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This manuscript deals with the existence results for an impulsive pantograph integro-differential
equations (IPIDE) through Caputo-Fabrizio (CF) operator. Certain novel existence findings are shown
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the application of our theoretical findings.
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1. Introduction

Fractional differential equations (FDEs) have gotten a lot of attention in recent decades
from academics in physics, biology, chemistry, and other disciplines of science and engineering
[6, 8, 16, 29, 43, 48]. Because of the wide range of applications, this subject has been researched
using Riemman-Liouvile, Caputo, Hilfer, Atangana-Baleanu-Caputo and Hadamard type fractional
derivatives [7, 18, 19, 23, 25–27, 37–40]. To extend the application of fractional calculus, a number
of authors have proposed a new class of fractional derivatives with distinct kernels. The most popular
definitions offered by Riemann-Liouville and the Caputo version have the flaw of having a singular
kernel [13]. A recent unique concept of fractional derivative was proposed by Caputo and Fabrizio
[21]. They excluded the singular kernel from their definition. The authors of [35] investigated the
characteristics of the new notion using the information provided by [21]. In the recent two years,
several results on the new CFO have been established. Numerous mathematicians have contributed
to the development of CFO, as evidenced by the publications [2–5, 9–12, 20, 22, 30, 35, 44] and
references thereto.

In several areas of science and technology, including physics, chemical technology, popula-
tion dynamics, and the natural sciences, evolution processes can abruptly change state or be suscep-
tible to short-term perturbations. In order to characterize these sorts of perturbations, a new class
of differential equations termed impulsive differential equations (IDEs) was developed. The books
[14, 17, 31] provide an insight to the notion of IDEs.

In the 1960s, British Railways sought to increase the speed of the electric locomotive. A sig-
nificant invention was the pantograph, which captures electricity from an above line. J. R. Ockendon
and A. B. Tayler examined the pantograph head motion on an electric locomotive in [41]. In the
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process of solving this issue, they encountered a peculiar delay differential equation of the form

p′(ς) = cp(ς)+d p(µς), ς > 0,

p(0) = p0,

where 0 < µ < 1. This specific type of delay differential equation was referred to as a pantograph
equation at the time that the article was published in 1971. The pantograph equation is useful in a va-
riety of domains, including electrodynamics and biology (for example, see [36]). Many researchers
[32–34] have investigated both the properties of the analytic solution to this problem and numerical
approaches. It is of interest to examine the fractional model of the pantograph equations due to
its significance in several applicable disciplines. Recently, very few authors have concentrated on
fractional pantograph equation [1, 15, 24, 28, 42, 45–47]. In particular, in [15], authors examined
the existence of solutions of nonlinear FPE. Later, Vivek et al. [45, 46] analyzed the qualitative
properties of PE via Hilfer fractional derivatives. Later, in [42], authors investigated the positive
solution of FPDE with mixed axioms under suitable fixed point theorem. According to a survey of
numerous recent studies, the topic of impulsive pantograph differential equations via CFO of the
form (1.1)-(1.3) has not yet been addressed by anyone. This is the primary motive for this work.

In light of the foregoing, in the first part of this manuscript, we examine the existence and
uniqueness findings for a class of IPDE through CFO of the form

(CF Dϑ
ς p)(ς) = f (ς, p(ς), p(µς)), ς ∈ [0,ξ], ς 6= ςq, q = 1,2 . . . , ` (1.1)

∆p(ςq) = p(ς+q )− p(ς−q ) = Λq(p(ςq)), q = 1,2 . . . , ` (1.2)

p(0) = p0, (1.3)

where CF Dϑ
ςq is the CFFD of order ϑ ∈ (0,1), 0 < µ < 1, ξ > 0, f : [0,ξ]×R×R→R is continuous

and ςq satisfy 0 = ς0 < ς1 < · · ·< ς` < ς`+1 = ξ, p(ς+q ) = lim
ε→0

p(ςq + ε) and p(ς−q ) = lim
ε→0

p(ςq− ε)

represents the right and left limits of p(ς) at ς = ςq respectively, p0 ∈ R. Λq ∈ C(R,R) is a given
function.

In the second part, we examine the existence and uniqueness findings for a class of IPIDE via
CFO of the form

(CF Dϑ
ςq p)(ς) = f

(
ς, p(ς),

∫
ς

0
h(ς,s)p(µs)ds

)
, ς ∈ [0,ξ], ς 6= ςq, q = 1,2 . . . , ` (1.4)

with the conditions (1.2)-(1.3), where f : [0,ξ]×R×R→ R is continuous and h(ς,s) is continuous
for all (ς,s) ∈ [0,ξ]× [0,ξ] and we can find a positive constant H in a way that max

ς,s∈[0,ξ]
‖h(ς,s)‖= H.

In general, we analyze the existence results of the model (1.1)-(1.4), when p0 ∈X, f : [0,ξ]×
X×X→X, Λq ∈C(X,X),q = 1,2, . . . , ` are given functions and X is real or complex Banach space
with a norm ‖ · ‖.

The significant result of the study can be summed up as follows:

1. This work investigates the existence of a PC solution to IPIDE through CFO for the system
(1.1)-(1.4).

2. The fixed point theorems of Banach and Krasnoselskii are used to derive the primary insights.
Finally, we will present a few examples to demonstrate how our primary conclusions might be
used.

3. This is the first attempt, as far as we know, to handle the IPIDE with CFO for the system
(1.1)-(1.4).

We will now proceed to a description of the work. Section 2 presents the concept of a piece-
wise continuous solution for our issue, as well as several notations and a review of some concepts
and previous findings. The first result is based on the Banach contraction principle, while the second
result is based on Krasnoselskii’s fixed point theorem, which we give in Section 3. In the following
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section (Section 4), we will show how our key conclusions can be applied by presenting a few
examples.

2. Preliminaries

This section discusses the CFO’s basic definitions and findings, which will help us prove our
main points.

The functions designated by the notation L1([0,ξ],X) that are integrable in the Bochner con-
cept with reference to the Lebesgue measure and come furnished with the notation

‖p‖L1 =
∫

ξ

0
‖p(x)||dx

are referred to as p : [0,ξ]→ X.

Definition 2.1. [21] The CFO integral order 0 < ϑ < 1 for a function g ∈ L1([0,ξ]) described by

(CF Iϑ
0 g)(ζ) =

2(1−ϑ)

N(ϑ)(2−ϑ)
g(ζ)+

2ϑ

N(ϑ)(2−ϑ)

∫
ζ

0
g(x)dx, ζ≥ 0, (2.1)

where N(ϑ) is normalization constant depending on ϑ that satisfies the condition N(0) = 1 and
N(1) = 2.

Remark 2.1. If we take N(ϑ) =
2

2−ϑ
, then (2.1) becomes

(CF Iϑ
0 g)(ζ) = (1−ϑ)g(ζ)+ϑ

∫
ζ

0
g(x)dx, ζ≥ 0.

Definition 2.2. [21] The CFO of the function g ∈ AC([0,ξ]) is described by

(CF Dϑ
0 g)(ζ) =

(2−ϑ)N(ϑ)

2(1−ϑ)

∫
ζ

0
e

(
− ϑ

1−ϑ
(ζ− x)

)
g′(x)dx, ϑ ∈ (0,1), ζ ∈ [0,ξ], (2.2)

where the notation AC([0,ξ]) : [0,ξ]→ X signifies the space of all functions that are absolutely
continuous.

At this juncture, it should be pointed out that CF Dϑ
0 g = 0 iff g is a constant function.

Remark 2.2. If we take N(ϑ) =
2

2−ϑ
, then (2.2) becomes

(CF Dϑ
0 g)(ζ) =

1
(1−ϑ)

∫
ζ

0
e

(
− ϑ

1−ϑ
(ζ− x)

)
g′(x)dx, ζ ∈ [0,ξ].

Lemma 2.1. [35] Let g ∈ L1([0,ξ]). Then a function p ∈ C ([0,ξ]) is a solution of the following
system

(CF Dϑ
0 p)(ς) = g(ς), ς ∈ [0,ξ],

p(0) = p0,
(2.3)

iff p fulfills the subsequent integral equation

p(ς) = p0−
2(1−ϑ)

(2−ϑ)N(ϑ)
g(0)+

2(1−ϑ)

(2−ϑ)N(ϑ)
g(ς)+

2ϑ

(2−ϑ)N(ϑ)

∫
ς

0
g(s)ds. (2.4)

Remark 2.3. (i) The above Lemma 2.1 is true only when g(0) = 0. Then (2.4) becomes

p(ς) = p0 +
2(1−ϑ)

(2−ϑ)N(ϑ)
g(ς)+

2ϑ

(2−ϑ)N(ϑ)

∫
ς

0
g(s)ds. (2.5)
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For our convenience, we denote

Aϑ =
2(1−ϑ)

(2−ϑ)N(ϑ)
and Bϑ =

2ϑ

(2−ϑ)N(ϑ)
.

Then (2.5) can be written as

p(ς) = p0 +Aϑg(ς)+Bϑ

∫
ς

0
g(s)ds. (2.6)

(ii) Suppose g(0) 6= 0, then (2.4) is a solution of the subsequent system

(CF Dϑ
0 p)(ς) = g(ς)−g(0)e

−
ϑ

1−ϑ
ς
, ς ∈ [0,ξ],

p(0) = p0.

(2.7)

From the above Remark 2.3, we conclude that (2.6) is the solution of the system (2.3).
Constructing the piece-wise continuous functions is the first step that has to be taken before

defining the solution to the given system (1.1)-(1.4). We address it in depth here.
For a given ξ > 0, let Iq = (ςq,ςq+1], q = 1,2, . . . , `. Consider the subsequent space of PC

functions:

PC ([0,ξ],X) =
{

p : [0,ξ]→ X, pq ∈ C (Iq,X) for q = 0,1,2, . . . , `,

and there exist p(ς−q ) and p(ς+q ) with p(ςq) = p(ς−q ), q = 1,2, . . . , `
}
.

Checking that PC ([0,ξ],X) is a Banach space with norm ‖ · ‖ is not difficult.

Definition 2.3. A function p ∈ PC is said to be a solution of (1.1)-(1.3) if it fulfills p(0) =
p0,(

CF Dϑ
ς p)(ς)= f (ς, p(ς), p(µς)) with f (0, p(0), p(0))= 0; for ς∈ Iq, q= 0,1,2, . . . , `, and ∆p(ςq)=

Λq(p(ς−q )), q = 1,2 . . . , `.

We first investigate the linear system and find its solution before moving on to the nonlinear
system (1.1)-(1.3).

Lemma 2.2. Let g : [0,ξ]→ X be a continuous function with g(0) = 0. A function p ∈PC is a
solution of the fractional integral equation

p(ς) =



p0 +Aϑg(ς)+Bϑ

∫
ς

0
g(s)ds, ς ∈ [0,ς1],

p0 +Aϑg(ς)+Bϑ

∫
ς

0
g(s)ds+Λ1(p(ς1)), ς ∈ (ς1,ς2],

...

p0 +Aϑg(ς)+Bϑ

∫
ς

0
g(s)ds+

`

∑
q=1

Λq(p(ςq)), ς ∈ (ςq,ςq+1].

(2.8)

iff p is a solution of the subsequent problem
(CF Dϑ

ς p)(ς) = g(ς), t ∈ [0,ξ], ς 6= ςq, q = 1,2 . . . , `,
∆p(ςq) = Λq(p(ςq)), q = 1,2 . . . , `,
p(0) = p0.

(2.9)

Based on the above Lemma 2.2, we can define the solution of the given system (1.1)-(1.3).
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Lemma 2.3. A function p ∈PC is a solution of the system (1.1)-(1.3) iff p fulfills the subsequent
integral equation

p(ς) =



p0 +Aϑ f (ς, p(ς), p(µς))

+Bϑ

∫
ς

0
f (s, p(s), p(µs))ds, ς ∈ [0,ς1],

p0 +Aϑ f (ς, p(ς), p(µς))

+Bϑ

∫
ς

0
f (s, p(s), p(µs))ds+Λ1(p(ς1)), ς ∈ (ς1,ς2],

...
p0 +Aϑ f (ς, p(ς), p(µς))

+Bϑ

∫
ς

0
f (s, p(s), p(µs))ds+

`

∑
q=1

Λq(p(ςq)), ς ∈ (ςq,ςq+1].

(2.10)

3. Existence Results

Under suitable fixed point theory [22], the existence findings for (1.1)-(1.3) are examined in
this section.

The following requirements must be met in order to use the fixed point theorems discussed
above:

(A1) (i) The function f : [0,ξ]×X×X→X is continuous and we can find a positive constant L f
in a way that

‖ f (ς, p(ς), p(µς))− f (ς, p̄(ς), p̄(µς))‖ ≤ 2L f ‖p− p̄‖,

for each ς ∈ [0,ξ], µ ∈ (0,1), p, p̄ ∈ X.
(ii) There exist positive constants L f ,L̃ f > 0 in ways that

‖ f (ς, p(ς), p(µς))‖ ≤ 2L f ‖p‖+ L̃ f , ς ∈ [0,ξ], µ ∈ (0,1), p ∈ X.

(A2) (i) The functions Λq : X→ X, q = 1,2, . . . , ` are continuous and we can find a positive con-
stant MΛq in ways that

‖Λq(u)−Λq(ū)‖ ≤MΛq‖u− ū‖, for all u, ū ∈ X

and MΛ = max{MΛ1 ,MΛ2 , . . . ,MΛ`
}.

(ii) There exists a positive constant M̃Λ = max{M̃Λ1 ,M̃Λ2 , . . . ,M̃Λ`
} in a way that

‖Λq(p)‖ ≤ M̃Λq‖p‖, q = 1,2, . . . , `, p ∈ X.

Theorem 3.1. Suppose f and Λq, q = 1,2, . . . , ` are satisfy the conditions (A1)(i) and (A2)(i). If

µ̃ = [µ∗L f + lMΛ]< 1, (3.1)

where µ∗ = 2(Aϑ +Bϑξ), and 1− µ̃ > 0, then the system (1.1)-(1.3) has a unique solution on [0,ξ].
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Proof. We transform the system (1.1)-(1.3) into a fixed point problem. Consider the operator ϒ :
PC ([0,ξ],X)→PC ([0,ξ],X) by

(ϒp)(ς) =



p0 +Aϑ f (ς, p(ς), p(µς))

+Bϑ

∫
ς

0
f (s, p(s), p(µs))ds, ς ∈ [0,ς1],

p0 +Aϑ f (ς, p(ς), p(µς))+Bϑ

∫
ς

0
f (s, p(s), p(µs))ds

+Λ1(p(ς1)), ς ∈ (ς1,ς2],
...

p0 +Aϑ f (ς, p(ς), p(µς))+Bϑ

∫
ς

0
f (s, p(s), p(µs))ds

+
`

∑
q=1

Λq(p(ςq)), ς ∈ (ςq,ςq+1].

(3.2)

Now, we show that ϒBQ ⊂ BQ. To do this, let f (·,0,0) = 0,max{Λq(0), q = 1,2, . . . , `}= 0

and let BQ = B(0,Q) = {p ∈PC ([0,ξ],X) : ‖p‖PC ≤ Q} with radius Q ≥ ‖p0‖
1− µ̃

, where µ̃ =

µ∗L f + lMΛ and µ∗ = 2(Aϑ +Bϑξ).
For each ς ∈ [0,ς1] and p ∈ BQ, we sustain

‖(ϒp)(ς)‖=
∥∥∥∥p0 +Aϑ f (ς, p(ς), p(µς))+Bϑ

∫
ς

0
f (s, p(s), p(µs))ds

∥∥∥∥
≤ ‖p0‖+(Aϑ +Bϑς1)2L f Q

≤ Q.

Further, for each ς ∈ Iq, q = 1,2, . . . , `, and p ∈ BQ, we obtain

‖(ϒp)(ς)‖ ≤ ‖p0‖+
[
(Aϑ +Bϑςq+1)2L f + `MΛq

]
Q

≤ Q.

Thus, for ς ∈ [0,ξ], and p ∈PC , we have

‖ϒ(p)‖PC ≤ ‖p0‖+(µ∗L f + lMΛ)Q≤ Q.

This demonstrates that the operator ϒ causes the ball BQ to be transformed into itself. Next, for
p, p ∈PC and ς ∈ [0,ς1], we sustain

‖(ϒp)(ς)− (ϒp)(ς)‖ ≤ (Aϑ +Bϑς1)2L f ‖p− p‖PC .

For ς ∈ (ς1,ς2], we get

‖(ϒp)(ς)− (ϒp)(ς)‖ ≤ [(Aϑ +Bϑς2)2L f +MΛ1 ]‖p− p‖PC .

For ς ∈ (ςq,ςq+1], q = 1,2, . . . , `, we have

‖(ϒp)(ς)− (ϒp)(ς)‖ ≤
[
(Aϑ +Bϑςq+1)2L f +MΛq`

]
‖p− p‖PC .

Thus, for all ς ∈ [0,ξ], we obtain

‖(ϒp)− (ϒp)‖PC ≤ [µ∗L f + lMΛ]‖p− p‖PC .

Based on (3.1) and the Banach fixed point theorem [22], we conclude that ϒ contains a unique
fixed point p ∈PC that is a solution of the model (1.1)-(1.3) on [0,ξ]. �

Now, we prove the existence of solutions of (1.1)-(1.3) by utilizing Krasnoselskii’s fixed point
theorem (KFPT) [22].

Theorem 3.2. Suppose that the conditions (A1) and (A2) hold with [2AϑL f + `MΛ]< 1 and 1− µ̂>
0, where µ̂ = µ∗L f + lM̃Λ. Then the system (1.1)-(1.3) has at least one solution on [0,ξ].
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Proof. Allow us to define two operators from (2.10) as follows:

(ϒ1 p)(ς) =



p0 +Aϑ f (ς, p(ς), p(µς)), ς ∈ [0,ς1],

p0 +Aϑ f (ς, p(ς), p(µς))+Λ1(p(ς1)), ς ∈ (ς1,ς2],
...

p0 +Aϑ f (ς, p(ς), p(µς))+
`

∑
q=1

Λq(p(ςq)), ς ∈ (ςq,ςq+1].

(3.3)

and

(ϒ2 p)(ς) = Bϑ

∫
ς

0
f (s, p(s), p(µs))ds, ς ∈ [0,ξ]. (3.4)

Let BQ = {p ∈PC ([0,ξ],X) : ‖p‖PC ≤ Q} with radius Q ≥
‖p0‖+µ∗L̃ f

1− µ̂
, where µ̂ =

µ∗L f + lM̃Λ and µ∗ = 2(Aϑ +Bϑξ).
For each ς ∈ [0,ς1] and p, p1 ∈ BQ, we find that

‖ϒ1 p(ς)+ϒ2 p1(ς)‖

≤ ‖p0‖+(Aϑ +Bϑς1)2L f Q+(Aϑ +Bϑς1)L̃ f

≤ Q.

Further, for each ς ∈ Iq, q = 1,2, . . . , `, and p, p1 ∈ BQ, we obtain

‖ϒ1 p(ς)+ϒ2 p1(ς)‖

≤

∥∥∥∥∥p0 +Aϑ f (ς, p(ς), p(µς))+Bϑ

∫
ς

0
f (s, p1(s), p1(µs))ds+

`

∑
q=1

Λq(p(ςq))

∥∥∥∥∥
≤ ‖p0‖+(Aϑ +Bϑςq+1)L̃ f +

[
(Aϑ +Bϑςq+1)2L f + `M̃Λ

]
Q

≤ Q.

Thus, for ς ∈ [0,ξ], and p ∈ BQ, we have

‖ϒ1(p)+ϒ2(p1)‖PC ≤ ‖p0‖+
µ∗

2
L̃ f +[µ∗L f + `M̃Λ]Q≤ Q.

Thus ϒ1(p)+ϒ2(p1) ∈ BQ. Next, we prove that ϒ1 is contraction. Since f is continuous, so
is ϒ1, and letting p, p ∈ BQ, from (3.3) and (A1)(i), for each ς ∈ [0,ς1], we have

‖(ϒ1 p)(ς)− (ϒ1 p)(ς)‖ ≤ Aϑ[‖ f (ς, p(ς), p(µς))− f (ς, p(ς), p(µς))‖]
≤ 2AϑL f ‖p− p‖PC .

From (A2)(i) and for ς ∈ (ς1,ς2], we get

‖(ϒ1 p)(ς)− (ϒ1 p)(ς)‖ ≤ [2AϑL f +MΛ1 ]‖p− p‖PC .

For ς ∈ (ςq,ςq+1], q = 1,2, . . . , `, we have

‖(ϒ1 p)(ς)− (ϒ1 p)(ς)‖ ≤
[
2AϑL f +MΛq`

]
‖p− p‖PC .

Thus, for all ς ∈ [0,ξ], we obtain

‖(ϒ1 p)− (ϒ1 p)‖PC ≤ [2AϑL f + `MΛ]‖p− p‖PC .
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Hence ϒ1 is a contraction. Continuity of f implies that the operator ϒ2 is continuous. Also ϒ2 is
uniformly bounded on BQ as

‖(ϒ2 p)(ς)‖ ≤
∥∥∥∥Bϑ

∫
ς

0
f (s, p(s), p(µs))ds

∥∥∥∥
≤ Bϑξ[2L f Q+ L̃ f ] = A,

which implies that ‖ϒ2 p‖ ≤ A. Thus ϒ2 is uniformly bounded. To prove that the operator ϒ2 is
compact, it remains to show that ϒ2 is equi-continuous. Now, for any τ1,τ2 ∈ [0,ξ] with τ1 < τ2 and
p ∈ BQ, we find that

‖(ϒ2 p)(τ2)− (ϒ2 p)(τ1)‖

≤
∥∥∥∥Bϑ

∫
τ2

0
f (s, p(s), p(µs))ds−Bϑ

∫
τ1

0
f (s, p(s), p(µs))ds

∥∥∥∥
≤
∥∥∥∥Bϑ

∫
τ2

0
f (s, p(s), p(µs))ds+Bϑ

∫ 0

τ1

f (s, p(s), p(µs))ds
∥∥∥∥

≤ Bϑ

∫
τ2

τ1

‖ f (s, p(s), p(µs))‖ds≤ Bϑ(2L f Q+ L̃ f )(τ2− τ1). (3.5)

From (3.5), we see that if τ2→ τ1, then the right-hand side of (3.5) goes to zero, so ‖(ϒ2 p)(τ2)−
(ϒ2 p)(τ1)‖→ 0 as τ1→ τ2. Thus, ϒ2 is equi-continuous. Also ϒ2(X)⊂ X, therefore ϒ2 is compact
and, due to Arzela-Ascoli theorem, ϒ has at least one fixed point. Hence the corresponding system
has at least one solution. �

Next, we examine the existence and uniqueness results for the system (1.4) with the condi-
tions (1.2)-(1.3).

Initially, we define the solution for the system (1.4) with the conditions (1.2)-(1.3).

Definition 3.1. A function p ∈PC is said to be a solution of (1.4) with the conditions (1.2)-

(1.3) if it fulfills p(0) = p0,(
CF Dϑ

ς p)(ς) = f
(

ς, p(ς),
∫

ς

0
h(ς,s)p(µs)ds

)
with f (0, p(0),0) = 0; for

ς ∈ Iq, q = 0,1,2, . . . , `, and ∆p(ςq) = Λq(p(ςq)), q = 1,2 . . . , `.

Lemma 3.1. A function p ∈PC is a solution of the system (1.4) with the conditions (1.2)-(1.3) iff
p fulfills the subsequent integral equation

p(ς) =



p0 +Aϑ f
(

ς, p(ς),
∫

ς

0
h(ς,s)p(µs)ds

)
+Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h(s,τ)p(µτ)dτ

)
ds, ς ∈ [0,ς1],

p0 +Aϑ f
(

ς, p(ς),
∫

ς

0
h(ς,s)p(µs)ds

)
+Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h(s,τ)p(µτ)dτ

)
ds+Λ1(p(ς1)), ς ∈ (ς1,ς2],

...

p0 +Aϑ f
(

ς, p(ς),
∫

ς

0
h(ς,s)p(µs)ds

)
+Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h(s,τ)p(µτ)dτ

)
ds+

`

∑
q=1

Λq(p(ςq)), ς ∈ (ςq,ςq+1].
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Define the mapping ϒ : PC ([0,ξ],X)→PC ([0,ξ],X) by

(ϒp)(ς) =



p0 +Aϑ f
(

ς, p(ς),
∫

ς

0
h(ς,s)p(µs)ds

)
+Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h(s,τ)p(µτ)dτ

)
ds, ς ∈ [0,ς1],

p0 +Aϑ f
(

ς, p(ς),
∫

ς

0
h(ς,s)p(µs)ds

)
+Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h(s,τ)p(µτ)dτ

)
ds

+Λ1(p(ς1)), ς ∈ (ς1,ς2],
...

p0 +Aϑ f
(

ς, p(ς),
∫

ς

0
h(ς,s)p(µs)ds

)
+Bϑ

∫
ς

0
f
(

s, p(s),
∫ s

0
h(s,τ)p(µτ)dτ

)
ds

+
`

∑
q=1

Λq(p(ςq)), ς ∈ (ςq,ςq+1].

(3.6)

In order to investigate (1.4) with (1.2)-(1.3), we must also mention the following conditions:

(A1∗) (i) The function f : [0,ξ]×X×X→X is continuous and we can find a positive constant L f
in a way that

‖ f (ς,u,v)− f (ς, ū, v̄)‖ ≤L f [‖u− ū‖+‖v− v‖],

for each ς ∈ [0,ξ], µ ∈ (0,1), u, ū,v,v ∈ X.
(ii) There exist positive constants L f ,L̃ f > 0 in ways that

‖ f (ς,u,v)‖ ≤L f [‖u‖+‖v‖]+ L̃ f , ς ∈ [0,ξ], µ ∈ (0,1), p ∈ X.

(A3) h(ς,s) is continuous for all (ς,s)∈ [0,ξ]× [0,ξ] and we can find a positive constant H in a way
that max

ς,s∈[0,ξ]
‖h(ς,s)‖= H.

Theorem 3.3. Suppose f ,Λq, q = 1,2, . . . , ` and h are satisfy the conditions (A1∗), (A2)(i) and (A3).
If

µ̃1 = [µ∗1L f (1+Hξ)+ lMΛ]< 1, (3.7)

where µ∗1 = (Aϑ +Bϑξ) and 1− µ̃1 > 0, then the system (1.4) with the conditions (1.2)-(1.3) has a
unique solution on [0,ξ].

Finally, we prove the existence of solutions of (1.4) with the conditions (1.2)-(1.3) by utilizing
Krasnoselskii’s fixed point theorem (KFPT) [22].

Theorem 3.4. Suppose that the conditions (A1∗), (A2) and (A3) hold with
[AϑL f (1+Hξ)+ `MΛ] < 1 and 1− µ̃2 > 0, where µ̃2 = µ∗1L f [1+Hξ] + `M̃Λ. Then the system
(1.4) with the conditions (1.2)-(1.3) has at least one solution on [0,ξ].

Proof. The proof of the above Theorems are very similar to Theorems 3.1 and 3.2, respectively, so
we omit it here. �

4. Applications

Example 4.1.
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Consider the subsequent impulsive pantograph system with CFO of the form

CF D
1
4 p(ς) =

e−ς(‖p(ς)‖+
∥∥p
( 1

2 ς
)∥∥)

(9+ eς)(1+‖p(ς)‖+
∥∥p
( 1

2 ς
)∥∥) , ς ∈ [0,1], ς1 6=

1
3
, (4.1)

p
(

1
3

+)
− p

(
1
3

−)
=

‖p( 1
3 )‖

20(1+‖p( 1
3 )‖)

, (4.2)

p(0) = 0. (4.3)

Set ϑ =
1
4
, `= ξ = 1, µ =

1
2
, Aϑ =

3
4
, Bϑ =

1
4
, N(ϑ) =

8
7

and

f (ς,u,v) =
e−ς(‖u‖+‖v‖)

(9+ eς)(1+‖u‖+‖v‖)
, (ς,u,v) ∈ [0,1]× [0,∞)× [0,∞);

Λ1(p) =
p

20(1+ p)
.

Let u,v,u,v ∈ [0,∞) and ς ∈ [0,1]. Then, we have

‖ f (ς,u,v)− f (ς,u,v)‖ ≤ e−ς

(9+ eς)

∥∥∥∥ u+ v
1+u+ v

− u+ v
1+u+ v

∥∥∥∥= 1
10

[2‖u−u‖].

since

‖ f (ς, p(ς), p(µς))− f (ς, p(ς), p(µς))‖ ≤ 1
10

[‖p− p‖+‖p− p‖] = 1
10

[2‖p− p‖]

and

‖ f (ς, p(ς), p(µς))‖ ≤ 1
10

[2‖p‖].

Thus, assumptions (A1)(i)(ii) hold with L f =
1
10 and L̃ f = 0. And for all u,u ∈PC ([0,1],X), we

have

‖Λ1(u)−Λ1(u)‖ ≤
1

20
‖u−u‖ and ‖Λ1(u)‖ ≤

1
20
‖u‖.

Hence, assumptions (A2)(i)(ii) hold with MΛ = 1
20 and M̃Λ = 1

20 . Furthermore

µ̃ = µ∗1L f + lMΛ = 2(Aϑ +Bϑξ)L f + `MΛ = 0.25.

Therefore, the condition (3.1) holds where µ̃ = 0.25 < 1. Hence, in view of Theorem 3.1, the
given system (4.1)-(4.3) has a unique solution in [0,1]. Moreover

2AϑL f + `MΛ = 2
(

3
4

)(
1

10

)
+1
(

1
20

)
= 0.2.

and 1− µ̂ = 0.25 > 0. Then all the conditions of Theorem 3.2 are also satisfied. Hence, the given
system (4.1)-(4.3) has at least one solution in [0,1].

Example 4.2.



Existence results for an impulsive pantograph differential equations within exponential kernel 51

Consider the subsequent impulsive pantograph integro-differential system with CFO of the
form

CF D
1
4 p(ς) =

2+‖p(ς)‖+
∥∥∥∥∫ 1

0
eς−s p

(
1
2

s
)

ds
∥∥∥∥

2eς+1

(
1+‖p(ς)‖+

∥∥∥∥∫ 1

0
eς−s p

(
1
2

s
)

ds
∥∥∥∥) ,

ς ∈ [0,1], ς1 6=
1
3
, (4.4)

p
(

1
3

+)
− p

(
1
3

−)
=

‖p( 1
3 )‖

20(1+‖p( 1
3 )‖)

, (4.5)

p(0) = 0. (4.6)

Set ϑ =
1
4
, `= ξ = 1, µ =

1
2
, Aϑ =

3
4
, Bϑ =

1
4
, N(ϑ) =

8
7

and

f (ς,u,v) =
2+‖u‖+‖v‖

2eς+1(1+‖u‖+‖v‖)
, (ς,u,v) ∈ [0,1]× [0,∞)× [0,∞)

Λ1(p) =
p

20(1+ p)
.

Let u,v,u,v ∈ [0,∞) and ς ∈ [0,1]. Then, we have

‖ f (ς,u,v)− f (ς,u,v)‖ ≤ 1
2e2 [‖u−u‖+‖v− v‖]

and

‖ f (ς,u,v)‖ ≤ 1
2e2 [2+‖u‖+‖v‖].

Thus, assumptions (A1∗)(i)(ii) and (A3) hold with L f =
1

2e2 , L̃ f = 0 and H = e respectively.

In view of Example 4.1, assumptions (A2)(i)(ii) hold with MΛ = 1
20 and M̃Λ = 1

20 . Furthermore

µ̃1 = µ∗1L f (1+Hξ)+ lMΛ = 1
(

1
2e2

)
(1+ e)+1

(
1

20

)
= 0.3016

and

AϑL f (1+Hξ)+ `MΛ =
3
4
· 1

20
(1+ e)+1

(
1

20

)
= 0.1894.

Then all the conditions of Theorem 3.3 and 3.4 are satisfied. Hence, the given system (4.4)-
(4.6) has at least one solution in [0,1].

5. Conclusions

We have defined the existence theory of solutions to exponential kernel-type fractional order
differential equations. We used the well-known Banach and Krasnoselskii fixed point theorems to
develop the aforementioned theory. We use a contractive map to analyse the existence and unique-
ness of the addressing model (1.1)-(1.3) in Theorem 3.1. Theorem 3.2 is constructed to explore
the existence outcomes of the considered system (1.1)-(1.3) under condensing map circumstances.
In Theorem 3.3, we use a contractive map to analyse the existence and uniqueness of the address-
ing model (1.4) with the conditions (1.2)-(1.3). Under condensing map conditions, Theorem 3.4
is employed to explore the existence outcomes of the considered system (1.4) with the conditions
(1.2)-(1.3). There are intriguing examples provided to justify the observed findings. The findings
are novel for impulsive differential equations incorporating CFO. With a suitable fixed point theo-
rem to approximate controllability with instantaneous and non-instantaneous impulses for a variety
of models, it may be possible to enhance the efficacy of such present research in the future.
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