E(z))],
i€ly =1
(9)
04120, ad =0, o =0,
Vzeﬂ,elthera > 0, a >0 or aZG =0,

where,a = (a9, ", % afl) € RF+PH2L

Theorem 4.1. (Weak Duality) Let § be feasible for MPEC, (x,«a) be feasible for WDM-
PEC and index sets 1,0, 3, defined accordingly. Suppose that F, g; (i € Ig), h; (i €
FHh—hi (i € ), Gi (1 € 67U ), —Gi (i € 6% U B U B*), H; (i € 5= U fig), and
—H; (i € kT UBLUBT) are E-convex functions at x. If 5~ Uk~ U Bg UBy = {}. Then, for
any y feasible for the MPEC, we have

l
F(E(y)) ZF(E(OJ))JrZafgi( +Zahh Z ) + o' Hi(E(2))].

Proof. Let us consider that, y be any feasible point for MPEC. Then, we get

9i(E(y)) <0, Vielg,
and
hi(E(y))=0, i=1,2,...,p.

Since, F' is F-convex at x, then

F(E(y)) — F(E(x)) 2 (VF(E(x)), E(y) — E(x)). (10)

Similarly, we get
9i(E(y)) — 9i(E(x)) = (Vgi(E(x)), E(y) — E(z)), Vi € 1, (11)
hi(E(y)) — hi(E(x)) =2 (Vhi(E(2)), E(y) - E(2)), viej", 12

(12)
—hi(E(y)) + hi(E(x)) > —(Vhi(E(z)), E(y) — E()), Viejo, (13)
—Gi(E(y) + Gi(E(x)) > —(VGi(E(2)), E(y) — E(x)), Vied"Upzupt,  (14)
—Hi(E(y)) + Hi(E(2)) > —(VH(E(x)), E(y) — E(z)), Vies"UBLUBT.  (15)

If 0~ Uk~ UBg U By = {}, multiplying (11)-(15) by of >0 (i € I,), af > 0 (i €
it), —al >0(i€j7), af >0(iestupBfupt), aff >0 (i € kT UBLUBT), respectively
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and adding (10)-(15), it follows that

F(E(y)) = F(E(@) + ) algi(B(y) - ) algi(E(x)) + Za?hi(E(y)) - Za?hi(E(z))

iel, i€l

l
—ZaGG +ZaGG ZaHH (E(y)+ Y _ of Hy(E(z))
=1
> <VF(E(I)) + Y afVgi(B(z)) + Za?Vhi(E x

iel,
i=1

l
=Y [afVGi(E(x)) + af VH(E(x))], E(y) - E(fﬂ)>~

Using (9), we get

F(E(y)) = F(E(@) + ) ofgi(E(y) = Y_ algi(E(x))

icly i€l
+ Ep:a?hi( Zahh ZO‘GG
+ZaGG ZQHH (E(y)) +Zalei(E(:p)) > 0.
=1

Using the fea81b1hty of y for MPEC, that is ¢;(E(y)) < 0, hi(E(y)) = 0, G;(E(y)) >
0, H;(E(y)) > 0, we obtain
!

F(E(y))=F(B(x)=)_ olgi(E@)=)_ alhi(B(x))+_lof Gi(E(x))+af Hi(E(x))] > 0.

icly i=1 i=1
Hence
l
F(E(y) > F(E(z)) + Y ofg:i(E(x +Zahh )= [af )) + af Hi(E(x))],
icl, i=1
and the proof is complete. O

Theorem 4.2. (Strong Duality) If § is a global optimal solution of MPEC, such that
ENNAMCQ is satisfied at § and index sets 14,6, 3,k defined accordingly. Let F, g; (i €
1), hi (i€j*t), —hi(i€j), G; (i €5 UBy), —Gi (i € TUBLUBT), H; (i € k- UBG)
and —H; (i € kT UB;UB*) fulfill the assumptions of the Theorem 4.1. Then, there exists &,
such that (g, &) is a global optimal solution of WDMPEC and corresponding objective values
of MPEC and WDMPEC are equal.

Proof. Since, 7 is a global optimal solution of MPEC and ENNAMCQ is satisfied at g,

therefore, there exist & = (&9, a", &%, afl) € RFP+2l such that E-M- stationarity conditions

are satisfied for MPEC, i.e.,

—

0=VF(E®G)+ alVe(E +Za Vh(E() Y _[6{ VG(E() +a]' VHi (B ()],

i€ly i=1

(16)

Vi € B, either a;

“Q

>0,
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Therefore, (g, &) is feasible for WDMPEC. By Theorem 4.1, we get

!
F(E®j)) > F(E(x)) + Y ofgi(E(z)) + Zahh )= [af ) + o Hy(B(x))],

iel, i=

[

(17)
for any feasible solution (z, @) for WDMPEC. Now, using the feasibility condition of MPEC
and WDMPEC, i.e, for ¢ € I,(E(7)), g:(E(g)) = 0, also h;(E(g)) = 0,Gi(E(g)) = 0,Vi €
dU B and H;(E(g)) =0,Vi € B U k, then, it follows that

l

F(E() = F(E®) + > ag:(E(j +Zahh ) = > (a7 Gi(E(G)) + af Hi(E()))-
i€ly i=1
(18)
Using (17) and (18), we get
p 1
)+ Y alg(E@) + ) ath(E@) - ) laf )+ &l Hi(E(9))
icl, i=1 im1

l

+ Y algi(E(@)) + Y alhi(E(@)) = Y [af Gi(B(x)) + af Hi(E(2))].

il i=1 i=1
Therefore, (g, &) is a global optimal solution for WDMPEC. Moreover the corresponding
objective values of MPEC and WDMPEC are equal. |
Now, we establish, the duality relation between the MPEC and the following Mond-

Weir type dual.

MWDMPEC — max F(E(z))

subject to:
p l
0=VF(E(@)+>  o!Vg(E)+Y _ alVhi(E(x)-> [afVGi(E(x))+af VH;(E(x))],
icly i=1 i=1

(19)

D> algi(B@) 20, 3 alhi(E() >0,

icl,

! !
ZaZ-GGi(E(:E)) <0, Zaf{HZ(E(a:)) <
1=1 i=1

g G _ H _
0419207 a. =0, a5 =0,

Vi € B, eitheraiG>0, oz >0 or q

where, a = (a9,a" a%, off) € RFTP+2L

Theorem 4.3. (Weak Duality) Let § be feasible for MPEC, (x,«) be feasible for MWDM-
PEC and the index sets 1,0, 5,k defined accordingly. Suppose that F, g; (i € 1), h; (i €
i), —hi (i€j7), Gi (1€d-UBy), —G; (iedstupLuUpt), Hi (ie k UBG), —H; (i €
kKt U 525 U BT) are E-convex functions at x. If 6~ Uk~ U Bg U By = {}, then, for any y
feasible for the MPEC, we have

F(E(y)) 2 F(E(x)).
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Proof. Let us consider that, y be any feasible point for MPEC. Then, we have
9i(E(y)) <0, Vi€l
and
hi(E(y)) =0, i=1,2,...,p.
Since, F' is F-convex at x, we have
F(E(y)) — F(E(x)) 2 (VF(E(x)), E(y) — E(x)). (20)

Similarly, we have

gi(E(y)) — gi(E(z)) > (Vgi(E(z)), E(y) — E(x)), Vi e I, (21)
hi(E(y)) — hi(E(z)) = (Vhi(E(z)), E(y) — E(z)), Vie T, (22)
—hi(E(y)) + hi(E(z)) > —=(Vhi(E(2)), E(y) — E(z)), Yie€j, (23)
~Gi(E(y)) + Gi(E(x)) > —(VGi(E(x)), E(y) — E(x)), VYiedUBHUBT, (24)
—H'(E( )) + H'(E(ff)) 2 —<VHZ-(E($)),E(ZJ) - E(z)), Viertupfiupt. (25

( (i€ly), ol >0(iejt), —al>

Co

)- %
0(i€j), af >0(zeé+uﬁ+u6+), af >0(ier
(20)-(25), we obtain

F(E(y)) — F(E(2)) + ) o!gi(E(y)) — Y algi(E +Za”h ))—Za?hi(E x

i€l icl,

B& U BT), respectively and adding

l

l l
- S S GUEW) + Y oSG E®) ~ Y- ol H(EW) + Y ol ()

i=1

> <VF(E(;U)) + Z afVgi(E(z)) + Y al'Vhi(E(x))
=1

_Z [@SVGi(E(x)) + a2 VH;(E(z ))LE(y)—E(w)>-

Using (19), it follows that

F(E(y)) ~ F(E(2)) + ) olgi(E(y)) = Y algi(E(x))

icly icly

P
+Zafh,~( Zahh ZaGG
+ZaGG ZQHH +ZaHH > 0.

Using the fea51b1hty of y and z for MPEC and MWDMPEC, respectively, we obtain
F(E(y) = F(E(2)),

and the proof is complete. ([l

Theorem 4.4. (Strong Duality) If § is a global optimal solution of MPEC, such that the

ENNAMCQ is satisfied at § and index sets 14,0, 0,k defined accordingly. Let F, g; (i €

Iy), hi (i€ %), —=h; (i€j7), G; (i €6 UBy), —G; (i € §TUBLUBT), H; (i € k= UBE)

and —H; (i € kT U ﬁg U BT) fulfill the assumption of the Theorem 4.3. Then, there exists

&, such that (g, &) is a global optimal solution of MWDMPEC and corresponding objective
values of MPEC and MWDMPEC' are equal.
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Proof. The proof is similar to the proof of Theorem 4.2. O

5. Conclusions

We have shown that E-M-stationary condition is sufficient for global optimality under

some MPEC and E-convexity assumptions. We have also formulated the Wolfe type and
Mond-Weir type dual models for the MPEC. Further, we established weak and strong duality
theorems relating to the MPEC and two dual models.
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