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ANALYSIS OF THE CMB POLARIZATION MAPS IN THE 
FRAME OF THE GENERALIZED PARETO DISTRIBUTION 

AND COMPLETE CORRELATIONS 

Raoul R. NIGMATULLIN1, Dumitru BALEANU2 3, Ovidiu TINTAREANU-
MIRCEA3 * 

In this paper, the authors use the generalized Pareto distribution (GPD) to analyze 
the Stokes (Q) and (U) CMB polarization anisotropies, as measured by the ESA’s 
Planck space mission.  The analyzed dataset is one of the twelve HEALPix regions, 
obtained using the SMICA pipeline, one of the 4 methods that produced the Planck 
CMB maps cleaned of foreground noise. The CMB polarization random fluctuations 
can be "read" accurately by the generalized Pareto distributions. These distributions 
representing a linear combination of power-law functions turned out to be effective 
for describing the distributions having clearly expressed long tails. The arguments 
of application of these power-law distributions are given inside the paper. 
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1. Introduction 

The Cosmic Microwave Background (CMB), is a blackbody radiation 
emitted at the time the Universe became transparent due to recombination of 
electrons and nuclei that formed first neutral primordial atoms. The CMB is 
remarkably homogeneous and isotropic, its temperature at current epoch being 
2.72548±0.00057 K [1], nevertheless have been detected small fluctuations of this 
temperature at a level of 10-5 from different directions, called anisotropies. They 
correspond to variations in the density of matter at the time that the CMB formed 
and the exact anisotropy pattern depends on cosmological parameters. By varying 
all the different parameters, it is possible to create a cosmological model with an 
impressively good fit to the observed data. 

Besides the temperature anisotropies, CMB data have also polarization 
anisotropies originating from scattering of the primordial photons having a non-
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zero quadrupole moment very near to the surface of last scattering [2, 3]. Studying 
the fluctuations in the CMB polarization unveils crucial information about the early 
universe, including the generation of cosmic structure, the presence of primordial 
gravitational waves, and fundamental cosmological parameters. The CMB 
polarization can be decomposed into a zero-curl E-mode and a zero-divergence B-
mode [4, 5]. While the E-mode mainly originates in scalar matter density 
perturbations, the B-mode are mainly generated by primordial gravitational waves 
(tensor perturbations) or by gravitational lensing. The vector perturbations, due to 
matter vorticity upon recombination, have no measurable imprint on the CMB 
polarization in standard cosmological models. The Planck mission did not measure 
the E and B modes, but the Stokes Q (the difference in intensities between 
“horizontal” and “vertical” linearly polarized components) and U (the difference in 
intensities between linearly polarized components oriented at +45° and −45°) 
parameters of the linearly polarized CMB. The E and B modes are derived by a 
spin-2 spherical harmonic decomposition on the celestial sphere, separating the 
gradient-like (E-mode) and curl-like (B-mode) patterns based on their parity. The 
distinct influence of scalar/vector/tensor perturbations is present only relative to the 
E and B modes, not to the Stokes parameters Q and U. 

In this study, we analyzed the Stokes Q and U CMB polarization data, obtained 
by the SMICA [6] pipeline. In order to describe the CMB polarization fluctuations 
we apply the generalized Pareto distribution (GPD) representing a linear 
combination of power-law exponents (see expressions (2) and (4)). Why the GPD(s) 
were turned out to be effective in descriptions of random fluctuations? Actually, 
two arguments should be taken in account. The first argument is related to 
envelopes behavior of the F-transform of the low-frequency noise having power-
law behavior. Logically, from this observation it follows that envelopes of the 
fluctuations should have power-law behavior too. The second argument is 
associated with the power-law behavior of the "long-heavy tails" of many 
distributions that are degenerated in power-law behavior clearly expressed in 
ergodic behavior of the ranged amplitudes of the corresponding fluctuations. In this 
paper we combine these two observations and present them in compact form that 
can be applied for descriptions of fluctuations of the random sequences (CMB data) 
not having clearly expressed trend. The rest of the paper is organized as follows. In 
Section 2 we describe the analyzed dataset. In Section 3 we describe the data 
processing procedure and present the results of our method. In the final Section 4 
we summarize and discuss our results. 

2. Data description 

Although Planck measured the CMB polarization anisotropies at nine 
frequencies from 30 to 857 GHz, there are also some combined maps 
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(COMMANDER, NILC, SEVEM and SMICA) accounting for some linear 
combinations of frequency maps. We have considered the SMICA CMB maps [6] 
presented in the form of 1D arrays with 50,331,648 elements, each element 
corresponding to a given set of sky coordinates. This corresponds to HEALPix 
(Hierarchical Equal Area isoLatitude Pixelization) [7] nested ordering format with 
Nside = 2048 (order N=11). We cut from these maps the primarily pixel “0” (1/12 
part of full sky) and rearrange the 1D array in 2D arrays such that adjacent pixels 
in the matrix are also adjacent on the sky. 

3. Data processing procedure 

For the fitting purposes the authors of this paper obtained two square matrices, Q 
and U, referring to Stokes Q and U polarizations. Each matrix has N (N=2048 rows) 
× M (M=2048 columns). How to receive adequate and reliable reduced set of 
parameters characterizing these set of big data from the general point of view? For 
achieving this aim, one can propose the following processing procedure. It can be 
divided on some basic steps that have general character and can be applied for a 
wide class of different fluctuations. In the previous paper [8] the authors analyzed 
temperature anizotropy. In present paper one can consider the Stokes Q and U 
polarization anizotropy matrices. 
S1. One can start evaluation of the number of the roots crossing the "zero" (mean 
value) line. We noticed that distribution of the roots (crossing zero line) follows 
approximately to the straight line R(k)=Ak + B (k=0,1…,K), where k is the number 
of the current root, A and B define the slope and the corresponding intercept, K 
defines the total number of roots. Based on this property one can calculate the 
number of the roots and mean dimensionless frequency <ω> and phase Ф from the 
obvious relationship (as it is well-known that trigonometric functions exactly 
follow to the linear distribution of their roots) 

𝑐𝑐𝑐𝑐𝑐𝑐(⟨𝜔𝜔⟩ ⋅ 𝑅𝑅𝑘𝑘 − 𝛷𝛷) = 0, 𝑜𝑜𝑜𝑜 ⟨𝜔𝜔⟩ ⋅ 𝑅𝑅𝑘𝑘 − 𝛷𝛷 =
𝜋𝜋
2

+ 𝜋𝜋 ⋅ 𝑘𝑘, 

⟨𝜔𝜔⟩ =
𝜋𝜋
𝐴𝐴

,𝛷𝛷 = ⟨𝜔𝜔⟩𝐵𝐵 −
𝜋𝜋
2

 
(1) 

 
Therefore, 4 basic parameters as K, < ω >, A and B can characterize the intensity 
of fluctuations. They are shown inside the Fig. 1 together with the plots of the 
roots distribution for (Q) and (U) matrices. 
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Fig. 1. Quasi-linear distribution of the roots corresponding to (Q) and (U) matrices 

S2. The second step in the processing of random fluctuations is the creation of the 
so-called confidence tube (CT). If from each column of the initial matrix we choose 
only three points (maximal, mean and the minimal values, accordingly) then 
propagating this procedure over all columns we obtain three distributions Tup(m) 
(max. values), Tmn(m) (mean values) and Tmin(m) (minimal values), where index 
m=0,1,2,…, M (M=2047) defines the number of the current column. These three 
distributions for (Q) and (U) data, accordingly, are shown in Figs. 2 (a,b). 
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Fig. 2(a). Distribution of the extreme values for 
the matrix (Q). Mean values for this matrix is 
given below because of the different scales. 
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Fig. 2(b). The plots demonstrate the 
distribution of Tmn(m) for the matrix (Q) with 
clearly expressed oscillations (blue color). 
Distribution given in red lines refers to the 
smoothed curve associated with trend. After its 
substruction one can obtain the trendless gray 
curve. 

We should notice that these distributions are invariant relatively to all data points 
permutations located inside each column. Another CT for (U) data has a sense to 
reproduce also. They are shown in Figs. 3 (a,b). 
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Fig. 3(a). Distribution of the extreme values for 
the matrix (U). Mean values for this matrix is 
given below because of the different of scales. 

Fig. 3(b). The plots demonstrate the 
distributions of Tmn(m) with clearly expressed 
oscillations (shown in blue color). Distribution 
given in red lines refers to the smoothed curve 
associated with trend. After its substruction one 
can obtain the trendless curve given in grey 
color below. 

We should notice that distributions of the mean values Tmn(m) demonstrate clearly 
the hidden oscillations and these random "vibrations" can be associated with 
possible anisotropy of the analyzed matrices (Q) and (U).  
S3. The next step of the proposed treatment is the fitting of the sequences of the 
range amplitudes (SRAs) bisected on two parts (forming positive and negative 
ordered fluctuation amplitudes (branches), accordingly. Being summarized (or 
integrated by the trapezoid method) these branches form distributions of the 
cumulative or total value fluctuations as well. The verification of data with the help 
of the ECs method [9] shows that these envelopes are described by the generalized 
Pareto distributions (GPD). The GPD is determined by expression  

𝑃𝑃𝑃𝑃𝑃𝑃( 𝑡𝑡) = �𝐴𝐴𝑝𝑝𝑡𝑡𝜈𝜈𝑝𝑝
𝑃𝑃−1

𝑝𝑝=0

 (2) 

where PrP(t) defines the linear combination of power-law terms or some 
polynomial. 
Any reader may ask why the authors chose expression (2) for the fitting purposes? 
Part of the arguments was given in the previous paper [8] based on the self-
similarity principle. In this paper we want to justify selection (2) from the 
(non)ergodicity principle. If we take the pair of trendless sequences (representing a 
"noise") and calculate the pair correlation function based on the well-known 
formula  
𝐶𝐶𝑟𝑟𝑚𝑚(𝑦𝑦1,𝑦𝑦2) = 1

2⋅(𝑁𝑁−𝑚𝑚)
∑ �𝑦𝑦1𝑗𝑗𝑦𝑦2𝑗𝑗+𝑚𝑚 + 𝑦𝑦1𝑗𝑗+𝑚𝑚𝑦𝑦2𝑗𝑗�𝑁𝑁−𝑚𝑚
𝑗𝑗=1 , 𝑚𝑚 = 0,1, . .𝑁𝑁 − 1 (3) 

then we obtain the correlation "noise" which keeps its non-equilibrium state 
(nonergodicity) for all values of the correlation parameter m. The ordering of this 
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nonergodicity expressed in the form of the corresponding sequences of the ranged 
amplitudes (SRA) that transform initial sequence as pseudo-equilibrium or ergodic. 
Therefore, the analysis of the SRA which admits the quantitative parametrization 
has an essential importance. We should add also the following fact. In long-term 
studies of low-frequency (LF) "noise" related to various phenomena, it has been 
noted that the behavior of LF envelopes in the frequency domain has a power-law 
behavior expressed approximately in the form ( ) fA f af −β≅ . It is assumed that the 
power-law exponent βf is localized in the interval [0,1], although there are cases 
when this parameter goes beyond the boundaries of this interval. It is clear that such 
an estimate is an approximation, but nevertheless, this fact means that the behavior 
of correlations in the time domain follows to the power-law behavior. Based on this 
real information, one can assume that the behavior of the SRA, preliminarily 
splintered into positive and negative branches can be fitted accurately by the 
following functions  

𝑃𝑃𝑃𝑃3( 𝑡𝑡) =

⎝

⎛�𝐴𝐴𝑝𝑝𝑡𝑡𝜈𝜈𝑝𝑝 , 𝐼𝐼𝐼𝐼( 𝜈𝜈𝑝𝑝) = 0
2

𝑝𝑝=0

𝐴𝐴0𝑡𝑡𝜈𝜈0 + 𝐴𝐴1𝑡𝑡𝑅𝑅𝑅𝑅(𝜈𝜈1) 𝑐𝑐𝑐𝑐𝑐𝑐(|𝐼𝐼𝐼𝐼( 𝜈𝜈1)| 𝑙𝑙𝑙𝑙( 𝑡𝑡)) + 𝐴𝐴2𝑡𝑡𝑅𝑅𝑅𝑅(𝜈𝜈1) 𝑠𝑠𝑠𝑠𝑠𝑠(|𝐼𝐼𝐼𝐼( 𝜈𝜈1)| 𝑙𝑙𝑙𝑙( 𝑡𝑡))

 (4a) 

𝑃𝑃𝑃𝑃2( 𝑡𝑡) =

⎝

⎛�𝐴𝐴𝑝𝑝𝑡𝑡𝜈𝜈𝑝𝑝 , 𝐼𝐼𝐼𝐼( 𝜈𝜈𝑝𝑝) = 0
1

𝑝𝑝=0

𝐴𝐴0𝑡𝑡𝑅𝑅𝑅𝑅(𝜈𝜈0) 𝑐𝑐𝑐𝑐𝑐𝑐(|𝐼𝐼𝐼𝐼( 𝜈𝜈0)| 𝑙𝑙𝑙𝑙( 𝑡𝑡)) + 𝐴𝐴1𝑡𝑡𝑅𝑅𝑅𝑅(𝜈𝜈0) 𝑠𝑠𝑠𝑠𝑠𝑠(|𝐼𝐼𝐼𝐼( 𝜈𝜈0)| 𝑙𝑙𝑙𝑙( 𝑡𝑡))

 (4b) 

The verification on real data indicates that for practical purposes (for 
achieving the value of the relative error less than 5%) it is sufficient to choose P=3 
for the fitting of positive and negative branches, correspondingly. For smoother 
curves as integral/cumulative curves we choose only two terms (P=2). Below, we 
define these fitting functions as the generalized Pareto distributions (GPD). 

These GPDs (4) will be used for the fitting of the positive (2) and negative 
branches (2) for CT(s) distributions, shown on the Figs. 2 and 3, correspondingly. 
We should stress here a specific "universality" of the functions (4). For more deep 
analytical purposes one can apply these fitting functions directly for each selected 
column of the chosen matrix (Q) or (U). The authors are not able to demonstrate 
the fit of all columns (M=2048! – it is too much), because the excess information 
that will be contained in these figures and tables will exceed considerably the page 
limitations of any scientific journal. Therefore, the authors are concentrated on the 
fitting of the CTs distributions that are obtained from initial (Q,U) matrices. Below, 
it is convenient to work with sizeless data. Therefore, the CTs distributions will be 
normalized on their range as 

𝐷𝐷𝐷𝐷(𝑚𝑚) =
𝑇𝑇(𝑚𝑚)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇)
, 0 < 𝐷𝐷𝐷𝐷(𝑚𝑚) < 1, (5) 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇) > 0. 
As it has been mentioned above nonlinear power-law exponents will be 

found by the ECs method [9], allowing the reduction of the nonlinear fitting 
procedure to the linear least square method (LLSM). 

The Figs. 4 (a, b, c) demonstrate the normalized SRA that are prepared for 
the fitting purposes. 
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Fig. 4(a). The normalized "noise" sequence 
associated with Tup(m) belonging to (Q) 
matrix. The SRA given by solid black line is 
expressed clearly. After bisection of this curve 
on the positive and negative parts we will apply 
the fitting expressions (4a). The fit of these 
bisected envelopes is shown below. 

Fig. 4(b). The normalized "noise" sequence 
associated with Tmn(m) belonging to (Q) 
matrix. The SRA given by solid red line is 
expressed clearly. After bisection of this curve 
on the positive and negative parts we will apply 
the fitting expressions (4a). The fit of these 
bisected envelopes is shown below. 
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Fig. 4(c). The normalized "noise" sequence associated with the 
normalized Tmin(m) belonging to (Q) matrix. The SRA given by 
solid red line is expressed clearly. After bisection of this curve on the 
positive and negative parts we will apply the fitting exp 

The results of the application of the ECs method are shown in Figs. 5 (a, b, 
c) (for initial envelopes), and 6 (a, b, c) (for integral envelopes), correspondingly. 
We should give these figures independently from each other because the length of 
each distribution is different. Other two (for the matrix U) types of fluctuations are 
considered in the similar manner and, therefore these figures are not shown. 
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Fig. 5(a). The fit of the envelopes by the GPD 
corresponding to Tmax(m). All fitting 
parameters corresponding to the GPD are 
collected in Table 1. 
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Fig. 5(b). The fit of the envelopes by the GPD 
corresponding to Tmn(m). All fitting 
parameters are collected in Table 1. 
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Fig. 5(c). The fit of the envelopes by the GPD 
corresponding to integral Tmin(m). Fitting 
parameters are collected in Table 1. 
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Fig. 6(a). The fit of the envelopes by the GPD 
corresponding to the integral Tmax(m). Fitting 
parameters are collected in Table 2. 
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All necessary fitting parameters figuring in expressions (3a) and (3b) for all 
Q, U data are collected in Tables 1, 2 (for (Q) data) and Tables 3, 4 (for (U) data).  

 
Table 1.  

The set of the fitting parameters corresponding to the GPD in accordance 
with expression (4a) realized for the matrix (Q) 

T(m) ν0 Re(ν1) |Im(ν1)| ν2 A0 A1 A2 RelErr(%) 
Tmx_up -1.4072 -0.2525 0.00000 0.7585 -0.00380 0.1192 -0.2283 6.71922 
Tmx_dn 0.3201 -0.2263 0.03041 -0.2262 0.33159 -0.2471 -0.6341 5.89844 
Tmn_up -0.1866 0.1501 0.38555 0.1501 0.10759 -0.2555 -0.3402 5.29150 
Tmn_dn -1.8524 -0.1306 0.00000 0.9593 0.00008 -0.1745 0.3278 3.30773 

Tmin_up -1.1878 -0.0506 0.00000 0.7937 -0.00244 0.2601 -0.4382 1.94779 
Tmin_dn -0.5583 -0.1968 0.00000 0.5083 0.00332 -0.2254 0.3588 5.96784 

 
Table 2. 

The set of the fitting parameters corresponding to the GPD in accordance with expression 
(4b) for the integrated envelopes realized for the matrix (Q) 

T(m) ν0 Re(ν1) |Im(ν1)| A0 A1 RelErr(%) 
Tmx_up 0.78532 1.77386 0.00000 355.03579 -308.00920 0.22998 
Tmx_dn 1.06733 1.06733 0.16232 -72.22792 1532.77121 0.23988 
Tmn_up 1.08634 1.08634 0.15446 46.14889 -2292.03730 0.10587 
Tmn_dn 0.86375 2.09519 0.00000 -392.98928 336.88393 0.22518 

Tmin_up 0.94804 1.82027 0.00000 551.13572 -492.71538 0.10103 
Tmin_dn 1.01502 1.17402 0.00000 -2175.86316 2096.73273 0.15680 

 
Table 3.  

The set of the fitting parameters corresponding to the GPD in accordance with expression 
(4a) realized for the matrix (U) 

T(m) ν0 Re(ν1) |Im(ν1)| ν2 A0 A1 A2 RelErr(%) 
Tmx_up -1.2912 -0.1191 0.0000 0.7876 -0.00402 0.2475 -0.4594 3.53798 
Tmx_dn -0.5876 -0.0489 0.0000 0.4863 0.00031 -0.3785 0.5299 2.60659 
Tmn_up -1.6741 -0.2674 0.0000 0.9022 -0.00025 0.1193 -0.2869 6.87688 
Tmn_dn -0.6238 0.0592 0.0000 0.5301 -0.0001 -0.3822 0.5118 2.62642 

Tmin_up -0.7685 -0.0939 0.0000 0.6437 -0.45849 0.21197 -0.3418 2.42024 
Tmin_dn -0.8133 -0.2843 0.0000 0.5662 0.00035 -0.1221 0.2057 10.5272 

 
Table 4. 

The set of the fitting parameters corresponding to the GPD in accordance with 
expression (4b) for the integrated envelopes realized for the matrix (U) 
T(m) ν0 Re(ν1) |Im(ν1)| A0 A1 RelErr(%) 

Tmax_up 0.92082 1.64223 0.00000 671.65366 -606.66327 0.26253 
Tmax_dn 1.00005 1.38469 0.00000 -1068.23467 976.33179 0.17450 
Tmn_up 0.78202 1.76377 0.00000 384.18620 -359.34316 0.14900 
Tmn_dn 1.02004 1.57326 0.00000 -627.89802 570.81066 0.12432 

Tmin_up 0.92652 1.60321 0.00000 513.51494 -459.65031 0.17146 
Tmin_dn 0.86399 1.29630 0.00000 -629.94090 554.29120 0.39902 

 
The fitting parameters of the GPDs one can used for comparison of the CTs 
corresponding to two matrices (Q,U). The relative fitting error of the 
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cumulative/integrated fluctuations is more accurate (in ten times less) in 
comparison with fit of the initial envelopes. 
S4. For demanded researchers, which want to understand deeper the nature of 
existing anisotropy it is important to compare the degree of correlations related to 
these irradiations. In order to evaluate these correlations, we use two types of 
independent expressions: (a) external correlations and (b) internal correlations 
based on the statistics of the fractional moments.  
In the book of one of coauthors (RRN) [10] and in the papers [11, 12, 13] were 
shown how the statistics of the fractional moments (SFM) allows to evaluate 
external and internal correlations, which use for their calculation different 
expressions.  
(а) External correlations for their evaluation use the following expression: 

𝐶𝐶𝑟𝑟𝑙𝑙,𝑚𝑚 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠𝑖𝑖) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠𝑙𝑙)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠𝑙𝑙, 𝑠𝑠𝑚𝑚)  (6) 

The Range(f) is determined by the second line of expression (5). This value is 
localized in the interval [0,2]. The interval [1,2] shows the interception degree 
(external correlations) for two compared sequences sl and sm, while the interval 
(0,1) shows the absence of external correlations.  
(b) Internal correlations are evaluated in accordance with the following 
expressions: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐹𝐹𝑝𝑝 =
𝐺𝐺𝑝𝑝(𝑦𝑦1,𝑦𝑦2)

�𝐺𝐺𝑝𝑝(𝑦𝑦1,𝑦𝑦1) ⋅ 𝐺𝐺𝑝𝑝(𝑦𝑦2,𝑦𝑦2)
, 

(7a) 𝐺𝐺𝑝𝑝(𝑦𝑦1,𝑦𝑦2, …𝑦𝑦𝑘𝑘) = �
1
𝑁𝑁
�|𝑦𝑦𝑛𝑛1(𝑗𝑗) …𝑦𝑦𝑛𝑛𝑘𝑘(𝑗𝑗)|𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝

𝑁𝑁

𝑗𝑗=1

�

1
𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝

, 

𝑦𝑦𝑦𝑦(𝑗𝑗) =
𝑦𝑦𝑗𝑗 − 𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑗𝑗)

𝑚𝑚𝑚𝑚𝑚𝑚�𝑦𝑦𝑗𝑗 − 𝑚𝑚𝑚𝑚𝑚𝑚( 𝑦𝑦𝑗𝑗)�
,𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑟𝑟 + 2

𝑝𝑝
𝑃𝑃
𝑟𝑟�, 

𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑟𝑟) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 ≤ 𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟), = 0,1, … ,𝑃𝑃. 
The Generalized Pearson Correlation Function (GPCF) (7a) is localized in the 
interval [0,1] and as the relative measure of internal correlations one can take the 
following values of the complete correlations (CF) 

𝐶𝐶𝐶𝐶(1) = 𝑀𝑀 ⋅ �
𝐿𝐿𝐿𝐿𝐿𝐿 −𝑀𝑀

1−𝑀𝑀
� , 0 ≤ 𝐶𝐶𝐶𝐶(1) ≤ 𝑀𝑀, 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃), (7b) 

𝐶𝐶𝐶𝐶(2) = 𝑀𝑀 ⋅ 𝐿𝐿𝐿𝐿𝐿𝐿,𝑀𝑀2 ≤ 𝐶𝐶𝐶𝐶(2) ≤ 𝑀𝑀. 
Here Lim is the limiting value of the moment, which leads to the minimal 
correlations (reduced to the minimal value for CF(1), while the upper limit M 
associated with "remnant" correlations conserving the global minimum M, which 
always exist.  
Based on these expressions one can evaluate the value of internal/external 
correlations and compare specific matrices (Q,U) that give the desired correlations 
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between the distributions (maxT(Q,U)), mnT(Q,U) and minT(Q,U) related to the 
selected CTs. The correlations evaluated in accordance with expressions (6) and (7) 
demonstrate clearly that external and internal correlations have relative character. 
From our point of view the problem with correlations is not completely solved and 
need the further research. Actually, one can pose the following question: is there the 
absolute value of correlations or in any specific case it is necessary to choose the 
relative values of correlations as it is shown in this small research. The values of 
correlations obtained in comparison of the CTs (Q) and (U) are shown in Tables 5 
and 6.   

Table 5.  
External correlations between distributions associated with CTs. Minimal and maximal 

external correlations are bolded. 
 maxT(Q) mnT(Q) minT(Q) 

maxT(U) 1.7819 1.8011 1.4951 

mnT(U) 1.7834 1.7642 1.8288 

minT(U) 1.7079 1.6961 1.9152 

 

Table 6.  
Internal correlations that are evaluated in accordance with expressions (7b) The 
conventional Pearson correlation formula is added also for comparison all set of 

these internal correlations 
 maxT(Q) 

CF(1) 
maxT(Q) 

CF(2) 
maxT(Q) 

PCC 
mnT(Q) 

CF(1) 
mnT(Q) 

CF(2) 
mnT(Q) 

PCC 
minT(Q) 

CF(1) 
minT(Q) 

CF(2) 
minT(Q) 

PCC 
maxT(U) 0.0000 0.2123 0.8293 0.0094 0.2681 0.8203 0.1408 0.3943 0.8310 
mnT(U) 0.0000 0.6147 0.8930 0.1797 0.6720 0.8881 0.0000 0.6167 0.9026 

minT(U) 0.0000 0.4589 0.8868 0.2525 0.6509 0.8926 0.5666 0.8652 0.9414 
 
Analysis of correlations from Table 6 shows that the CF(1) gives always lower 
correlations because that are counted relatively the value (1-M) in denominator, the 
CF(2) gives intermediate values, while the conventional Pearson correlation 
coefficient contains only higher values of correlations. 

4. Conclusions 

 In this paper based on the obvious properties of the GPD we were able to 
describe quantitatively (Q) and (U) CMB polarization maps. Why the GPD(s) were 
turned out to be effective for description of these data belonging to random 
sequences not having clearly expressed trend? We want to underline here the 
following arguments: i) The GPD can replace in many cases "crude" language of 
histograms the power-law for more delicate "horizontal" distributions that are 
obtained by the splitting of the SRA for its positive and negative branches, 
correspondingly. ii) Why these branches (more sophisticated "histograms") have 
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the power-law behavior? Part of the arguments (based on the self-similarity 
principle) were given in paper [7]. Additional arguments were given in this paper. 
Combined arguments can be expressed mathematically by expressions (4). iii) How 
to apply the GPDs for real data? The algorithm was given in Section (3). The steps 
outlined in this section are rather general and can be applied to a wide class of the 
trendless sequences as well. iv) In addition to this tool as the GPDs one can add the 
statistics of the fractional moments. External and internal correlations give a 
possibility to compare the "vicinity" of different random sequences with each other 
from outside and inside as well.  
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