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ANALYSIS OF THE CMB POLARIZATION MAPS IN THE
FRAME OF THE GENERALIZED PARETO DISTRIBUTION
AND COMPLETE CORRELATIONS

Raoul R. NIGMATULLIN', Dumitru BALEANU? 3, Ovidiu TINTAREANU-
MIRCEA3*

In this paper, the authors use the generalized Pareto distribution (GPD) to analyze
the Stokes (Q) and (U) CMB polarization anisotropies, as measured by the ESA’s
Planck space mission. The analyzed dataset is one of the twelve HEALPix regions,
obtained using the SMICA pipeline, one of the 4 methods that produced the Planck
CMB maps cleaned of foreground noise. The CMB polarization random fluctuations
can be "read" accurately by the generalized Pareto distributions. These distributions
representing a linear combination of power-law functions turned out to be effective
for describing the distributions having clearly expressed long tails. The arguments
of application of these power-law distributions are given inside the paper.
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1. Introduction

The Cosmic Microwave Background (CMB), is a blackbody radiation
emitted at the time the Universe became transparent due to recombination of
electrons and nuclei that formed first neutral primordial atoms. The CMB is
remarkably homogeneous and isotropic, its temperature at current epoch being
2.72548+0.00057 K [1], nevertheless have been detected small fluctuations of this
temperature at a level of 10 from different directions, called anisotropies. They
correspond to variations in the density of matter at the time that the CMB formed
and the exact anisotropy pattern depends on cosmological parameters. By varying
all the different parameters, it is possible to create a cosmological model with an
impressively good fit to the observed data.

Besides the temperature anisotropies, CMB data have also polarization
anisotropies originating from scattering of the primordial photons having a non-
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zero quadrupole moment very near to the surface of last scattering [2, 3]. Studying
the fluctuations in the CMB polarization unveils crucial information about the early
universe, including the generation of cosmic structure, the presence of primordial
gravitational waves, and fundamental cosmological parameters. The CMB
polarization can be decomposed into a zero-curl E-mode and a zero-divergence B-
mode [4, 5]. While the E-mode mainly originates in scalar matter density
perturbations, the B-mode are mainly generated by primordial gravitational waves
(tensor perturbations) or by gravitational lensing. The vector perturbations, due to
matter vorticity upon recombination, have no measurable imprint on the CMB
polarization in standard cosmological models. The Planck mission did not measure
the E and B modes, but the Stokes Q (the difference in intensities between
“horizontal” and “vertical” linearly polarized components) and U (the difference in
intensities between linearly polarized components oriented at +45° and —45°)
parameters of the linearly polarized CMB. The E and B modes are derived by a
spin-2 spherical harmonic decomposition on the celestial sphere, separating the
gradient-like (E-mode) and curl-like (B-mode) patterns based on their parity. The
distinct influence of scalar/vector/tensor perturbations is present only relative to the
E and B modes, not to the Stokes parameters Q and U.

In this study, we analyzed the Stokes Q and U CMB polarization data, obtained
by the SMICA [6] pipeline. In order to describe the CMB polarization fluctuations
we apply the generalized Pareto distribution (GPD) representing a linear
combination of power-law exponents (see expressions (2) and (4)). Why the GPD(s)
were turned out to be effective in descriptions of random fluctuations? Actually,
two arguments should be taken in account. The first argument is related to
envelopes behavior of the F-transform of the low-frequency noise having power-
law behavior. Logically, from this observation it follows that envelopes of the
fluctuations should have power-law behavior too. The second argument is
associated with the power-law behavior of the "long-heavy tails" of many
distributions that are degenerated in power-law behavior clearly expressed in
ergodic behavior of the ranged amplitudes of the corresponding fluctuations. In this
paper we combine these two observations and present them in compact form that
can be applied for descriptions of fluctuations of the random sequences (CMB data)
not having clearly expressed trend. The rest of the paper is organized as follows. In
Section 2 we describe the analyzed dataset. In Section 3 we describe the data
processing procedure and present the results of our method. In the final Section 4
we summarize and discuss our results.

2. Data description

Although Planck measured the CMB polarization anisotropies at nine
frequencies from 30 to 857 GHz, there are also some combined maps
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(COMMANDER, NILC, SEVEM and SMICA) accounting for some linear
combinations of frequency maps. We have considered the SMICA CMB maps [6]
presented in the form of 1D arrays with 50,331,648 elements, each element
corresponding to a given set of sky coordinates. This corresponds to HEALPix
(Hierarchical Equal Area isoLatitude Pixelization) [7] nested ordering format with
Nside = 2048 (order N=11). We cut from these maps the primarily pixel “0” (1/12
part of full sky) and rearrange the 1D array in 2D arrays such that adjacent pixels
in the matrix are also adjacent on the sky.

3. Data processing procedure

For the fitting purposes the authors of this paper obtained two square matrices, Q
and U, referring to Stokes Q and U polarizations. Each matrix has N (N=2048 rows)
x M (M=2048 columns). How to receive adequate and reliable reduced set of
parameters characterizing these set of big data from the general point of view? For
achieving this aim, one can propose the following processing procedure. It can be
divided on some basic steps that have general character and can be applied for a
wide class of different fluctuations. In the previous paper [8] the authors analyzed
temperature anizotropy. In present paper one can consider the Stokes Q and U
polarization anizotropy matrices.

S1. One can start evaluation of the number of the roots crossing the "zero" (mean
value) line. We noticed that distribution of the roots (crossing zero line) follows
approximately to the straight line R(k)=4k + B (k=0,1...,K), where £k is the number
of the current root, 4 and B define the slope and the corresponding intercept, K
defines the total number of roots. Based on this property one can calculate the
number of the roots and mean dimensionless frequency <> and phase @ from the
obvious relationship (as it is well-known that trigonometric functions exactly
follow to the /inear distribution of their roots)

cos({w) - Ry — @) = 0,0r (w) - Ry — @ =g+n-k,
(1)

I I
(w) =Z,(p = (w)B—E

Therefore, 4 basic parameters as K, < ® >, 4 and B can characterize the intensity
of fluctuations. They are shown inside the Fig. 1 together with the plots of the
roots distribution for (Q) and (U) matrices.
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Fig. 1. Quasi-linear distribution of the roots corresponding to (Q) and (U) matrices

S2. The second step in the processing of random fluctuations is the creation of the
so-called confidence tube (CT). If from each column of the initial matrix we choose
only three points (maximal, mean and the minimal values, accordingly) then
propagating this procedure over all columns we obtain three distributions Tup(m)
(max. values), Tmn(m) (mean values) and Tmin(m) (minimal values), where index
m=0,1,2,..., M (M=2047) defines the number of the current column. These three
distributions for (Q) and (U) data, accordingly, are shown in Figs. 2 (a,b).
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Fig. 2(a). Distribution of the extreme values for Fig. 2(b). The plots demonstrate the
the matrix (Q). Mean values for this matrix is distribution of Tmn(m) for the matrix (Q) with

given below because of the different scales. clearly expressed oscillations (blue color).
Distribution given in red lines refers to the

smoothed curve associated with trend. After its
substruction one can obtain the trendless gray
curve.
We should notice that these distributions are invariant relatively to all data points
permutations located inside each column. Another CT for (U) data has a sense to

reproduce also. They are shown in Figs. 3 (a,b).
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Fig. 3(a). Distribution of the extreme values for Fig. 3(b). The plots demonstrate the

the matrix (U). Mean values for this matrix is distributions of Tmn(m) with clearly expressed

given below because of the different of scales.  oscillations (shown in blue color). Distribution
given in red lines refers to the smoothed curve
associated with trend. After its substruction one
can obtain the trendless curve given in grey
color below.

We should notice that distributions of the mean values Tmn(m) demonstrate clearly
the hidden oscillations and these random "vibrations" can be associated with
possible anisotropy of the analyzed matrices (Q) and (U).

S3. The next step of the proposed treatment is the fitting of the sequences of the
range amplitudes (SRAs) bisected on two parts (forming positive and negative
ordered fluctuation amplitudes (branches), accordingly. Being summarized (or
integrated by the trapezoid method) these branches form distributions of the
cumulative or total value fluctuations as well. The verification of data with the help
of the ECs method [9] shows that these envelopes are described by the generalized
Pareto distributions (GPD). The GPD i 1s determmed by expression

Prp(t) = Z Apt"? )

where Prp(f) defines the linear combmatlon of power-law terms or some
polynomial.

Any reader may ask why the authors chose expression (2) for the fitting purposes?
Part of the arguments was given in the previous paper [8] based on the self-
similarity principle. In this paper we want to justify selection (2) from the
(non)ergodicity principle. If we take the pair of trendless sequences (representing a
"noise") and calculate the pair correlation function based on the well-known
formula

Cra(¥1,y2) = - (N ) T (Y1y2i4m + Ylemy2;), m=01..N -1 (3)

then we obtain the correlatlon 'noise" which keeps its non-equilibrium state
(nonergodicity) for all values of the correlation parameter m. The ordering of this
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nonergodicity expressed in the form of the corresponding sequences of the ranged
amplitudes (SRA) that transform initial sequence as pseudo-equilibrium or ergodic.
Therefore, the analysis of the SRA which admits the quantitative parametrization
has an essential importance. We should add also the following fact. In long-term
studies of low-frequency (LF) "noise" related to various phenomena, it has been
noted that the behavior of LF envelopes in the frequency domain has a power-law

behavior expressed approximately in the form 4 ( f ) =af P Tt is assumed that the

power-law exponent f3; is localized in the interval [0,1], although there are cases
when this parameter goes beyond the boundaries of this interval. It is clear that such
an estimate is an approximation, but nevertheless, this fact means that the behavior
of correlations in the time domain follows to the power-law behavior. Based on this
real information, one can assume that the behavior of the SRA, preliminarily
splintered into positive and negative branches can be fitted accurately by the
following functions

2
A t'p, ] =0
Pry(t) = ; ptn () (4a)
Agt¥o + A tRe0D cos(|Im(vy)| In( b)) + A,tRe0D sin(|Im(v,)| In(t))
1
/ At 1 =0
Pry(t) = ;) pt Imvp) (4b)

AptReo) cos(|Im(vy)| In(t)) + A, tR¢0) sin(|Im(vy)| In(t))

The verification on real data indicates that for practical purposes (for
achieving the value of the relative error less than 5%) it is sufficient to choose P=3
for the fitting of positive and negative branches, correspondingly. For smoother
curves as integral/cumulative curves we choose only two terms (P=2). Below, we
define these fitting functions as the generalized Pareto distributions (GPD).

These GPDs (4) will be used for the fitting of the positive (2) and negative
branches (2) for CT(s) distributions, shown on the Figs. 2 and 3, correspondingly.
We should stress here a specific "universality" of the functions (4). For more deep
analytical purposes one can apply these fitting functions directly for each selected
column of the chosen matrix (Q) or (U). The authors are not able to demonstrate
the fit of all columns (AM=2048! — it is too much), because the excess information
that will be contained in these figures and tables will exceed considerably the page
limitations of any scientific journal. Therefore, the authors are concentrated on the
fitting of the CTs distributions that are obtained from initial (Q,U) matrices. Below,
it is convenient to work with sizeless data. Therefore, the CTs distributions will be

normalized on their range as
DT(m) = (m) 0<DT(m)<1 5
(m) Range(T)’ (m) ’ ®)
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Range(T) = max(T) —min(T) > 0.

As 1t has been mentioned abovi

e nonlinear power-law exponents will be

found by the ECs method [9], allowing the reduction of the nonlinear fitting
procedure to the linear least square method (LLSM).
The Figs. 4 (a, b, ¢) demonstrate the normalized SRA that are prepared for

the fitting purposes.

—— maxT(m) for (Q)
SRA

Normalized Tmx(m) and its SRA

0,54

0 <m/M <1, M=2047

Fig. 4(a). The normalized "noise" sequence
associated with Tup(m) belonging to (Q)
matrix. The SRA given by solid black line is
expressed clearly. After bisection of this curve
on the positive and negative parts we will apply
the fitting expressions (4a). The fit of these
bisected envelopes is shown below.

0,51

Normalized minT(m) and its SRA

—— Normalized mnT(m) for (Q)
——SRA

0,54

m) and its SRA

0,04

Normalized mnT(

0,5

0< m/M <1 M=2047

Fig. 4(b). The normalized "noise" sequence
associated with Tmn(m) belonging to (Q)
matrix. The SRA given by solid red line is
expressed clearly. After bisection of this curve
on the positive and negative parts we will apply
the fitting expressions (4a). The fit of these
bisected envelopes is shown below.
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Fig. 4(c). The normalized "noise" sequence associated with the
normalized Tmin(m) belonging to (Q) matrix. The SRA given by
solid red line is expressed clearly. After bisection of this curve on the
positive and negative parts we will apply the fitting exp

The results of the application of the ECs method are shown in Figs. 5 (a, b,

¢) (for initial envelopes), and 6 (a, b, ¢)

(for integral envelopes), correspondingly.

We should give these figures independently from each other because the length of
each distribution is different. Other two (for the matrix U) types of fluctuations are
considered in the similar manner and, therefore these figures are not shown.
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Fig. 5(b). The fit of the envelopes by the GPD
corresponding to Tmn(m). All fitting
parameters are collected in Table 1.

Fig. 5(a). The fit of the envelopes by the GPD
corresponding to Tmax(m). All fitting
parameters corresponding to the GPD are
collected in Table 1.
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parameters are collected in Table 2.



Analysis of the CMB polarization maps in the frame of the generalized Pareto distribution... 133

All necessary fitting parameters figuring in expressions (3a) and (3b) for all
Q, U data are collected in Tables 1, 2 (for (Q) data) and Tables 3, 4 (for (U) data).

Table 1.
The set of the fitting parameters corresponding to the GPD in accordance
with expression (4a) realized for the matrix (Q)

T(m) Vo Re(vi)  JfIm(vi) V2 Ao Al A2 RelErr(%)
Tmx _up | -1.4072 -0.2525 0.00000 0.7585 -0.00380 0.1192 -0.2283 6.71922
Tmx_dn | 03201 -0.2263 0.03041 -0.2262  0.33159 -0.2471 -0.6341 5.89844
Tmn_up | -0.1866  0.1501 0.38555 0.1501  0.10759 -0.2555 -0.3402 5.29150
Tmn_dn | -1.8524 -0.1306  0.00000  0.9593  0.00008 -0.1745  0.3278 3.30773
Tmin_up | -1.1878 -0.0506 0.00000  0.7937 -0.00244 0.2601 -0.4382 1.94779
Tmin_dn | -0.5583  -0.1968 0.00000  0.5083  0.00332 -0.2254  0.3588 5.96784

Table 2.

The set of the fitting parameters corresponding to the GPD in accordance with expression
(4b) for the integrated envelopes realized for the matrix (Q)

T(m) v Re(vi)  [im(vi) Ao A1 RelErr(%)
Tmx _up | 0.78532 1.77386 0.00000 355.03579 -308.00920 0.22998
Tmx_dn | 1.06733 1.06733 0.16232 -72.22792 1532.77121 0.23988
Tmn_up | 1.08634 1.08634 0.15446 46.14889  -2292.03730 0.10587
Tmn_dn | 0.86375 2.09519 0.00000  -392.98928 336.88393 0.22518
Tmin_up | 0.94804 1.82027 0.00000 551.13572 -492.71538 0.10103
Tmin_dn | 1.01502 1.17402 0.00000 -2175.86316  2096.73273 0.15680

Table 3.
The set of the fitting parameters corresponding to the GPD in accordance with expression
(4a) realized for the matrix (U)

T(m) w  Re(vi) [Im(vi)/ 12 Ao Al A>  RelErr(%)
Tmx_up | -1.2912  -0.1191 0.0000 0.7876 -0.00402  0.2475 -0.4594 3.53798
Tmx_dn | -0.5876 -0.0489 0.0000 0.4863 0.00031 -0.3785  0.5299 2.60659
Tmn_up | -1.6741 -0.2674 0.0000 0.9022 -0.00025  0.1193 -0.2869 6.87688
Tmn_dn | -0.6238  0.0592  0.0000 0.5301 -0.0001  -0.3822  0.5118 2.62642
Tmin up | -0.7685 -0.0939 0.0000 0.6437 -0.45849 0.21197 -0.3418 2.42024
Tmin dn | -0.8133 -0.2843  0.0000 0.5662  0.00035 -0.1221  0.2057 10.5272

Table 4.

The set of the fitting parameters corresponding to the GPD in accordance with
expression (4b) for the integrated envelopes realized for the matrix (U)

T(m) vw  Re(vi) [Im(vi)/ Ao A1 RelErr(%)
Tmax up | 0.92082 1.64223  0.00000 671.65366 -606.66327 0.26253
Tmax_dn | 1.00005 1.38469 0.00000 -1068.23467 976.33179 0.17450

Tmn_up | 0.78202 1.76377 0.00000 384.18620 -359.34316 0.14900
Tmn_dn | 1.02004 1.57326 0.00000 -627.89802  570.81066 0.12432
Tmin_up | 0.92652 1.60321 0.00000 513.51494 -459.65031 0.17146
Tmin_dn | 0.86399 1.29630 0.00000 -629.94090  554.29120 0.39902

The fitting parameters of the GPDs one
corresponding to two matrices (Q,U). The relative fitting error of the

can used for comparison of the CTs
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cumulative/integrated fluctuations is more accurate (in ten times less) in
comparison with fit of the initial envelopes.

S4. For demanded researchers, which want to understand deeper the nature of
existing anisotropy it is important to compare the degree of correlations related to
these irradiations. In order to evaluate these correlations, we use two types of
independent expressions: (a) external correlations and (b) internal correlations
based on the statistics of the fractional moments.

In the book of one of coauthors (RRN) [10] and in the papers [11, 12, 13] were
shown how the statistics of the fractional moments (SFM) allows to evaluate
external and internal correlations, which use for their calculation different
expressions.

(a) External correlations for their evaluation use the following expression:

Range(s;) + Range(s;)
Crl’m =

R (6)
ange(sy, Sm)

The Range(f) is determined by the second line of expression (5). This value is
localized in the interval [0,2]. The interval [1,2] shows the interception degree
(external correlations) for two compared sequences s; and s, while the interval
(0,1) shows the absence of external correlations.

(b) Internal correlations are evaluated in accordance with the following
expressions:

GPCE, = Gp(¥1,¥2)
\/Gp(yllyl) : Gp()’ZJ)’z)
1w oy
Gy Y2, 0 = | 7 D ym @) ymemems | (7a)
j=1

yn() = —L )

max(yj - mm(yj))

exp(—r) <mom, < exp(r),=0,1,..,P.
The Generalized Pearson Correlation Function (GPCF) (7a) is localized in the
interval [0,1] and as the relative measure of internal correlations one can take the
following values of the complete correlations (CF)
Lim - M
CF(1)=M - (W)'O < CF(1) < M, Lim = In(momy), (7b)
CF(2)=M - Lim,M? < CF(2) < M.

Here Lim is the limiting value of the moment, which leads to the minimal
correlations (reduced to the minimal value for CF(1), while the upper limit M
associated with "remnant" correlations conserving the global minimum M, which
always exist.
Based on these expressions one can evaluate the value of internal/external
correlations and compare specific matrices (Q,U) that give the desired correlations

mom, = exp (—r +2 %r),
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between the distributions (maxT(Q,U)), mnT(Q,U) and minT(Q,U) related to the
selected CTs. The correlations evaluated in accordance with expressions (6) and (7)
demonstrate clearly that external and internal correlations have relative character.
From our point of view the problem with correlations is not completely solved and
need the further research. Actually, one can pose the following question: is there the
absolute value of correlations or in any specific case it is necessary to choose the
relative values of correlations as it is shown in this small research. The values of
correlations obtained in comparison of the CTs (Q) and (U) are shown in Tables 5

and 6.
Table 5.
External correlations between distributions associated with CTs. Minimal and maximal
external correlations are bolded.

maxT(Q) mnT(Q) minT(Q)
maxT(U) 1.7819  1.8011 1.4951

mnT(U) 1.7834  1.7642 1.8288
minT(U) 1.7079  1.6961 1.9152

Table 6.
Internal correlations that are evaluated in accordance with expressions (7b) The
conventional Pearson correlation formula is added also for comparison all set of
these internal correlations

maxT(Q) maxT(Q) maxT(Q) mnT(Q) mnT(Q) mnT(Q) minT(Q) minT(Q) minT(Q)

CF(1) CF2) PCC CF(l) CF2) PCC CF() CF2) PCC

maxT(U)| 0.0000 0.2123 0.8293 0.0094 0.2681 0.8203 0.1408 0.3943 0.8310
mnT(U)| 0.0000 0.6147 0.8930 0.1797 0.6720 0.8881 0.0000 0.6167 0.9026
minT(U)|  0.0000 0.4589 0.8868 0.2525 0.6509 0.8926 0.5666 0.8652 0.9414

Analysis of correlations from Table 6 shows that the CF(1) gives always lower
correlations because that are counted relatively the value (1-M) in denominator, the
CF(2) gives intermediate values, while the conventional Pearson correlation
coefficient contains only higher values of correlations.

4. Conclusions

In this paper based on the obvious properties of the GPD we were able to
describe quantitatively (Q) and (U) CMB polarization maps. Why the GPD(s) were
turned out to be effective for description of these data belonging to random
sequences not having clearly expressed trend? We want to underline here the
following arguments: 1) The GPD can replace in many cases "crude" language of
histograms the power-law for more delicate "horizontal" distributions that are
obtained by the splitting of the SRA for its positive and negative branches,
correspondingly. ii) Why these branches (more sophisticated "histograms") have
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the power-law behavior? Part of the arguments (based on the self-similarity
principle) were given in paper [7]. Additional arguments were given in this paper.
Combined arguments can be expressed mathematically by expressions (4). ii1) How
to apply the GPDs for real data? The algorithm was given in Section (3). The steps
outlined in this section are rather general and can be applied to a wide class of the
trendless sequences as well. iv) In addition to this tool as the GPDs one can add the
statistics of the fractional moments. External and internal correlations give a
possibility to compare the "vicinity" of different random sequences with each other
from outside and inside as well.
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